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Abstract

A major computational bottleneck in many current al-
gorithms is the evaluation of arbitrary boxes. Dense lo-
cal analysis and powerful bag-of-word encodings, such
as Fisher vectors and VLAD, lead to improved accuracy
at the expense of increased computation time. Where a
simplification in the representation is tempting, we exploit
novel representations while maintaining accuracy. We start
from state-of-the-art, fast selective search, but our method
will apply to any initial box-partitioning. By representing
the picture as sparse integral images, one per codeword,
we achieve a Fast Local Area Independent Representation.
FLAIR allows for very fast evaluation of any box encoding
and still enables spatial pooling. In FLAIR we achieve exact
VLAD:s difference coding, even with {o and power-norms.
Finally, by multiple codeword assignments, we achieve ex-
act and approximate Fisher vectors with FLAIR. The results
are a 18x speedup, which enables us to set a new state-of-
the-art on the challenging 2010 PASCAL VOC objects and
the fine-grained categorization of the CUB-2011 200 bird
species. Plus, we rank number one in the official ImageNet
2013 detection challenge.

1. Introduction

For object detection, action recognition, fine-grained im-
age categorization and many other current topics, the trend
is towards evaluating many candidate boxes in the image
for the best result. This paper introduces a data structure,
FLAIR, for which it is as efficient to evaluate one box as it
is many boxes.

In spatial pyramids for image categorization the pre-
ferred number of boxes is 30 [24], due to the large com-
putational load reduced to 17 in [5]. In the selective search
algorithm for state-of-the-art object detection [24], the num-
ber of boxes is 2,000 per image. Ideally, including the 30
fine spatial pyramids leading to 60,000 boxes per image. In-
evitably, computation has become the critical factor. Rather
than re-computing the same facts many times, once per box,
we reconsider the data structure of the image in order to

Codebook
'III'

Descriptors with codeword index
R
FGel-m @D @
0| Ay
e i Y Y O
- ) .‘,‘;
Mot nia

Decompose over codewords

(
(5

‘ Integral image ‘

77717
i35 eee
73323/ 77 7 7
7373233 22222

Box feature encoding

L=/ /

Figure 1. Fast Local Area Independent Representation. Given
an initial box-partitioning, we represent a picture as sparse integral
images, one per codeword dimension. FLAIR allows for very fast
evaluation of any box encoding and still enables spatial pooling. In
FLAIR we achieve exact VLADs difference coding, even with £
and power-norms, as well as exact and approximate Fisher vectors.

\

compute evaluations once per image by a new representa-
tion of the data, FLAIR, the Fast Local Area Independent
Representation (Figure 1).

In object detection, HOG has proven to be successful
in combination with the part-based model by Felzenszwalb
et al. [10]. It models object shape templates and scans
the image with boxes at multiple scales. Because more
than 100,000 boxes need to be inspected per object type
and aspect ratio, the analysis must be restricted to the low-
dimensional HOG features or to simple histograms. Re-
cently, Dean et al. [8] report an impressive speed-up for



object detectors based on HOG part-templates, but they
still require exhaustive scanning. Simple histograms can
be efficiently computed with multi-dimensional integral im-
ages [19], but use prohibitive amounts of memory at higher
dimensionalities. Sub-window search [15] and selective
search [24] opened the door to the use of locality with
BoW, which is computationally more expensive than HOG
[8] but superior in the quality of the semantic interpretation
[15,27,12,24,25, 5]. Dean et al. achieve a speedup factor
20,000 at the cost of a drop in accuracy, we do a speedup
factor of 18 but enabling an accuracy increase for the state-
of-the-art in object detection.

The encoding of the appearance of points in the image to
words has evolved from hard [7] and soft [26] coding to one
cluster center, to VLAD [14], super vectors [33], and Fisher
vectors [18, 22], which encode the difference between the
point descriptors and the nearest cluster center(s). The last
three representations have outperformed straight encodings.
Difference codings impose an even heavier computational
demand, as it requires a dimension-by-dimension compar-
ison of the points in the bounding box. In FLAIR, we de-
sign the representation of the point appearances such that
the Fisher vector and VLAD encoding becomes equal in
speed with the straight BoW encoding, and gain their supe-
rior performance at no extra computational cost.

