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Abstract

We present a system that demonstrates how the composi-
tional structure of events, in concert with the compositional
structure of language, can interplay with the underlying fo-
cusing mechanisms in video action recognition, providing a
medium for top-down and bottom-up integration as well as
multi-modal integration between vision and language. We
show how the roles played by participants (nouns), their
characteristics (adjectives), the actions performed (verbs),
the manner of such actions (adverbs), and changing spa-
tial relations between participants (prepositions), in the
form of whole-sentence descriptions mediated by a gram-
mar, guides the activity-recognition process. Further, the
utility and expressiveness of our framework is demonstrated
by performing three separate tasks in the domain of multi-
activity video: sentence-guided focus of attention, genera-
tion of sentential description, and query-based search, sim-
ply by leveraging the framework in different manners.

1. Introduction

The ability to describe the observed world in natural lan-
guage is a quintessential component of human intelligence.
A particular feature of this ability is the use of rich sen-
tences, involving the composition of multiple nouns, adjec-
tives, verbs, adverbs, and prepositions, to describe not just
static objects and scenes, but also events that unfold over
time. Furthermore, this ability appears to be learned by vir-
tually all children. The deep semantic information learned
is multi-purpose: it supports comprehension, generation,
and inference. In this work, we investigate the intuition,
and the precise means and mechanisms that will enable us
to support such ability in the domain of activity recognition
in multi-activity video.

Suppose we wanted to recognize an occurrence of an
event described by the sentence The ball bounced, in a video
clip. Nominally, we would need to detect the ball and its po-
sition in the field of view in each frame and determine that
the sequence of such detections satisfied the requirements
of bounce. The sequence of such detections and their corre-
sponding positions over time constitutes a track for that ob-
ject. Here, the semantics of an intransitive verb like bounce
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would be formulated as a unary predicate over object tracks.
Recognizing occurrences of events described by sentences
containing transitive verbs, like The person approached the
ball, would require detecting and tracking two objects, the
person and the ball constrained by a binary predicate.

In an ideal world, event recognition would proceed in a
purely feed-forward fashion: robust and unambiguous ob-
ject detection and tracking followed by application of the
semantic predicates on the recovered tracks. However, the
current state-of-the-art in computer vision is far from this
ideal. Object detection alone is highly unreliable. The best
current average-precision scores on PASCAL VOC hover
around 40%-50% [3]. As a result, object detectors suf-
fer from both false positives and false negatives. One way
around this is to use detection-based tracking [17], where
one biases the detector to overgenerate, alleviating the prob-
lem of false negatives, and uses a different mechanism to
select among the overgenerated detections to alleviate the
problem of false positives. One such mechanism selects de-
tections that are temporally coherent, i.e. the track motion
being consistent with optical flow. Barbu et al. [2] proposed
an alternate mechanism that selected detections for a track
that satisfied a unary predicate such as one would construct
for an intransitive verb like bounce. We significantly ex-
tend that approach, selecting detections for multiple tracks
that collectively satisfy a complex multi-argument predicate
representing the semantics of an entire sentence. That pred-
icate is constructed as a conjunction of predicates represent-
ing the semantics of individual words in that sentence. For
example, given the sentence The person to the left of the
chair approached the trash can, we construct a logical form.

PERSON(P) A TOTHELEFTOF(P, Q) A CHAIR(Q)
A APPROACH(P, R) A TRASHCAN(R)

Our tracker is able to simultaneously construct three
tracks P, (), and R, selecting out detections for each, in an
optimal fashion that simultaneously optimizes a joint mea-
sure of detection score and temporal coherence while also
satisfying the above conjunction of predicates. We obtain
the aforementioned detections by employing a state-of-the-
art object detector [5], where we train a model for each ob-
ject (e.g. person, chair, etc.), which when applied to an im-



age, produces axis-aligned bounding rectangles with asso-
ciated scores indicating strength of detection.

