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Abstract

Groups are the primary entities that make up a crowd.
Understanding group-level dynamics and properties is thus
scientifically important and practically useful in a wide
range of applications, especially for crowd understanding.
In this study we show that fundamental group-level proper-
ties, such as intra-group stability and inter-group conflict,
can be systematically quantified by visual descriptors. This
is made possible through learning a novel Collective Tran-
sition prior, which leads to a robust approach for group seg-
regation in public spaces. From the prior, we further devise
a rich set of group property visual descriptors. These de-
scriptors are scene-independent, and can be effectively ap-
plied to public-scene with variety of crowd densities and
distributions. Extensive experiments on hundreds of public
scene video clips demonstrate that such property descrip-
tors are not only useful but also necessary for group state
analysis and crowd scene understanding.

1. Introduction
Group dynamics have been extensively studied in socio-

psychological [35] and biological [37] research as the pri-
mary processes that influence crowd behaviors. In these s-
tudies, group dynamics are characterized by both intra- and
inter-group properties. Intra-group properties, e.g. collec-
tiveness, stability, and uniformity, denote internal coordina-
tion among members in the same group. Whilst inter-group
properties, e.g. conflict, reflect the external interaction be-
tween members in different groups. Such properties widely
exist in animal/insect crowd systems (e.g. bacterial colonies
and bird flocks), and are also frequently researched in socio-
psychological studies [25]. For instance, bacterial colonies
were found to exhibit collective behavior to achieve a com-
mon goal, i.e. spreading of diseases [37]. From sociological
view-point, conflict occurs for competition of resources or
goal incompatibility [35].

In the context of visual surveillance, groups also primar-
ily make up human crowds. Indeed, a rich body of litera-
ture [5, 14, 19, 26] suggest that majority of the pedestrians
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Figure 1. Crowd behavior can be better understood through inher-
ent intra- and inter-group properties. In this study, we show the
possibility of quantifying such properties with scene-independent
visual descriptors. Best viewed in color.

tend to move in groups with their friends and family mem-
bers. The tendency of forming a coherent group with oth-
er pedestrians becomes more prominent in dense crowds,
where pedestrians have to align with others to form collec-
tive behaviors instead of moving freely [26].

When pedestrians form groups, they exhibit some in-
teresting properties in their dynamics, which share com-
monalities with socio-psychological and biological studies
(Fig. 1). For instance, collective behavior is observed when
pedestrians in a group maneuver towards a common desti-
nation. During a crowd disaster, turbulent dynamics in the
crowd can be characterized by the stability property. Crowd
tends to have non-uniform distribution when its member-
s have different social relationships and walk in less re-
stricted area. Two pedestrian groups with different goals,
e.g. when crossing roads from different directions, exhib-
it conflict behavior. Clearly, understanding such properties
provides critical mid-representation to crowd motion anal-
ysis [3, 24, 17, 15], and could facilitate other high-level se-
mantic analysis such as crowd scene understanding, crowd
video classification, and crowd event retrieval.

Our goal is to characterize and quantify these group
properties from vision point of view, and study their po-
tentials on crowd behavior analysis and crowd scene under-
standing. We consider a group beyond just a collection of
spatially proximate individuals, but also a dynamic unit that
exhibits various fundamental intra- and inter-group proper-
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ties, which can be used to compare group activities across
different crowd systems. To our knowledge, this study is
the first attempt in computer vision that investigates com-
prehensively and systematically the universal properties of
groups in crowds. We make the following contributions:

1) A robust group detector - We introduce a novel Collective
Transition (CT) prior to capture the underlying dynamics of
a group. Based on the prior we formulate a robust group
detector that outperforms state-of-the-art methods [11, 39].

2) Scene-independent group descriptors - Based on the C-
T prior, we devise a set of visual descriptors to quantify
four fundamental intra- and inter-group properties, namely
collectiveness, stability, uniformity, and conflict. These de-
scriptors convey richer group-level information in compar-
ison to the conventional group size and velocity informa-
tion [9]. Importantly, these descriptors are scene invariant
and robust to public scenes with variety of crowdedness.

3) Group-driven crowd scene understanding - We show
that the proposed descriptors are effective in identifying
the intrinsic group states (gases, fluids, and solid) follow-
ing the common analogy employed in crowd modeling lit-
erature [31, 13, 12]. We also demonstrate their superiority
for scene-independent group state analysis and crowd video
classification over existing activity descriptors [16].