The advantage of the localized encoding is evident
in fine-grained object detection [32], where Fisher with
FLAIR greatly propels the likelihood of finding proper ob-
ject correspondences between small, but often similar de-
tails, amidst the many distracting other details.

We start from the state-of-the-art selective search algo-
rithm for object detection [24], but our method will apply
to any initial box-segmentation of the image [1]. Our first
novelty is an integral-image, area-independent representa-
tion, allowing for the fast evaluation of any set of boxes, in-
cluding box candidate evaluation, and spatial pyramid pool-
ing [16] (Section 3). Then, as the second novelty, we embed
VLAD:s difference coding, ¢> and power-norm into FLAIR,
by introducing a multi-dimensional integral image per code
word (Section 4). As third novelty we include descriptor
assignment to multiple code words, enabling FLAIR also to
Fisher vectors and other multiple word assignments (Sec-
tion 5). The results are a gain of a factor 18 in algorith-
mic speed with the same accuracy. The speedup enables
Fisher vectors with fine spatial pyramids for object detec-
tion, setting a new state-of-the-art on the challenging PAS-
CAL VOC 2010 [9] as well as the CUB-2011 detection task
of two hundred bird species [30] and it won the ImageNet
2013 detection challenge (Section 6).

2. Related Work

In many current algorithms in computer vision, the eval-
uation of many boxes in one image is the key to a high-level

semantic interpretation of the image. Fidler et al. [1 1] start
from supervised second order pooling [3]. The method is
promising as the evaluation of the boxes leads to excellent
detection results on PASCAL VOC 2010, (be it that it re-
quires an additional round of annotations over the PASCAL
annotation). We aim at a substantial improvement in the
time it takes to evaluate boxes, to be able to evaluate more
sophisticated features.

Faster ways to partition the image in overlapping boxes
have been described in [1, 20], but their gain in speed comes
with a loss in quality. Recently, Uijlings et al. [24] propose
selective search, which combines multiple hierarchical divi-
sions and five different criteria to arrive at a good set of can-
didate boxes. Selective search is fast, assures high-recall,
and leads to an overlap with the object comparable with
[10], but the algorithm is considerably more efficient than
the reference. Selective search results in 2,000 boxes per
image where [10] has 100,352. Moreover, selective search
finds the boxes without any prior knowledge of the object
type it searches for as in [11]. We select selective search
as the method of box selection, but any other box-selection
method can be applied in FLAIR as well.

Van de Sande er al. [25] further improves selective
search by adding VLAD [14]. Recently, Cinbis et al.
[5] achieves state-of-the-art detection on PASCAL VOC
2010 using selective search in combination with reweighted
Fisher vectors [18]. In [5], the main computational bottle-
neck for detecting objects is the expensive encoding step
for each box in the image. Moreover, in the references,
Fisher and VLAD are shown to benefit from {5 or power-
normalization, which implies that the feature vector of a box
can no longer be merged from two smaller boxes. Hence
in [25, 5] a brute-force approach is applied, made more
efficient by the application of product quantization [I3].
In contrast, FLAIR allows for fast encoding for VLAD or
Fisher vectors on arbitrary boxes, while leaving the possi-
bility intact to benefit from the recent advances in normal-
ization [18, 14] and the advantages offered by fine spatial
pooling [25, 21].

FLAIR enables the efficient evaluation of Fisher in many
boxes and hence can be applied on the challenging problem
posed in [30], where an uncropped bird image must be as-
signed to one of 200 bird species. Not only do we achieve
automatic localization for this task, but in addition also a
considerable improvement of the accuracy.