We represent the semantics of lexical items like person,
to the left of, chair, approach, and trash can with predi-
cates over tracks like PERSON(P), TOTHELEFTOF(P, Q),
CHAIR(Q), APPROACH(P, R), and TRASHCAN(R). These
predicates are in turn represented as regular expressions (i.e.
finite-state recognizers or FSMs) over features extracted
from the sequence of detection positions, shapes, and sizes
as well as their temporal derivatives. For example, the pred-
icate TOTHELEFTOF(P, Q) might be a single state FSM
where, on a frame-by-frame basis, the centers of the de-
tections for P are constrained to have a lower x-coordinate
than the centers of the detections for ). The actual formu-
lation of the predicates (Table 2) is more complex as it must
deal with noise and variance in real-world video. What is
central is that the semantics of all parts of speech, namely
nouns, adjectives, verbs, adverbs, and prepositions (both
those that describe spatial-relations and those that describe
motion), is uniformly represented by the same mechanism:
predicates over tracks formulated as finite-state recognizers
over features extracted from the detections in those tracks.

We refer to this capacity as the Sentence Tracker, a func-
tion S : (B,s,A) — (7,J), that takes, as input, an over-
generated set B of detections along with a sentence s and
a lexicon A and produces a score 7 together with a set J of
tracks that satisfy s while optimizing a linear combination
of detection scores and temporal coherence. This can be
used for three distinct purposes as shown in section 4:

focus of attention One can apply the sentence tracker to
the same video clip B, that depicts multiple simultane-
ous events taking place in the field of view with differ-
ent participants, with two different sentences s; and ss.
In other words, one can compute (71,J1) = S(B,s1,A)
and (12,J2) = S(B, s3, A) to yield two different sets of
tracks J; and Jo corresponding to the different sets of
participants in the different events described by s; and s.

generation One can take a video clip B as input and sys-
tematically search the space of all possible sentences s
that can be generated by a context-free grammar and find
that sentence s* for which (7*,J*) = S(B, s*, A) yields
the maximal 7*. This can be used to generate a sentence
that describes an input video clip B.

retrieval One can take a collection B = {By,...,By}
of video clips (or a single long video chopped into short
clips) along with a sentential query s, compute (74, J;) =
S(By, s, A) for each B;, and find the clip B; with maxi-
mal score 7;. This can be used to perform sentence-based
video search.

(Prior work [19] showed how one can take a training set

{(By,s1),...,(Ba,sn)} of video-sentence pairs, where

the word meanings A are unknown, and compute the lex-

icon A* which maximizes the sum 71 + --- + 7); com-

puted from (71,J1) = S(Bi,s,A*),....(7ar, Is) =
S(Bas,s, A*).) However, we first present the two central
algorithmic contributions of this work. In section 2 we
present the details of the sentence tracker, the mechanism
for efficiently constraining several parallel detection-based
trackers, one for each participant, with a conjunction of
finite-state recognizers. In section 3 we present lexical se-
mantics for a small vocabulary of 17 lexical items (5 nouns,
2 adjectives, 4 verbs, 2 adverbs, 2 spatial-relation preposi-
tions, and 2 motion prepositions) all formulated as finite-
state recognizers over features extracted from detections
produced by an object detector, together with compositional
semantics that maps a sentence to a semantic formula con-
structed from these finite-state recognizers where the object
tracks are assigned to arguments of these recognizers.

2. The Sentence Tracker

Barbu et al. [2] address the issue of selecting detec-
tions for a track that simultaneously satisfies a temporal-
coherence measure and a single predicate corresponding to
an intransitive verb such as bounce. Doing so constitutes the
integration of top-down high-level information, in the form
of an event model, with bottom-up low-level information in
the form of object detectors. We provide a short review of
the relevant material in that work to introduce notation and
provide the basis for our exposition of the sentence tracker.
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The first component 1s a detectlon based tracker. For a given
video clip with T" frames, let j be the index of a detection
and b’; be a particular detection in frame ¢ with score f(b5).
A sequence (j,...,57) of detection indices, one for each
frame ¢, denotes a track comprising detections b;t. We seek
a track that maximizes a linear combination of aggregate de-
tection score, summing f (b;,,) over all frames, and a mea-
sure of temporal coherence, as formulated in Eq. 1. The
temporal coherence measure aggregates a local measure g
computed between pairs of adjacent frames, taken to be the
negative Euclidean distance between the center of b;t and

the forward-projected center of b'; ', computed with opti-
cal flow. Eq. 1 can be computed in polynomial time using
dynamic-programming with the Viterbi [15] algorithm. It
does so by forming a lattice, whose rows are indexed by j
and whose columns are indexed by ¢, where the node at
row j and column ¢ is the detection bz-. Finding a track thus
reduces to finding a path through this lattice.
t t—1 t
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The second component recogmzes events with hidden
Markov models (HMMs), by finding a MAP estimate of an
event model given a track. This is computed as shown in
Eq. 2, where k* denotes the state for frame ¢, h(k, b) denotes
the log probability of generating a detection b conditioned
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Figure 1. The cross-product lattice used by the sentence tracker,
consisting of L tracking lattices and W event-model lattices.