Experiments are conducted on hundreds of video clips
collected from over 200 crowded scenes. The dataset and
the ground truth are made publicly available to facilitate fu-
ture research in group-level crowd analysis1.

2. Related Work

Most existing imagery-based crowd analysis methods
tend to treat a crowd either as a collection of individual-
s [10, 23, 27] or as an aggregated whole [3, 8, 24, 17]. In
contrast to these studies, we analyze crowd at the group-
level. The object-centered approaches require explicit de-
tection and segmentation of individuals from crowd. These
techniques are infeasible in crowded scenes where inter-
object occlusion is severe. The activity representation em-
ployed by holistic methods, e.g. optical flow codeword-
s [17, 22], dynamic texture [8], and grid of particles [3, 24],
are useful for learning scene-level spatio-temporal pattern,
but not directly applicable for learning group-level proper-
ties, which requires finer group segregation.

State-of-the-art methods [39, 11] achieve group detec-
tion through tracklet clustering. Zhou et al. [39] present the
Coherent Filtering (CF) approach for segmenting coherent
motion in crowd, whilst Ge et al. [11] discover small groups
by hierarchical clustering based on pairwise objects’ veloc-
ity and distance. As shown in our experiments, the above
methods are either too sensitive to tracking noise or unscal-

1http://www.ee.cuhk.edu.hk/˜xgwang/CUHKcrowd.html

able to extremely crowded scenes. Importantly, neither of
them learn group properties further nor analyze crowd be-
haviors at the group-level.

A number of approaches [2] have been proposed for
recognizing group activities such as meeting and fighting.
These studies tend to analyze small social groups, with spe-
cific focus on scenario-specific predicates learning [9], con-
textual and interaction modeling [4, 10, 19, 21], and social
signaling analysis [6]. Moreover, many crowd modeling ap-
proaches are scene-specific [17, 34, 41], i.e. activity mod-
els learned from a specific-scene cannot be applied to other
scenes. Our work differs significantly to the aforementioned
studies: (i) we have a different focus on understanding and
quantifying the fundamental group properties, which can be
well generalized to different crowd systems, and (ii) we fo-
cus on crowded scenes where a group may have an arbitrary
large number of members (see Fig. 1).

3. Profiling Group Properties
We consider a group as a set of members with a common

goal and collective behaviors. Given a short video clip of
τ frames, a set of groups {G}mi=1 are detected. Each group
Gi encompasses a set of tracklets {z} detected by the KLT
feature point tracker. From each detected group, we wish to
extract a set of visual descriptors to represent its properties.

3.1. Collective Transition Prior

Precise group detection in crowd is challenging due to
complex interaction among pedestrians. We assume that
pedestrian movements in a scene are intimately governed
by a finite number of Collective Transition (CT) priors.
These priors are discovered simultaneously with the group
detection process. We show that group detection can be
made more robust by considering the temporal smoothness
and consistency enforced by the priors. Furthermore, we
demonstrate in Sec. 3.3 that certain group properties can be
readily derived from the discovered CT priors.

Each pedestrian group has a specific CT prior, which
can be discovered from a video clip. More precisely, for n
tracklets, {z}nk=1, we assume there exist m Markov chain-
s, where m < n and m is inferred automatically. Each
Markov chain is a time-series model with the form of

ztk = Azt−1
k + vt, (1)

where the continuous observation ztk evolves by a transition
matrix A ∈ R3×3. Gaussian noise vt ∼ N (0,Q) is as-
sumed between transition. Let ztk = [xt, yt, 1]

T represent
the position of a pedestrian in homogeneous coordinates2

and the initial observation z1k follows a Gaussian distribu-
tion N (µ,Σ). We denote Θ = {A,Q, µ,Σ} as the param-
eters of the chain. A represents the CT prior, which reveals

2A represents affine transforms. Translation, contraction, expansion,
dilation, rotation, shear, and their combinations are all affine transforms.
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(a) Coherent filtering clusters (b) Anchor tracklet

(c) Seeding tracklets (d) Final group after refinement

Figure 2. (a) Coherent filtering [39] fails to distinguish two subtle
groups. We address it through discovering (b) a representative an-
chor tracklet (in red) and subsequently (c) a set of seeding tracklets
to infer a group-specific CT prior. (d) With refinement based on
the CT prior, two groups are separated.

the collective motions of all the members in a group, while
{µ,Σ} ensure that group members are spatially proximate
at the initial frame. Next, we discuss how to learn this prior
and perform robust group detection simultaneously.