FLAIR rests on integral images and decomposition. In-
tegral images allow for computing any sum of a rectan-
gular area in constant time [29]. Apart from fast descrip-
tor computation as applied in [20, 11], we note that the
integral image is naturally suited for efficiently summing
codeword counts inside a bounding box. In [19] integral
images are extended to multiple dimensions so they effi-
ciently construct histograms over rectangular regions. How-



ever, naively applying multi-dimensional integral images
to VLAD and Fisher leads to prohibitive memory usage
(>14GB) and datastructure creation time (minutes per im-
age). In [15, 28], integral images have been used by a de-
composition only suited for BoW and unnormalized fea-
tures. The recent Fisher vector decomposition of Chen et
al. [4] into its point-wise contributions is achieved by rep-
resenting each point as a sparse vector of codeword-indices.
The image is seen as a point-wise confidence map in which
the most likely object location is searched for later [17].
Neither the integral representation of [ 15, 28], nor the point-
wise representation in [4] allow for ¢5- and power-norms,
and they do also not allow for the use of fine spatial pyra-
mids. In all cases, this results in a considerable loss of accu-
racy compared to using them [18]. FLAIR achieves a large
improvement in computation times while maintaining the
state-of-the-art accuracy for local box-driven and fine spa-
tial pyramids using VLAD and Fisher normalized vectors.

3. BoW with FLAIR

FLAIR enables fast construction of feature vectors for
arbitrary boxes in the image. Given an image partitioning,
which provides B bounding boxes, we first extract N de-
scriptors in the full image. Since the state-of-the-art relies
on dense sampling of descriptors [25, 5], N is proportional
to the number of pixels in the image. The descriptor has di-
mensionality D. We first discuss box encoding with BoW.

Box Encoding with BoW BoW assigns the descriptor at
location 7, to the closest word ¢}, in the codebook with size
K within the Euclidian space:

Lo 1 if k is the closest codeword for ¥,
¢ (Un, Cr) :{ 0 (1)
The cost of computing the Euclidian distances between K
codewords and N descriptors (size D) is O(KND).

The K-dimensional feature vector of BoW stores the
number of descriptors hard assigned to each codeword k:

otherwise

N
Fr =) ¢(0n, &)- )
n=1

By looping over the N descriptors and counting for all
codewords simultaneously in a single loop, this results in
a complexity O(N). The extension of Equation 2 to boxes
is done by adding a membership test for the descriptor co-
ordinates against the box coordinates. An algorithm for fea-
ture vector construction will loop through all descriptors for
each box. Hence, for B boxes in an image, with a spatial
pyramid per box consisting of S cells, it will have a com-
plexity O(N B.S). This means that constructing the feature
vector for a box depends on the size of the full image, which
imposes a serious bottleneck.

To improve the efficiency, one could consider to first sort
the feature vectors on their (y, ) coordinates. Then, only

the rows within the box have to be considered. The size of
the feature vector grows with the area of the box. In worst
case, the box equals the image. Therefore, presorting does
not change the upper bound of the complexity: O(N B.S).

Fast Local Area Independent Representation The key
insight for FLAIR is that assignment of a descriptor to one
of the codewords affects only a specific part of the feature
vector. For BoW with hard assignment, each descriptor af-
fects only one codebook element. Therefore, if we are in-
terested in constructing the part of the feature vector corre-
sponding to one codeword k, we only need to consider the
descriptors for which k is the closest codeword. This al-
lows us to decompose the problem of constructing the full
feature vector into K smaller subproblems, where K is the
size of the codebook. For each subproblem we compute
Equation 2 for a single k. Concatenating the solutions to
these subproblems will give us the full feature vector. From
an algorithmic point of view, the decomposition over the
words of the codebook is optimal in terms of the number of
visits to the data [0].

An integral image restricts the number of visits to the
data to two, sufficient to find the sum over a row. When an
algorithm relies on evaluating the sum over (many) boxes,
the complexity can be made independent of the area of the
box, as illustrated in Figure 2. The value at coordinate (z, y)
in the integral image is the sum of all the items above and
to the left of (z,y):

I('Tvy): Z

' <z,y’' <y
with i(z, y) the number of descriptors at (x,y) that is clos-
est to codeword k. Construction of the integral image is
done in a single pass over the entire image using the fact
that the value at (x, y) is simply:
I(z,y) =i(z,y)+1(z—1,y)+1(z,y—1)—I(z—1,y—1).
@)

Let W be the width of the image and H the height.
Then, the complexity of this pass is O(W H), which is
approximately O(N), proportional to the number of pix-
els. As illustrated in Figure 2, evaluating any rectangle
(z1,y1, %2, y2) requires just 4 operations with an integral
image:

I(@2,y2) — I(x1,y2) — I(z2,51) + I(z1,91).  (5)
With integral images the complexity of evaluating a box is
reduced to O(1).