on being in state k, a(k’, k) denotes the log probability of
transitioning from state k&’ to k, and 7' denotes the index of
the detection produced by the tracker in frame ¢. This can
also be computed in polynomial time using the Viterbi algo-
rithm. Doing so induces a lattice, whose rows are indexed
by k and whose columns are indexed by .

The two components, detection-based tracking and event
recognition, can be merged by combining the cost functions
from Eq. 1 and Eq 2 toyield a uniﬁed cost function
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that computes the joint MAP estimate of the best possible
track and the best possible state sequence. This is done
by replacing the 7' in Eq. 2 with 5%, allowing the joint
maximization over detection and state sequences. This too
can be computed in polynomial time with the Viterbi al-
gorithm, finding the optimal path through a cross-product
lattice where each node represents a detection paired with
an event-model state. This formulation combines a single
tracker lattice with a single event model, constraining the
detection-based tracker to find a track that is not only tem-
porally coherent but also satisfies the event model. This can
be used to select that ball track from a video clip that con-
tains multiple balls that exhibits the motion characteristics
of an intransitive verb such as bounce.

One would expect that encoding the semantics of a com-
plex sentence such as The person to the right of the chair
quickly carried the red object towards the trash can, which
involves nouns, adjectives, verbs, adverbs, and spatial-
relation and motion prepositions, would provide substan-
tially more mutual constraint on the collection of tracks for
the participants than a single intransitive verb would con-
strain a single track. We thus extend the approach described
above by incorporating a complex multi-argument predi-
cate that represents the semantics of an entire sentence in-
stead of one that only represents the semantics of a single
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intransitive verb. This involves formulating the semantics
of other parts of speech, in addition to intransitive verbs,
also as HMMs. We then construct a large cross-product lat-
tice, illustrated in Fig. 1, to support L tracks and W words.
Each node in this cross-product lattice represents L detec-
tions and the states for W words. To support L tracks, we
subindex each detection index j as j; for track . Similarly,
to support W words, we subindex each state index k as k,,
for word w, the number of states K for the lexical entry s,,
at word w as K, and the HMM parameters h and « for the
lexical entry s,, at word w as hs, and as,,. The argument-
to-track mapping 6 specifies the track that fills argument 4
of word w, where I, specifies the arity, the number of ar-
guments, of the lexical entry s,, at word w. We then seek a
path through this cross-product lattice that optimizes
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This can also be computed in polynomial time using the
Viterbi algorithm. This describes a method by which the
function S : (B,s,A) — (7,J), discussed earlier, can be
computed, where B is the collection of detections b; and J
is the collection of detection indices j;.

The complexity of the sentence tracker is
O(T(JEKW)?) in time and O(JEKY) in space,
where T is the number of frames in the video, W is
the number of words in the sentence s, L is the num-
ber of participants, J = max{J',...,JT}, where
Jt is the number of detections considered in frame ¢,
and K = max{Kj,,..., K, }. In practice, J < 5,
L < 4,and K = 1 for all but verbs and motion prepositions
of which there are typically no more than three. With such,
the method takes less than a second.