3.2. Group Detection by Collective Transition

The key idea is to search for pedestrian groupings that
fit well to the discovered priors within the video clip. The
method permits fragmented tracklets that fail to sustain over
the whole clip. The missing data of zk can be inferred with
EM. It is thus suitable for group detection in dense crowds.
In addition, it relies on local spatio-temporal relationships
and velocity correlations without assumption on the global
shape of the pedestrian group. Therefore it can be applied
to scenes with different scales and perspectives.

The key steps of learning the CT priors for group discov-
ery are summarized in Alg. 1.
Step-1: Generate coherent filtering clusters: We first dis-
cover a set of initial tracklet clusters {C}rj=1 using CF [39]
(Fig. 2(a)). These clusters do not align with our group per-
ception perfectly but can serve as the basis for finding the
final tracklet groups {G}mi=1.
Step-2: Identify anchor tracklets: The iterative scheme
begins by randomly picking a cluster Ci and finding it-
s anchor tracklet z∗i with long duration and low variance
(Fig. 2(b)).
Step-3: Discover seeding tracklets for learning CT pri-
ors: As shown in Fig. 2(c), a set of seeding tracklets, Si, are
selected with the following criteria: (1) they are also from
Ci; and (2) have high velocity correlation with z∗i ,

〈vz∈Ci , vz∗i 〉
‖vz∈Ci‖ · ‖vz∗i ‖

> η, (2)

Algorithm 1: Group detection by collective transition.
Input: Tracklets {z}nk=1 in a video clip.
Output: m tracklet groups, {G}mi=1.
Step-1: i = 1, generate coherent filtering clusters {C}rj=1;
if {C} 6= ∅ then

Step-2: Identify an anchor tracklet, z∗i ;
Step-3: Discover seeding tracklets set S from Ci;
Learning the collective transition prior Ai with Si;
Step-4: Perform group refinement to discover Gi;
{G} = {G} ∪ Gi, {C} = {C} \Gi, i = i+ 1;

end

where η is a threshold. Si includes reliable tracklets and is
used to learn a representative CT prior with EM, which will
be used to refine the group itself in Step-4.

Step-4: Group refinement: We fit each tracklet z in the
initial cluster Ci with Ai of the ith Markov chain. The fitting
error ε of a tracklet is defined as

ε =
1

τ − 1

τ−1∑
t=1

‖Azt − zt+1‖22. (3)

Any tracklet with ε < δ is retained to construct Gi. Unqual-
ified tracklets will need to repeat the iterative process to be
considered for a different group.

3.3. Group Descriptors for Crowd Scenes

We formulate a set of descriptors to quantify group
properties (Table 1). The first three quantify the spatio-
temporal evolvement of intra-group structure, whilst the
fourth characterizes inter-group interaction. Sec. 4 shows
that they complement each other to perform well on scene-
independent group state analysis and crowd video classifi-
cation.

Table 1. List of group descriptors.

Property Descriptor Equation
Collectiveness φcoll (G) 4

Stability Φstab(G) 10
Uniformity Φunif(G) 13

Conflict Φconf(G) 14

To facilitate explanation, we make an analogy between a
point and a member. A detected group has n members in a
frame, which form aK-NN graph,G(V,E), whose vertices
V represent the members, and member pairs are connected
by edges, E. The edges are weighted by an affinity matrix
W, with elements wij = exp(−d2ij/σ2), where dij is the
spatial distance between two members. We denote the set
of nearest neighbors of a member z asN 1

z , . . . ,N τ
z at every

frame of a given clip. Next we discuss the descriptors in
detail.

Collectiveness: The collectiveness property indicates the
degree of individuals acting as a union in collective motion.
It is a fundamental and universal measurement for various
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crowd systems [32, 40]. A collectiveness measurement for
the whole video was proposed in [40] using manifold learn-
ing. In contrast, we quantify collectiveness at group level
with the proposed collective transition prior A, since it cap-
tures the coherent motion of all group members. In particu-
lar, we compute the collectiveness of group G as

φcoll (G) =
1

|G|
∑

z∈G
ε (z,A) , (4)

where | · | denotes the cardinality of the input set, and
ε (z,A) is defined in Eqn. (3).