We have decomposed the problem of feature vector cre-
ation into K subproblems, one for each codeword. For
every codeword we need to construct an integral image.
These two components together form FLAIR: Fast, Local,
Area Independent Representation. After codeword assign-
ment, the cost of constructing FLAIR for BoW is O(NK).
FLAIR allows for creating feature vectors independent of
the bounding box area: in each of the K integral images,

i(z,y), 3)
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Figure 2. BoW with FLAIR. The key insight for FLAIR is that assignment of a descriptor to one of the codewords affects only a specific
part of the feature vector. For BoW with hard assignment, each descriptor affects only one codebook element. This allows us to decompose
the problem of constructing the full feature vector over codebook elements. For each individual codeword we construct an integral image,
which counts the number of assigned points inside a bounding box. Computing the number of assigned points in an arbitrary box is
just four operations (Equation 5). Concatenating the solutions to these subproblems will give us the full feature vector, with or without
normalization (not shown). If one of the rows or columns in the decomposition is empty (e.g., column three of the green codeword), then
its values are simply a copy of the row or column to the left or above. For BoW, FLAIR will not help that much in practice. In this case, the
gain of fast evaluation does not outweigh the fixed overhead of constructing the integral images. However, for more complex evaluations,

as required for VLAD and Fisher vectors, FLAIR is advantageous.

we need just constant time. Evaluating all boxes and spa-
tial pyramid cells with FLAIR has complexity O(K BS).
£, normalization of the feature vectors is simply included
in FLAIR: sum the feature vector of a box and divide all
elements by this sum. In summary, the computational com-
plexity for creating BoW feature vectors has been lowered
from O(NBS) to O(NK + K BS). With FLAIR, we have
created a representation, which makes evaluating a box in-
dependent of its image area, while still allowing for normal-
ization.

For BoW, FLAIR will not help that much in practice. In
this case, the evaluation per box is relatively simple and the
gain does not outweigh the fixed overhead of constructing
the integral images. However, for more complex evalua-
tions per pixels as required for VLAD and Fisher Vectors,
FLAIR is advantageous, as we will discuss next.

4. VLAD with FLAIR

Similar to BoW, in VLAD descriptors are assigned to
the closest codeword. In contrast to BoW, however, VLAD
encodes the difference between the descriptor and the code-
word. Hence, the descriptor ¢ will affect D elements in the
feature vector corresponding to the codeword k:

. N
F k= Z(ﬁn -

n=1
Similar to traditional BoW, we decompose the VLAD fea-
ture vector into K subproblems. For constructing the fea-
ture vector corresponding to codeword &, we need the de-
scriptors for which k is the closest codeword. We use the
same scheme, FLAIR, as discussed above, now extending
the scalar integral image to multi-dimensional integral im-
ages, with z,, and y,, the coordinates of the n-th descriptor:

N

f(x’y): Z

n=1, subject to x,, <x, Yn <Y

Cr)O(Un, Cr)- (6)

The extension of Equation 4 and 5 is trivial. The extension
gives us VLAD with FLAIR.

Complexity analysis The computational complexity
to constructing a multi-dimensional integral image is
O(KWHD) or O(KND), where K is the number of
codewords. N is proportional to the number of pixels and
D is newly added to hold the dimension of the descriptor.
Evaluating any rectangle requires four operations on vec-
tors with D elements, i.e., O(D). The total cost of eval-
uating all boxes and pyramid cells in VLAD with FLAIR
is O(KDBS). This compares favorably with the ordinary
evaluation of VLAD as we will discuss below.

Power and ¢, normalization Power and ¢ normaliza-
tion [14] are important for good recognition accuracy with
VLAD. Power normalization combines easily with FLAIR,
as the computation requires a read-out of all dimensions of
the feature vector one by one, readily provided by the dif-
ference integral image. It is applied after a box is evaluated
with the multi-dimensional integral image, i.e., it does not
depend on the solutions to other subproblems k. To also in-
clude ¢5 normalization in FLAIR requires more effort. As
it is an important extension, we have nevertheless devised
an extension to FLAIR to achieve that. As before, the com-
putation of the ¢ norm is decomposable into K subprob-
lems. For a given part of the feature vector F},, the con-
tribution to the /5 norm will be (ﬁk)Tﬁk. Summing over
all k£ and taking the square root gives the /5 norm of the
full feature vector. Extensions to other £, norms are trivial.
The complexity to create part of the £, norm is O(D), the
same as evaluating a box in the multi-dimensional integral
image. Therefore, including ¢, and power-normalization of
the feature vector in VLAD with FLAIR yields the same
complexity.