3. Natural-Language Semantics

The sentence tracker uniformly represents the semantics
of words in all parts of speech, namely nouns, adjectives,
verbs, adverbs, and prepositions (both those that describe
spatial relations and those that describe motion), as HMMs.
Finite-state recognizers (FSMs) are a special case of HMMs
where the transition matrices a and the output models h are
0/1, which become —oo/0 in log space. Here, we formu-
late the semantics of a small fragment of English consisting
of 17 lexical items (5 nouns, 2 adjectives, 4 verbs, 2 adverbs,
2 spatial-relation prepositions, and 2 motion prepositions),
by hand, as FSMs. We do so to focus on what one can do
with this approach as discussed in section 4. It is particu-
larly enlightening that the FSMs we use are perspicuous and
clearly encode pretheoretic human intuitions about word se-



S — NP VP
NP — D [A] N [PP]
D — an | the
A — blue | red
N — person | backpack | chair | trash can | object
(3.) PP — P NP
P — 1o the left of | to the right of
VP — V NP [Adv] [PPy]
V — approached | carried | picked up | put down
Adv — quickly | slowly
PPy — Py NP
Py — towards | away from

to the left of : {agent, patient, source, goal, referent}, {referent}
to the right of: {agent, patient, source, goal, referent }, {referent}
approached: {agent}, {goal}
carried: {agent}, {patient}
(b) picked up: {agent}, {patient}
put down: {agent}, {patient}
towards: {agent, patient}, {goal}
away from: {agent, patient}, {source}
other: {agent, patient, source, goal, referent}

L a. The backpack approached the trash can.
. The chair approached the trash can.
2a. The red object approached the trash can.
. The blue object approached the trash can.
3a. The person to the left of the trash can put down an object.
. The person to the right of the trash can put down an object.
4a. The person put down the trash can.
. The person put down the backpack.
5a. The person carried the red object.
b. The person carried the blue object.
(C) 6a. The person picked up an object to the left of the trash can.
b. The person picked up an object to the right of the trash can.
7a. The person picked up an object.
b. The person put down an object.
8a. The person picked up an object quickly.
b. The person picked up an object slowly.
9a. The person carried an object towards the trash can.
b.
10. The backpack approached the chair.
1 1. The red object approached the chair.
12. The person put down the chair.

o

o

o

The person carried an object away from the trash can.

Table 1. (a) The grammar for our lexicon of 17 lexical entries (5 nouns, 2 adjectives, 4 verbs, 2 adverbs, 2 spatial-relation prepositions, and
2 motion prepositions). Note that the grammar allows for infinite recursion. (b) Specification of the number of arguments for each word
and the roles such arguments refer to. (c) A selection of sentences drawn from the grammar based on which we collected our corpus.

mantics. But nothing turns on the use of hand-coded FSMs.
Our framework, as described above, supports HMMs.

Nouns (e.g. person) may be represented by constructing
static FSMs over discrete features, such as detector class.
Adjectives (e.g. red, tall, and big) may be represented as
static FSMss that describe select properties of the detections
for a single participant, such as color, shape, or size, inde-
pendent of other features of the overall event. Intransitive
verbs (e.g. bounce) may be represented as FSMs that de-
scribe the changing motion characteristics of a single par-
ticipant, such as moving downward followed by moving up-
ward. Transitive verbs (e.g. approach) may be represented
as FSMs that describe the changing relative motion charac-
teristics of two participants, such as moving closer. Adverbs
(e.g. slowly and quickly) may be represented by FSMs that
describe the velocity of a single participant, independent
of the direction of motion. Spatial-relation prepositions
(e.g. to the left of ) may be represented as static FSMs that
describe the relative position of two participants. Motion
prepositions (e.g. fowards and away from) may be repre-
sented as FSMs that describe the changing relative position
of two participants. As is often the case, even simple static
properties, such as detector class, object color, shape, and
size, spatial relations, and direction of motion, might hold
only for a portion of an event. We handle such temporal
uncertainty by incorporating garbage states into the FSMs
that always accept and do not affect the scores computed.
This also allows for alignment between multiple words in
a temporal interval during a longer aggregate event. We
formulate the FSMs for specifying the word meanings as
regular expressions over predicates computed from detec-
tions. The particular set of regular expressions and associ-
ated predicates that are used in the experiments are given in
Table 2. The predicates are formulated around a number of
primitive functions. The function avgFlow(b) computes a
vector that represents the average optical flow inside the de-