A high value in φcoll (G) suggests that the members of a
group move coherently towards a common destination. The
descriptor is useful for distinguishing low-collectiveness
groups, e.g. in a train station or wet market, from high-
collectiveness groups, e.g. observed during a marathon or
on an escalator track.
Stability: The stability property characterizes whether a
group can keep internal topological structure over time. It
is analogous to molecules stability in a chemical system. In
particular, stable members tend to (1) maintain a similar set
of nearest neighbors; (2) keep a consistent topological dis-
tance with its neighbors throughout a clip; and (3) a member
is less likely to leave its current nearest neighbor set. Fol-
lowing this idea, we formulate three stability descriptors.

We compute the first stability descriptor by counting and
averaging the number of the invariant neighbors of each
member in the K-NN graph over time

φstab
a (G) =

1

|G|
∑

z∈G

(
K − |N 1

z \N τ
z |
)
, (5)

where |N 1
z \N τ

z | = |
{
z : z ∈ N 1

z and z /∈ N τ
z

}
|.

The second stability descriptor is formulated to examine
if the members keep consistent topological distance with
their nearest neighbors. This is achieved by first ranking
the nearest neighbors of a member (z) in accordance to
their pairwise affinity, and subsequently applying the Lev-
enshtein string metric distance (dtz) [20] to compare the
rankings at every two consecutive frames. dtz = 0 if two
rankings are the same, and dtz = K if the ranking indices of
all the members have changed. Through collecting dtz over
τ frames, we construct its histogram with K bins, h(z), for
each member z. The second stability descriptor is then ob-
tained as an averaged histogram

Φstab
b (G) =

1

|G|
∑

z∈G
h(z). (6)

It reveals information about the change of topological dis-
tances between members in a group.

The third stability descriptor measures how likely a
member would depart from its existing nearest neighbor set.
We assume a random walk behavior on all the group mem-
bers, i.e. we allow the members to transit freely within the
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Figure 3. (a) and (b) show a uniform and a non-uniform group, re-
spectively. From left to right, we show the original coherent group
detection, the sub-groups obtained through further clustering, and
the optimal number of cuts inferred by modularity function.

group and join other members to form new neighborhood.
We then measure the stability of a member as the difference
between its initial and final transition probabilities. We ini-
tialize the transition probability matrix P ∈ Rn×n as

P = D−1W, (7)

where D is a diagonal matrix whose elements are Dii =∑
j wij . The probability distribution of the ith member

‘walks’ to and ‘joins’ other members is defined by

qi = ei
T [(I− αP)−1 − I

]
, (8)

where q ∈ R1×n, I is the identity matrix, and ei =

(e1, . . . , en)
T is an indicator vector with ei = 1 and e\i =

0. The parameter α has a range of 0 < α < 1/ρ(P), where
ρ(P) denotes the spectral radius of P. We set α = 0.9/K.
The stability of ith member is computed by measuring the
Kullback-Leibler (KL) divergence [18] of qi between the
first and final frames. A lower KL-divergence score, skl

suggest higher stability. We compute the the third stability
descriptor by averaging the scores across all members

φstab
c (G) =

1

|G|
∑

z∈G
skl(z). (9)

The final stability descriptor

Φstab(G) = [φstab
a (G) ,Φstab

b (G) , φstab
c (G)]. (10)

Uniformity: Uniformity is an important property for char-
acterizing homogeneity of a group in terms of spatial distri-
bution. This is in contrast to the two previous properties that
measure temporal aspects. A group is uniform if their mem-
bers stay close with each other and are evenly distributed in
space. A non-uniform group has a tendency to be further
divided into subgroups. A comparative example of uniform
and non-uniform groups is shown in Fig. 3(a) and 3(b).