Exploiting sparsity for memory efficiency The mem-
ory usage of difference integral images is (W H D) com-



pared to (W H) for their scalar version. With an im-
age of 500x375 pixels, D = 80, and K = 256, these
datastructures use 5S7MB of memory for each k, equal to
14.3GB per image. Multi-dimensional integral images [19]
have the same prohibitive memory usage. However, the
memory requirements for FLAIR can be reduced signifi-
cantly by skipping void rows and columns. When an image
row or column contains no points to be included in the inte-
gral image, the values above or to the left in the integral im-
age can be reused, see the example in Figure 2. If we let the
number of rows with at least one point be H and the number
of columns with at least one point to be W, then a tighter
bound on the computational complexity for constructing a
multi-dimensional integral image is O(WHD). In addi-
tion, by reusing void rows and columns through pointers,
the memory per integral image decreases from (W H D)
to H(Wfl D). On average, 79% of rows and columns is
void and memory usage drops to 1.0GB per image. With
FLAIR, VLAD can be evaluated independent of the area
of the boxes, requiring O(KW HD + KDBS) time and
0(K'W H D) memory.

S. Fisher with FLAIR

Where VLAD encodes just the descriptor differences,
i.e., the first order moments of a descriptor assigned to a
codeword, the Fisher vector encoding includes first order
and second order moments. The Fisher encoding is the nor-
malized gradient of the log-likelihood of the data under a
mixture of Gaussians distribution p(¥) with diagonal co-
variance matrices. The gradients for the k-th codeword,
represented by a Gaussian with mean fij, standard devia-
tions ¢, and mixing weight 7 against all descriptors are
given by:

Alnp 1 XN:p(kwn) ( —ﬁk> -
Afix N~ 7% )

Alnp 1 i p(k|7,) ((ﬁn —ji)? 1) o)
A}, N &= /7 o7 ’

where we abuse notation by defining all operations on vec-
tors to be element-wise. The Fisher encoding assigns a de-
scriptor to multiple codewords. However, because the as-
signment of a descriptor to one of the codewords £ affects
only specific parts of the feature vector, the decomposition

into subproblems as done for VLAD is still possible. Con-
sider:

N

So(k) =Y p(k|7,), (10)
n=1

. N

Si(k) = p(k[v,)Tn, (a1
n=1

(12)

N
So(k) = p(kli,)57. (13)
n=1
With these functions we rewrite Equations 8 and 9:

Alnp 1 = .
A = N (5109 = i So(h)) a4

Alnp 1 (52(]6‘) — 2151 (k) + i}, - So(k) - So(@) -

Aﬁrk o N\/’/Tk &z
15)

The scalar integral image for Sy(k) and the multi-
dimensional integral images for S (k) and Sz (k) are sup-
plemented by a scalar integral image holding the number of
descriptors N in an area. With these four integral images
the gradients for a single codeword evaluate in O(D) and
independent of the box area, similar to VLAD.

Complexity analysis The complexity to construct Fisher
with FLAIR, ie., K times the four integral images is
O(KND). As with VLAD, Fisher with FLAIR creates
feature vectors for B boxes with S cells in O(KDBS).
Power and ¢, normalization are included the same way as
for VLAD with FLAIR. The computational complexity for
Fisher has changed from O(NDBS) in standard Fisher to
O(KND + KDBS) with FLAIR. With sparsity exploita-
tion, as in VLAD, the order goes to O(KW HD+K DBS).

Approximate Fisher (with FLAIR) In Fisher with
FLAIR each descriptor is included in all of the K subprob-
lems. Practical implementations of the Fisher encoding in-
clude a descriptor ¢ for codeword k only if the posterior
p(|k) is higher than a threshold (typically 10~%). Empiri-
cally, we find that a descriptor is assigned to on average 9.5
codewords for this threshold if K = 256. We can control
the level of sparsity if we put a maximum 7" on the number
of codewords to assign to. Up to this point all our solu-
tions are exact, but this assignment limit introduces our first
approximation: Approximate Fisher with FLAIR. In our ex-
periments we will evaluate different 7" in terms of speed and
accuracy.