tection b. The functions x(b), model(b), and hue(b) return
the x-coordinate of the center of b, its object class, and the
average hue of the pixels inside b respectively. The func-
tion fwdProj(b) displaces b by the average optical flow in-
side b. The functions £ and angleSep determine the angular
component of a given vector and angular distance between
two angular arguments respectively. The function normal
computes a normal unit vector for a given vector. The ar-
gument v to NOJITTER denotes a specified direction repre-
sented as a 2D unit vector in that direction. Regular expres-
sions are formed around predicates as atoms. A given regu-
lar expression must be formed solely from output models of
the same arity and denotes an FSM, i.e. an HMM with a 0/1
transition matrix and output model, which become —oo/0
in log space. We use R} 2 R " R R* to indicate that R
must be repeated at least  times and R(™!2 (R [TRUE]){™}
to indicate that R must be repeated at least n times but can
optionally have a single frame of noise between each repe-
tition. This allows for some flexibility in the models.

A sentence may describe an activity involving multiple
tracks, where different (collections of) tracks fill the argu-
ments of different words. This gives rise to the require-
ment of compositional semantics: dealing with the map-
pings from arguments to tracks. Argument-to-track assign-
ment is a function © : s — (L, ) that maps a sentence s
to the number L of participants and the argument-to-track
mapping 6?,. The mapping specifies which tracks fill which
arguments of which words in the sentence and is mediated
by a grammar and a specification of the argument arity and
role types for the words in the lexicon. Given a sentence,
say The person to the right of the chair picked up the back-
pack, along with the grammar specified in Table 1(a) and
the lexicon specified in Tables 1(b) and 2, it would yield a
mapping corresponding to the following formula.

PERSON(P) A TOTHERIGHTOF(P, ) A CHAIR(Q)
A PICKEDUP(P, R) A BACKPACK(R)



Constants Simple Predicates

Complex Predicates

XBOUNDARY £ 300pPX NOJITTER(b,v) £ |lavgFlow(b) - v|| < Arump STATIONARYCLOSE(b1, b2) £ STATIONARY (b1) A STATIONARY (b2) A =ALIKE(b1, b2) A CLOSE(b1, b2)
NEXTTO £ 50pX ALIKE(b1,by) £ model(by) = model(bs) STATIONARYFAR(by, b)) £ STATlONARY(lh A STATIONARY (b2) A ~ALIKE(b1, ba) A FAR(by, ba)
ASTATIC £ 6PX CLOSE(b1,b2) 2 |z(b1) — (bs)| < XBOUNDARY CLOSER (b1, b2) £ |z(b1) — 2(b2)| > |z(fiwdProj(b1)) — x(b2)| + ACLOSING

AJUMP £ 30PX FAR(D1,bs) 2 |2(by) — x(b2)| > XBOUNDARY FARTHER (b, by) 2 |z(by) —1( 2)| < |z (fwdProj(by)) — (bz)| + ACLOSING

AQUICK £ 80PX LEFT(b1,b2) £ 0 < z(b2) — x(b1) < NEXTTO MOVECLOSER (b1, b2) £ NOJITTER(b1, (0,1)) A NOJITTER(b2, (0,1)) A CLOSER(by, bo)

ASLOW £ 30pPX RIGHT(by,b2) 2 0 < 2(by) — z(b2) < NEXTTO MOVEFARTHER (b1, b2) £ NOJITTER(by, (0,1)) A NOJITTER(b2, (0, 1)) A FARTHER (b, b)
ACLOSING £ 10pX HASCOLOR(b,hue) £ angleSep(hue(b),hue) < AHUE INANGLE(b,v) £ angleSep(ZavgFlow(b), Zv) < AANGLE
ADIRECTION £ 30° STATIONARY(b) £ |lavgFlow(b)| < ASTATIC INDIRECTION(b,v) £ NOJITTER(b, L(v)) A ~STATIONARY(b) A INANGLE(b, v)
AHUE £ 30° QUICK(D) £ |lavgFlow(b)|| > AQuUIiCK APPROACHING(by, by) £ —ALIKE(by, by) A STATIONARY (b2) A MOVECLOSER (b1, b2)
SLOW(b) £ ||avgFlow(b)|| < AsLow CARRY(by, bo,v) £ PERSON(by) A =ALIKE(by1, bs) A INDIRECTION(by, v) A INDIRECTION (ba, v)
PERSON(b) £ model(b) = person CARRYING(b1,b2) £ CARRY (b1, b2, (0,1)) V CARRY (b1, ba, (0, —1))
BACKPACK(b) £ model(b) = backpack DEPARTING(by, b) £ —ALIKE(by, by) A STATIONARY (b2) A MOVEFARTHER (b1, b2)
CHAIR(b) £ model(b) = chair PICKINGUP (b1, bs) £ PERSON(b1) A —ALIKE(by, ba) A STATIONARY (b1 ) A INDIRECTION (b2, (0,1))
TRASHCAN(D) £ model(b) = trashcan PUTTINGDOWN(by,b2) £ PERSON(b;) A =ALIKE(b1, by) A STATIONARY (b;) A INDIRECTION by, (0, —1))
BLUE(b) £ HASCOLOR(b, 225°)
RED(b) £ HASCOLOR(b,0°)
Regular Expressions