We quantify uniformity by inferring the optimal number
(c∗) of graph cuts on theK-NN graph. A higher c∗ suggests
a higher degree of non-uniformity. A hierarchy of clusters
(H) is generated with agglomerative clustering [38] and the
modularity function Q [30] is used to find c∗. Specifically,
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Figure 4. (a) Conflict location in groups. Hot color indicates a high
degree of conflict. (b) Conflict distribution of the group. The map
is normalized with the group’s center, moving direction, and the
largest distance from group’s contour to its center.

given a cluster number c, a graph partition {V1, . . . , Vc} is
obtained from H. Computing Qc for c ∈ {1, . . . , C} and
its maximum value suggests the optimal number of cuts:

c∗ = argmax
c∈{1,...,C}

Qc (11)

given Qc =

c∑
i=1

[
A(Vi, Vi)

A(V, V )
−
(
A(Vi, V )

A(V, V )

)2
]
, (12)

where A (V ′, V ′′) =
∑
i∈V ′,j∈V ′′ w(i, j). Examples are

shown in the last column of Fig. 3. They show that a non-
uniform group has a relatively higher number of cuts.

Since the uniformity of a group may change as group
evolves, we measure the its uniformity by the mean µc∗ and
variance σc∗ of the optimal number of cuts over time:

Φunif(Gi) = {µc∗ , σc∗} . (13)

Conflict: The conflict property characterizes interac-
tion/friction between groups when they approach each oth-
er. The spatial distribution and level of conflict experienced
by a group can be visualized on a 2D normalized map as
shown in Fig. 4. Such a map is informative for crowd un-
derstanding as it contains rich information about differen-
t natures of inter-group interactions observed in different
scenes. On this map, the group contour is obtained as the
outer boundary of the internal members, whereas a conflict
point is defined as a member with external group members
in its K-NN set, N . Note that the K-NN sets defined here
differ from those we employed earlier, as the current sets
are allowed to include members from external groups.

To represent the conflict map compactly with invariance
to scales, we formulate a Conflict Shape Context (CSC) de-
scriptor inspired by shape context [7]. The first step is to
capture the spatial distribution for each conflict point by
computing a histogram of the relative coordinates of group
contour points. This is achieved by introducing a polar co-
ordinate system [7] centered on each conflict point, and
computing the frequency of contour points in the bins. 8
equally spaced angle bins and 5 equally spaced radius bins
are used. The second step is to perform K-means clustering
over training clips to build a vocabulary on the histogram-
s, and produce Bag of Words (BoW) representation. Using
locally constrained linear coding [33], the ith conflict point

has a distribution ui over the vocabulary. We further com-
pute the level of conflict of this conflict point based on the
CT prior introduced in Sec. 3.1

εconfi =
1

|Ni|
∑

z∈Ni

ε (z,A) , (14)

The ε (z,A) is defined in Eqn. 3, and A is the CT prior of
the group where the conflict point is residing. Intuitively, if
the nearest neighbors of a conflict point are mostly external
members that do not fit well to A, a high value in εconf is
obtained. The final conflict property of a group is computed
by max pooling {ui} weighted by {εconfi } as in [33].

4. Applications and Experimental Results
We evaluate group detection, and demonstrate the effec-

tiveness of our descriptors on two applications: group state
analysis and crowd video classification. Both are scene-
independent.

4.1. Crowd Database

Evaluations are conducted on a new CUHK Crowd
Dataset. It includes crowd videos with various densities and
perspective scales, collected from many different environ-
ments, e.g. streets, shopping malls, airports, and parks. It
consists of 474 video clips from 215 scenes, among which
419 clips were collected from Pond53 and Getty Image4,
and 55 clips were captured by us. It is larger than any ex-
isting crowd datasets [3, 29, 40] (they are actually covered
by our dataset) in terms of scene diversity and clips num-
ber. Although the video clips have various length, we only
take the first 30 frames from each clip for implementing our
approach5. The full video clips are available in the dataset.
The ground truth of group detection, group state analysis,
and crowd video classification are manually annotated and
checked by multiple annotators.

4.2. Group Detection

Tracklets from 300 video clips are manually annotated
into groups for evaluation based on the criterion that mem-
bers in the same group have a common goal and form col-
lective movement. Tracklets not belonging to any group
are annotated as outliers. We compare our group detec-
tion method of using Collective Transition priors (CT) with
three state-of-the-art approaches: mixture of dynamic tex-
ture (DTM) [8], hierarchical clustering (HC) [11], and co-
herent filtering (CF) [39]. Examples of the ground truth and
the detection results in comparison are shown in Fig. 5.