6. Experiments

Experiment 1: VLAD with FLAIR Speedup In this ex-
periment, we measure the average speed for creating fea-
ture vectors for boxes with standard VLAD and VLAD with
FLAIR. The implementations run on a single core of a Xeon
E3-1270 CPU. The codebook size K = 256 and the de-
scriptor has dimensionality D = 80, common values in the
literature. To measure precisely the speedup provided by
FLAIR, the time for finding the closest codewords (0.55s
per image) is excluded from our timings.

Figure 3(a) shows the speedup of VLAD with FLAIR for
a varying number of boxes. For 30,000 boxes, equivalent to
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Figure 3. Experiments 1 and 2: FLAIR speedups (a) VLAD with FLAIR is 18.0x faster at 30k boxes, (b) Fisher with FLAIR is 18.7x
faster at 30k boxes, (c) Approximate Fisher with FLAIR reduces the overhead cost of FLAIR construction for an image.

selective search [24] with a 1x1 and 4x4 spatial pyramid,
VLAD with FLAIR is 18.0x faster than standard VLAD:
Where regular VLAD requires 73s per image to create fea-
ture vectors, VLAD with FLAIR needs only 4.0s. VLAD
with FLAIR does have a fixed cost of 0.6s for construction
of the representation. However, as soon as the number of
boxes to analyze is larger than 150 per image, a number
that is easily achieved in practice, it is faster to use VLAD
with FLAIR.

Experiment 2: Fisher with FLAIR Speedup Figure 3(b)
shows the speedup of Fisher with FLAIR. Again, we ex-
clude the time for codeword assignment (6.2s). For 30,000
boxes, FLAIR is 18.7x faster than standard Fisher: it takes
21s per image to create vectors instead of 6.5 minutes. As
soon as the number of boxes is larger than 140, the con-
struction time of Fisher with FLAIR (6.0s) is offset by the
more efficient feature vector creation.

Approximate Fisher with FLAIR limits the number of
codeword assignments per descriptor to 7. This approx-
imation increases the sparsity in the descriptor coordinates
and thereby decreases the construction time for FLAIR. Fig-
ure 3(c) shows the FLAIR construction timings at the inter-
section with the Y-axis: for 7" = 1 of 2.2s, for T" = 2 of
3.0s and for T' = 5 of 4.4s, compared to 6.0s for the exact
version. Approximate Fisher with FLAIR does not reduce
the time per box further, but it reduces the fixed overhead
cost of FLAIR by several seconds.

Experiment 3: Overall Object Detection Speedup and
Accuracy So far our experiments measured the speed
of feature encoding with and without FLAIR. However, in
a complete object detection pipeline, there are many ad-
ditional steps: determining boxes to use, extracting de-
scriptors, finding the closest codewords and applying ob-
ject models. These steps take time and their implementation
choice determines the overall accuracy of the object detec-
tion pipeline.

Here, we use fast selective search [24] for partitioning
the image into bounding boxes. As descriptor we use dense
SIFT, sampled at every 2 pixels at 3 scales. The dimension-
ality of SIFT is reduced to D = 80 with PCA. The spatial
pyramid is 1x1 and 4x4 after [5]; leaving out the spatial
pyramid decreases accuracy by 40%. For each object we

Time (s)

Standard with FLAIR  Speedup mAP
BoW [24] 479 - - 323
VLAD [14] 34.3 7.8 4.4x 28.2
Fisher [18] 120.0 325 3.7x 333
Approx Fisher (T' = 1) 82.2 28.1 2.9x 22.8
Approx Fisher (T' = 2) 86.0 29.1 3.0x 30.3
Approx Fisher (1" = 5) 99.8 30.8 3.2x 33.3