Aperson = PERSONT Apiwe £ BLUET Aapproached = STATIONARYFART APPROACHING!®] STATIONARYCLOSE™

Nbackpack 2 BACKPACK™ Aed £ REDT Acarried 2 STATIONARYCLOSE™ CARRYING/®] STATIONARYCLOSE™
Achair 2 CHAIRT Aguicty 2 TRUEY QUICKI®] TRUEF Npickedup 2 STATIONARYCLOSE™ PICKINGUP®®! STATIONARYCLOSE™

Atrash can = TRASHCANT Astowty 2 TRUEF sLowl®) TRUE® Aput down 2 STATIONARYCLOSE' PUTTINGDOWN®) STATIONARYCLOSE

Aobject = (BACKPACK | CHAIR | TRASHCAN)T  Ajp i teior & LEFTT Aiowards 2 STATIONARYFART APPROACHING3) STATIONARYCLOSE™

Ao the right of = RIGHTT Aaway from 2 STATIONARYCLOSE™ DEPARTING!®) STATIONARYFAR ™

Table 2. The finite-state recognizers corresponding to the lexicon in Table 1(a).

To do so, we first construct a parse tree of the sentence s
given the grammar, using a recursive-descent parser. For
each word, we then determine from the parse tree, which
words in the sentence are determined to be its dependents
in the sense of government, and how many such dependents
exist, from the lexicon specified in Table 1(b). For example,
the dependents of to the right of are determined to be per-
son and chair, filling its first and second arguments respec-
tively. Moreover, we determine a consistent assignment of
roles, one of agent, patient, source, goal, and referent, for
each participant track that fills the word arguments, from
the allowed roles specified for that word and argument in
the lexicon. Here, P, ), and R are participants that play
the agent, referent, and patient roles respectively.

4. Experimental Evaluation

The sentence tracker supports three distinct capabilities.
It can take sentences as input and focus the attention of a
tracker, it can take video as input and produce sentential de-
scriptions as output, and it can perform content-based video
retrieval given a sentential input query. To evaluate the first
three, we filmed a corpus of 94 short video clips, of varying
length, in 3 different outdoor environments. The camera
was moved for each video clip so that the varying back-
ground precluded unanticipated confounds. These video
clips, filmed with a variety of actors, each depicted one or
more of the 21 sentences from Table 1(c). The depiction,
from video clip to video clip, varied in scene layout and
the actor(s) performing the event. The corpus was carefully
constructed in a number of ways. First, many video clips
depict more than one sentence. In particular, many video
clips depict simultaneous distinct events. Second, each sen-
tence is depicted by multiple video clips. Third the corpus
was constructed with minimal pairs: pairs of video clips
whose depicted sentences differ in exactly one word. These
minimal pairs are indicated as the ‘a’ and ‘b’ variants of

sentences 1-9 in Table 1(c). That varying word was care-
fully chosen to span all parts of speech and all sentential
positions: sentence 1 varies subject noun, sentence 2 varies
subject adjective, sentence 3 varies subject preposition, sen-
tence 4 varies object noun, sentence 5 varies object adjec-
tive, sentence 6 varies object preposition, sentence 7 varies
verb, sentence 8 varies adverb, and sentence 9 varies motion
preposition. We filmed our own corpus as we are unaware
of any existing corpora that exhibit the above properties.
We annotated each of the 94 clips with ground truth judg-
ments for each of the 21 sentences, indicating whether the
given clip depicted the given sentence. This set of 1974
judgments was used for the following analyses.