3http://www.pond5.com/
4http://www.gettyimages.com/
5We found that considering longer frames does not make significant

difference in our evaluation performance. This is because group motions
in each segmented clip remain similar across its whole length.
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DTM [8]

HC [11]

CF [39]

CT

Ground truth
Figure 5. Comparative results of group detection with four meth-
ods. Groups are distinguished with colors. Red color indicates
outliers. Arrows are moving directions. Best viewed in color.

DTM well separates background and simple group mo-
tions, but it performs poorly on complex and mixed group
motions. Besides, it requires manual specification of group
number (we provides ground truth as input) and for each
clip it takes hundred-fold longer time than our method. HC
hierarchically clusters tracklets with velocity and spatial
constraints and does not consider group dynamic prior. It
thus leads to more errors than ours. CF detects coherent
motions with a neighborhood measurement without model-
ing dynamics shared by the whole group. It is thus sensitive
to tracking failures. This can be observed in the first col-
umn of Fig. 5, where CF splits a group moving in the same
direction into subgroups. Moreover, CF first detects group-
s with coherent motions between consecutive frames, and
then associates the groups through the whole clip. Its errors
are therefore accumulated. In the second and third column-
s of Fig. 5, CF associates two groups moving in different
directions into one due to errors made in single frames.

For quantitative evaluation, we consider group detection
as a clustering problem, and adopt three widely used mea-
surements in clustering evaluation, i.e., Normalized Mu-
tual Information (NMI) [36], Purity [1], and Rand Index
(RI) [28]. The comparison is shown in Fig. 6. The bar chart
on the right shows the relative improvement of our method
compared with DTM, HC, and CF.

Methods NMI Purity RI
DTM [8] 0.30 0.68 0.71
HC [11] 0.27 0.62 0.73
CF [39] 0.42 0.73 0.78
CT 0.48 0.78 0.83

0

0.3

0.6

0.9

NMI Purity RI

DTM

HC

CF

1 

2 

3 

Figure 6. Left: quantitative comparison of group detection meth-
ods. Right: relative improvement of our approach (CT) compared
with DTM, HC, and CF.

Fluid Gas Solid 

Figure 7. Distributions of different types of groups in a shopping
mall and a escalator scene. Colors indicate group states automati-
cally recognized with our descriptors. Best viewed in colour.

4.3. Application I: Group State Analysis

Research on crowd modelling and analysis [31, 13, 12]
generally classifies crowd particles into the following states
(impure fluid is added by us) with an analogy of classify-
ing different phrases of matter in equilibrium statistical me-
chanics. It is assumed that the underlying physical models
are different for different states.

• Gas: particles moving in different directions without
forming collective behaviors with others.

• Solid: particles moving in the same direction collectively.
Their relative positions remain unchanged, bounded by
internal forces.

• Pure fluid: particles moving towards the same direction;
however, their relative positions change constantly due to
the lack of inter-particle forces.

• Impure fluid: it is similar to pure fluid, but with invasion
of particles from other groups.

These states are decided by multiple socio-psychological
and physical factors including crowd density, goals, interac-
tions and relationships of group members, and scene struc-
tures. As examples shown in Fig. 7, in a large open area,
pedestrians behave more like gas and fluid, while move as
flying solid on an escalator track or in a queue. In the figure
on the left, fluid groups appear frequently on the paths con-
necting entrances and exits regions, while gas groups locate
randomly and they are isolated costumers walking around.
In the figure on the right, the states of groups transit be-
tween solid and fluid at the exits of escalators. In a scene
where crowds compete for sources, they behave like fluid.
Group states well reflect these factors, which are of interest
in various applications. We use the proposed group descrip-
tors to classify crowd groups into states, which is useful in
crowd scene understanding.
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Figure 8. (a) Confusion matrix of classifying group states by com-
bining all the group descriptors. (b) Average accuracy of using
each descriptor and combining them. (c) Performance drop by us-
ing only one descriptor on classifying each of the group states. A
lower bar indicates that the descriptor is more effective on classi-
fying a particular group state. (d) Legend for (b) and (c). 1 ∼ 5
are single descriptors, and 6 is combination of the five descriptors.