Table 1. Experiment 3: Overall object detection speedup and
accuracy for a complete detection pipeline with 2,000 boxes per
image and a spatial pyramid of 1x1 and 4x4, timings per image.
With FLAIR, a VLAD pipeline is 4x faster and a Fisher pipeline
is 3x faster overall. By approximating Fisher, the time per image
is reduced by several seconds, with no loss in mAP for 7" = 5 on
the PASCAL VOC 2007 test set. Compared to BoW, Fisher with
FLAIR is better and faster.

train a linear SVM classifier, where the positive examples
come from ground truth annotations. The initial set of nega-
tive examples are selective search boxes which overlap 20%
to 50% with the ground truth boxes. The set of negative ex-
amples is extended through hard negative mining [10]: the
trained model is applied to the training set, and from each
image one box is added to the negative set (provided it does
not overlap more than 30% with a ground truth box). We
perform two rounds of hard negative mining.

As a dataset for this comparative experiment of encoding
methods we use the PASCAL VOC 2007 dataset with 20
object classes and 10,000 images [9]. To measure accuracy,
we use mean Average Precision (mAP) over 20 classes,
which is the standard object detection setup on this dataset.

In Table 1, we report the object detection speedup and
accuracy. FLAIR makes the entire pipeline 4.4x faster for
VLAD, and 3.7x for Fisher: creating the feature vectors for
boxes was a substantial computational bottleneck. VLAD is
faster than Fisher, partly because the Fisher vector is twice
as long. However, in terms of accuracy the Fisher encoding
is clearly better: 33.3% mAP versus 28.2% mAP. For ref-
erence, a BoW encoding achieves 32.3% mAP. BoW uses
a larger codebook size 4,096 and a non-linear Histogram
Intersection Kernel, without them the accuracy is signifi-
cantly lower. Approximate Fisher lowers the execution time
per image by several seconds. However, assignment to just
1 or 2 descriptors results in lower accuracy: 22.8% mAP or



System plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv ‘ mAP
[10] 524 543 130 156 351 542 49.1 318 155 262 135 215 454 516 475 09.1 351 194 46.6 380 | 337
[24] 56.2 424 153 126 21.8 493 36.8 46.1 129 321 300 365 435 529 329 153 41.1 318 47.0 448 | 35.1
[5] 613 464 21.1 21.0 181 493 450 469 128 292 261 389 404 53.1 31.9 133 399 334 430 453 3538
NLPR 533 553 192 21.0 300 544 467 412 200 315 207 303 486 553 46.5 102 344 265 503 403 | 368
[31] 650 489 259 246 245 561 545 512 170 289 302 358 402 557 435 143 439 326 54.0 459 | 397
This paper 613 523 27.8 257 213 540 456 540 155 326 333 418 479 578 373 243 418 358 504 473 | 404

Table 2. Experiment 4: Comparison on the Pascal VOC 2010 detection task, comparing the approach from this paper to others without
context rescoring. We improve the state-of-the-art, and perform best for 9 objects.

Figure 4. Qualitative object detection results on PASCAL VOC
2010 for birds. The airplane on the bottom-left is a false positive.

30.3% mAP. Descriptors should be assigned to 5 codewords
to maintain accuracy and still save 1.7s per image compared
to exact Fisher with FLAIR. Compared to object detection
with BoW, Fisher with FLAIR is better and faster.

Experiment 4: Comparisons to state-of-the-art We now
switch to evaluations on the PASCAL VOC 2010 dataset to
compare to the state-of-the-art in object detection. Based
on the above experiments, we use Fisher with FLAIR due to
its accuracy. Color features are commonly used in state-of-
the-art systems [5, 24], therefore we include OpponentSIFT
and C-SIFT in our system in addition to intensity SIFT.
We focus on the box encoding and do not consider post-
processing by context rescoring [23, 5]. Because evaluat-
ing multiple boxes is computationally cheap in Fisher with
FLAIR, we increase the spatial pyramid to 30 cells (1x1,
2x2, 3x3 and 4x4) from the previously used 17. In Table 2,
we compare our results to 5 representative state-of-the-art
detectors. By exploiting the speedup offered by Fisher with
FLAIR for inclusion of color and fine spatial pyramids we
obtain the best results for 9 objects and the best overall
mAP. This system does not use any context rescoring. We
highlight qualitative detection results for the bird category
in Figure 4. We also submitted the same system to the on-
line leaderboards of the VOC 2012 dataset (40.6 mAP); de-
tailed results are available online.