4.1. Focus of Attention

Tracking is traditionally performed using cues from mo-
tion, object detection, or manual initialization on an object
of interest. However, in the case of a cluttered scene involv-
ing multiple activities occurring simultaneously, there can
be many moving objects, many instances of the same object
class, and perhaps even multiple simultaneously occurring
instances of the same event class. This presents a significant
obstacle to the efficacy of existing methods in such scenar-
ios. To alleviate this problem, one can decide which objects
to track based on which ones participate in a target event.

The sentence tracker can focus its attention on just those
objects that participate in an event specified by a sentential
description. Such a description can differentiate between
different simultaneous events taking place between many
moving objects in the scene using descriptions constructed
out of a variety of parts of speech: nouns to specify ob-
ject class, adjectives to specify object properties, verbs to
specify events, adverbs to specify motion properties, and
prepositions to specify (changing) spatial relations between
objects. Furthermore, such a sentential description can even
differentiate which objects to track based on the role that



they play in an event: agent, patient, source, goal, or ref-
erent. Fig. 2 demonstrates this ability: different tracks are
produced for the same video clip that depicts multiple si-
multaneous events when focused with different sentences.
We further evaluated this ability on all 9 minimal pairs,
collectively applied to all 24 suitable video clips in our cor-
pus. For 21 of these, both sentences in the minimal pair
yielded tracks deemed to be correct depictions. Our web-
site! includes example video clips for all 9 minimal pairs.

4.2. Generation

Much of the prior work on generating sentences to de-
scribe images [4, 7, 8, 12, 13, 18] and video [1, 6, 9, 10, 16]
uses special-purpose natural-language-generation methods.
We can instead use the ability of the sentence tracker to
score a sentence paired with a video clip as a general-
purpose natural-language generator by searching for the
highest-scoring sentence for a given video clip. However,
this has a problem. Scores decrease with longer word se-
quences and greater numbers of tracks that result from such.
This is because both f and g are mapped to log space, i.e.
(=00, 0], via sigmoids, to match ~ and a, which are log
probabilities. So we don’t actually search for the highest-
scoring sentence, which would bias the process towards
short sentences. Instead, we seek complex sentences that
are true of the video clip as they are more informative.

Nominally, this search process would be intractable since
the space of possible sentences can be huge and even in-
finite. However, we can use beam search to get an ap-
proximate answer. This is possible because the sentence
tracker can score any word sequence, not just complete
phrases or sentences. We can select the top-scoring single-
word sequences and then repeatedly extend the top-scoring
W -word sequences, by one word, to select the top-scoring
W + 1-word sequences, subject to the constraint that these
W + 1-word sequences are grammatical sentences or can
be extended to grammatical sentences by insertion of ad-
ditional words. We terminate the search process when the
contraction threshold, the ratio between the score of a se-
quence and the score of the sequence expanding from it,
drops below a specified value and the sequence being ex-
panded is a complete sentence. This contraction threshold
controls complexity of the generated sentence.

When restricted to FSMs, h and a will be 0/1, which be-
come —oo/0 in log space. Thus increase in the number of
words can only decrease a score to —oco, meaning that a se-
quence of words no-longer describes a video clip. Since we
seek sentences that do, we terminate the above beam-search
process before the score goes to —oo. In this case, there is
no approximation: a beam search maintaining all W-word
sequences with finite score yields the highest-scoring sen-
tence before the contraction threshold is met.

The tp://aql.ecn.purdue.edu/~qobi/cccp/cvpr2014.html

To evaluate this approach, we searched the space of
sentences generated by the grammar in Table 1(a) to find
the top-scoring sentence for each of the 94 video clips in
our corpus. Note that the grammar generates an infinite
number of sentences due to recursion in NP. Even restrict-
ing the grammar to eliminate NP recursion yields a space
of 147,123,874,800 sentences. Despite not restricting the
grammar in this fashion, we are able to effectively find good
descriptions of the video clips. We evaluated the accuracy
of the sentence tracker in generating descriptions for our en-
tire corpus, for multiple contraction thresholds. Accuracy
was computed as the percentage of the 94 clips for which
generated descriptions were deemed to describe the video
by human judges. Contraction thresholds of 0.95, 0.90, and
0.85 yielded accuracies of 67.02%, 71.27%, and 64.89%
respectively. We demonstrate examples of this approach in
Fig. 3. Our website' contains additional examples.