There are 927 groups manually labeled as ground truth:
128 gas groups, 291 solid groups, 349 pure fluid groups,
and 159 impure fluid groups. Half of the data is randomly
selected for training and the remaining for test (the training
and test sets do not contain the same scenes). All of our
proposed descriptors together with “group size”6 are com-
bined as features input to a SVM classifier. The confusion
matrix averaged over 10 trials is shown in Figure 8(a). The
average accuracy7 is 60% while the chance of random guess
is 25%. The result shows the effectiveness of our group de-
scriptors and their generalization power across scenes. It
is understandable that pure and impure fluid groups are the
most confusing classes, since some pure fluid groups have
interactions with other groups on their boundaries. The ma-
jor but subtle difference between the two classes is the s-
patial distributions of conflict points. Tracking errors al-
so increase difficulty in separating these two classes. Fig-
ures 8(b) and 8(c) show the effectiveness of each group de-
scriptor on classifying different group states. It is observed
that stability and conflict are the most effective on classify-
ing solid groups. Collectiveness and conflict are the most
effective on classifying pure fluid groups. Group size is ef-
fective for gas groups.

4.4. Application II: Crowd Video Classification

We also demonstrate the robustness and effectiveness of
the proposed group descriptors in the application of classi-
fying crowd videos instead of individual groups. There ex-

6Group size is the number of tracklets in a group normalized by the
total number of tracklets in a scene. It is useful for classifying gas groups.
Some groups have one pedestrian with multiple feature points.

7We first calculate the accuracy within each class and then average
them. So the biggest class will not dominate the average accuracy.

ist research studies [16, 34] on using holistic descriptors to
classify crowd video clips. For instance, Kratz et al. [16] di-
vided a video clip into spatio-temporal cubiod and extracted
motion features from each cube. We show that our descrip-
tors specially designed for quantifying group properties are
much more effective than generic features.

All the 474 video clips in our dataset are manually as-
signed into 8 classes as shown in Table 2. The 8 classes are
commonly seen in crowd videos and some are of special
interest in crowd management and traffic control. For ex-
ample, crowd merge and crowd crossing may cause traffic
congestion and crowd disasters such as stampede. It is al-
so important to keep escalator traffic smooth at the entrance
and exit regions to avoid blocking, collisions, and potential
dangers. In class 1, pedestrians in a scene walk in multiple
directions with highly mixed behaviors. In classes 2 and 3,
most pedestrians follow the main stream. In class 2, the rel-
ative positions of pedestrians are stable and there are rarely
overtake events, while pedestrians in class 3 are not well
organized. Most crowd videos can be generally classified
into the above three categories. However, we identify a few
classes (4 ∼ 8) which are of particular interest in crowd
management and wish to distinguish them from the remain-
ing crowd videos. Therefore, classes 1 ∼ 3 have excluded
videos from classes 4 ∼ 8. All the 8 categories are classi-
fied together. Leave-one-out evaluation is used. Each time
one scene (which may include multiple video clips) is se-
lected for test, and the remaining scenes for training. Thus
it tests the cross-scene generalization capability. If a video
has multiple groups, we take the average of a descriptor over
groups as the video descriptor. SVM is used for classifica-
tion. The confusion matrices are shown in Figure 9. The av-
erage accuracy of our approach is shown 70%, much higher
than that of random guess (12.5%) and the result of using

Figure 9. Confusion matrices of crowd video classification. Left:
using holistic features in [16]. The average accuracy is 44%.
Right: using our descriptors. The average accuracy is 70%.

Table 2. List of crowd video classes.
Class name

1 Highly mixed pedestrian walking
2 Crowd walking following a mainstream and well organized
3 Crowd walking following a mainstream but poorly organized
4 Crowd merge
5 Crowd split
6 Crowd crossing in opposite directions
7 Intervened escalator traffic
8 Smooth escalator traffic

7



the holistic crowd scene descriptor proposed in [16] (44%).

5. Conclusions

In this paper, we systematically study the fundamental
and universal group properties, which exist in various crowd
systems, from the vision point of view. They are motivated
by the socio-psychological studies and importance in crowd
scene understanding. A robust group detection algorithm
and a rich set of group-property visual descriptors are pro-
posed through learning the collective transition prior. They
are well applied to scene-independent group states analy-
sis and crowd video classification. This research will also
inspire new applications in the future work, such as cross-
scene crowd event detection and modeling pedestrian dy-
namics with group context.
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