We also evaluate Fisher with FLAIR on the fine-grained
species categorization task specified in the CUB-2011
dataset containing two hundred birds [30]. For each of
the bird species there are 30 training images and 30 test-
ing images. We use the standard training/test split provided
by the authors. Following the standard evaluation proto-
col, we mirror the train images to double the size of the
training set. Note that in this task one should evaluate for

System Accuracy
No test boxes ~ With test boxes
[30] 10.3 17.3
[32] 28.2 -
(21 - 56.8
This paper 52.2 55.5

Table 3. Experiment 4: Comparison on the CUB-200-2011 bird
species categorization task, comparing our Fisher with FLAIR to
the state-of-the-art. We improve the state-of-the-art by over 20%
in mean accuracy for the real-world task where there are no ground
truth bounding boxes on the test set. Fisher with FLAIR opens
doors to fine-grained object detection without domain-specific fea-
ture optimization.

uncropped images, similar to [32], without using the pro-
vided box annotations at test time. We do not use any bird-
specific optimizations, we just rely on the same implemen-
tation as before, but without C-SIFT. We report the stan-
dard evaluation metric, that is the mean accuracy over all
the 200 species, in Table 3. Compared to the baseline and
the best known number in the literature, we nearly double
the mean accuracy. A considerable improvement. Fisher
with FLAIR opens doors to fine-grained object detection.
Although popular, we consider using the human provided
bounding boxes of the CUB-2011 test set to be an unrealis-
tic scenario. As in practice these bounding boxes will not be
availabe. With these bounding boxes our accuracy increases
to 55.5% where [2] achieve 56.8% with boxes. Please note,
in contrast to [2] who use domain-specific knowledge by de-
sign, we use no form of domain-specific feature optimiza-
tion. Our fine-grained categorization results from generic
object detection, which also detects fine-grained objects
when bounding box annotations on the test set are absent (!).
Fisher with FLAIR opens doors to fine-grained object de-
tection in real-world scenarios.

Finally, we evaluate Fisher with FLAIR on the Ima-
geNet 2013 detection challenge over 200 classes. Results
for the validation set and a comparison with other methods
is shown in Table 4. In the ImageNet 2013 challenge, Fisher
with FLAIR was the number one system submitted, achiev-
ing 22.6 mAP on the test set.

7. Conclusion

FLAIR is the new data representation which enables fast
encoding of arbitrary boxes in an image with the power-
ful VLAD and Fisher vectors. FLAIR splits an image over
binary and integral images, one per code value in the code-
book. Once an image is represented in FLAIR, the evalua-
tion of VLAD and Fisher is independent of the area of the



System mAP
[10] from [31] 10.0
(311 14.7
This paper 18.3

This paper (with context)  21.9
Table 4. Experiment 4: Comparison on the ImageNet 2013 de-
tection challenge validation set over 200 categories. On the test
set, Fisher with FLAIR was the best system submitted to the chal-
lenge with 22.6 mAP.

box, and restricted to four additions. The method rests on
the linear sum over the pixels of these methods, but an ex-
tension of FLAIR allows also for the sum of squares for the
important ¢5-norm.

FLAIR can be used for the gain in speed as we demon-
strate in this paper to be a factor 18 in the state of-the-art
VLAD [14] and Fisher vector [18, 22] encodings. By evalu-
ating a large number of relevant boxes, selected by selective
search [24], we set a new state-of-the-art for object detec-
tion on the challenging PASCAL VOC 2010 and achieve
the top rank in the ImageNet 2013 detection challenge. Al-
ternatively, FLAIR can be used to increase the number of
boxes in an evaluation, which would otherwise be prohib-
ited by the computational effort. For fine-grained object cat-
egorization and localization we are able to evaluate 2,000
boxes and still use 30 pyramids in each box as the evalua-
tion of many boxes is cheap in FLAIR. As a result, without
any further knowledge of the birds [30], their pose [32] or
location [2] we obtain an accuracy of 55.5%.

We conclude that the computational efficiency of FLAIR
opens the door to modern yet computationally expensive
techniques for object categorization and localization in
large image collections, video archives, as well as for mo-
bile visual recognition.
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