4.3. Retrieval

The availability of vast video corpora, such as on
YouTube, has created a rapidly growing demand for
content-based video search and retrieval. The existing sys-
tems, however, only provide a means to search via human-
provided captions. The inefficacy of such an approach is
evident. Attempting to search for even simple queries such
as pick up or put down yields surprisingly poor results,
let alone searching for more complex queries such as per-
son approached horse. Furthermore, some prior work on
content-based video-retrieval systems, like Sivic and Zis-
serman [14], search only for objects and other prior work,
like Laptev et al. [11], search only for events. Even com-
bining such to support conjunctive queries for video clips
with specified collections of objects jointly with a specified
event, would not effectively rule out video clips where the
specified objects did not play a role in the event or played
different roles in the event. For example, it could not rule
out a video clip depicting a person jumping next to a sta-
tionary ball for a query ball bounce or distinguish between
the queries person approached horse and horse approached
person. The sentence tracker exhibits the ability to serve as
the basis of a much better video search and retrieval tool,
one that performs content-based search with complex sen-
tential queries to find precise semantically relevant clips, as
demonstrated in Fig. 4. Our website' contains the top three
scoring video clips for each query sentence from Table 1(c).

To evaluate this approach, we scored every video clip in
our corpus against every sentence in Table 1(c), rank order-
ing the video clips for each sentence, yielding the following
statistics over the 1974 scores.

chance that a random clip depicts a given sentence ~ 13.12%
top-scoring clip depicts the given sentence 94.68%
> 1 of top 3 clips depicts the given sentence 100.00%

Our website! contains all 94 video clips and all 1974 scores.
The judgment of whether a video clip depicted a given sen-
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The person put down an object.

Figure 2. Sentence-guided focus of attention: different sets of tracks for the same video clip produced under guidance of different sentences.
Here, and in Figs. 3 and 4, the red box denotes the agent, the blue box denotes the patient, the violet box denotes the source, the turquoise

box denotes the goal, and the green box denotes the referent. These

roles are determined automatically.

The person to the left of the trash can put down the chair.
Figure 3. Generation of sentential description: constructing the best-scoring sentence for each video clip through a beam search.

tence was made using our annotation. We conducted an
additional evaluation with this annotation. One can thresh-
old the sentence-tracker score to yield a binary predicate
on video-sentence pairs. We performed 4-fold cross vali-
dation on our corpus, selecting the threshold for each fold
that maximized accuracy of this predicate, relative to the
annotation, on 75% of the video clips and evaluating the ac-
curacy with this selected threshold on the remaining 25%.
This yielded an average accuracy of 86.88%.
5. Conclusion

We have presented a novel framework that utilizes the
compositional structure of events and the compositional
structure of language to drive a semantically meaningful
and targeted approach towards activity recognition. This
multi-modal framework integrates low-level visual compo-
nents, such as object detectors, with high-level semantic
information in the form of sentential descriptions in natu-
ral language. This is facilitated by the shared structure of
detection-based tracking, which incorporates the low-level
object-detector components, and of finite-state recognizers,
which incorporate the semantics of the words in a lexicon.

We demonstrated the utility and expressiveness of our

framework by performing three separate tasks on our cor-
pus, requiring no training or annotation, simply by leverag-
ing our framework in different manners. The first, sentence-
guided focus of attention, showcases the ability to focus the
attention of a tracker on the activity described in a sentence,
indicating the capability to identify such subtle distinctions
as between The person picked up the chair to the left of the
trash can and The person picked up the chair to the right
of the trash can. The second, generation of sentential de-
scription of video, showcases the ability to produce a com-
plex description of a video clip, involving multiple parts of
speech, by performing an efficient search for the best de-
scription through the space of all possible descriptions. The
final task, query-based video search, showcases the ability
to perform content-based video search and retrieval, allow-
ing for such distinctions as between The person approached
the trash can and The trash can approached the person.
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The person picked up an object to the left of the trash can.
Figure 4. Sentential-query-based video search: returning the best-scoring video clip, in a corpus of 94 video clips, for a given sentence.
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