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Abstract

This paper presents a highly efficient, very accurate re-
gression approach for face alignment. Our approach has
two novel components: a set of local binary features, and
a locality principle for learning those features. The locality
principle guides us to learn a set of highly discriminative
local binary features for each facial landmark independent-
ly. The obtained local binary features are used to jointly
learn a linear regression for the final output. Our approach
achieves the state-of-the-art results when tested on the cur-
rent most challenging benchmarks. Furthermore, because
extracting and regressing local binary features is computa-
tionally very cheap, our system is much faster than previous
methods. It achieves over 3,000 fps on a desktop or 300 fps
on a mobile phone for locating a few dozens of landmarks.

1. Introduction

Discriminative shape regression has emerged as the
leading approach for accurate and robust face alignment
[5, 11, 12, 29, 4, 32, 3, 27]. This is primarily because these
approaches have some distinct characteristics : 1) they are
purely discriminative; 2) they are able to enforce shape con-
strain adaptively; 3) they are capable of effectively leverag-
ing large bodies of training data.

The shape regression approach predicts facial shapeS

in a cascaded manner [12, 5, 4, 32, 3]. Beginning with an
initial shapeS0, S is progressively refined by estimating a
shape increment∆S stage-by-stage. In a generic form, a
shape increment∆St at staget is regressed as:

∆St = W tΦt
(

I, St−1
)

, (1)

whereI is the input image,St−1 is the shape from the pre-
vious stage,Φt is a feature mapping function, andW t is a
linear regression matrix. Note thatΦt depends on bothI
andSt−1. The feature learned in this way is referred to as

a “shape-indexed” feature [5, 3]. The regression goes to the
next stage by adding∆St to St−1.

The feature mapping functionΦt is essential in shape re-
gression. In previous works, it is either designed by hand
[32] or by learning [5, 3]. The process in [32] simply us-
es SIFT features for feature mapping and trainsW t by a
linear regression. While this simple approach works well,
the handcrafted general purpose features are not optimal for
specific face alignment. In contrast, the processes in [5, 3]
jointly learn bothΦt andW t by a tree-based regression, on
the whole face region in a data-driven manner.

In principle, the latter learning-based approach should be
better because it learns task-specific features. However, as
reported in existing literature, it is only on par with the ap-
proach using a hand-designed SIFT feature. We believe this
is due to two issues caused by the overly high freedom of
Φt. The first is a practical issue. Using the entire face region
as the training input results in an extremely large feature
pool, which translates into unaffordable training costs ifwe
want to learn the most discriminative feature combination.
The second is a generalization issue, which is more crucial.
The large feature pool has many noisy features. This can
easily cause over fitting and hurt performance in testing.

In this work, we propose a better learning based ap-
proach. It regularizes learning with a “locality” principle.
This principle is based on two insights: for locating a cer-
tain landmark at a stage, 1) the most discriminative texture
information lies in a local region around the estimated land-
mark from the previous stage; 2) theshape context(loca-
tions of other landmarks) andlocal textureof this landmark
provide sufficient information. These insights imply that we
may first learn intrinsic features to encode the local texture
for each landmark independently, then perform joint regres-
sion to incorporate the shape context.

We propose the following two types of regularization for
learningΦt:

• Φt is decomposed into a set of independent local fea-
ture mapping functions, i.e.Φt = [φt

1
, φt

2
, ..., φt

L] (L
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Figure 1. Overview of our approach. In the training phase, webegin by learning a feature mapping functionΦt(Ii, S
t−1

i
) to generate local

binary features. Given the features and target shape increments{∆Ŝt

i = Ŝi −St−1

i
}, we learn a linear projectionW t by linear regression.

In the testing phase, the shape increment is directly predicted and applied to update the current estimated shape.

is the number of landmarks).

• Each φt
l is learned by independently regressinglth

landmark, in the correspondinglocal region.

The proposed regularization can effectively screen out
the majority of noisy or less discriminative features, reduce
learning complexity, and lead to better generalization.

To learn eachφt
l , we use ensemble trees based regres-

sion to inducebinary features. The binary features encode
the intrinsic structure in a local region, for predicating the
landmark position. After concatenating alllocal binary fea-
tures to form the feature mappingΦt, we discriminatively
learnW t for global shape estimation. We find that our two-
step learning process (local binary features and global linear
regression) is much better than the one-step joint learningof
Φt andW t by tree-based regression in [5, 3].

In addition to better accuracy, our approach is also much
more efficient. Because the local binary features are tree
based and highly sparse, the process of extracting and re-
gressing such features is extremely rapid. We show that a
fast version of our approach runs at 3,000+ frames per sec-
ond (FPS) on a single-core desktop and achieves compara-
ble results with state-of-the-art methods. Our normal ver-
sion runs at 300+ FPS and significantly outperforms state-
of-the-art equivalents in terms of accuracy on a variety of
benchmarks. The high speed of our approach is crucial for
scenarios and devices where computational power is limit-
ed and computational budget is a major concern. For ex-
ample, our fast version still runs at 300 FPS on a modern

mobile phone. To the best of our knowledge, this is the
first approach that is several times faster than real-time face
alignment approach on mobile phone. This opens up new
opportunities for all online face applications.

2. Related Works

Active Appearance Models (AAM) [7] solves the face
alignment problem by jointly modeling holistic appearance
and shape. Many improvements over AAM have been
proposed [19, 18, 14, 15, 25, 28]. Instead of modeling
holistic appearance, “Constrained Local Model” [8, 9, 10,
1, 35, 29, 34, 26] learns a set of local experts (detectors
[9, 31, 24, 1, 34] or regressors [10, 29, 11]) and constrain-
s them using various shape models. These approaches are
better for generalization and robustness.

Our work belongs to the shape regression approach
[5, 11, 12, 29, 4, 32, 3] category. Xionget al. [32] pre-
dict shape increment by applying linear regression on SIFT
features. Both Caoet al. [5] and Burgos-Artizzuet al. [3]
use boosted ferns (a kind of tree) to regress the shape incre-
ment. We note that the ensemble tree-based methods (either
boosted trees or random forest) can also be viewed as a lin-
ear summation of regressors using binary features induced
by the trees, yet, our feature learning method differs from
previous tree based methods.

Ensemble trees can be used as a codebook for efficient
encoding [22] or learning better descriptors [6, 33]. En-
semble trees have recently been exploited for direct feature
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mapping to handle non-linear classification [30, 16]. In this
work, we demonstrate the effectiveness of ensemble trees
induced features in shape regression.

3. Regressing Local Binary Features

In Equation (1), both the linear regression matrixW t and
the feature mapping functionΦt are unknown. In our ap-
proach, we propose learning them in two consecutive steps.
We first learn a local feature mapping function to generate
local binary features for each landmark. We concatenate all
local features to getΦt. Then we learnW t by linear re-
gression. This learning process is repeated stage-by-stage
in a cascaded fashion. Figure1 shows the overview of our
approach.

3.1. Learning local binary featuresΦt

The feature mapping function is composed of a set of
local feature mapping functions i.e.,Φt = [φt

1
, φt

2
, ..., φt

L].
We learn each of them independently. The regression target
for learningφt

l is the ground truth shape increment∆Ŝt:

min
wt,φt

l

∑

i=1

‖πl ◦∆Ŝt
i − wt

lφ
t
l

(

Ii, S
t−1

i

)

‖2
2
, (2)

wherei iterates over all training samples, operatorπl ex-
tracts two elements(2l − 1, 2l) from the vector∆Ŝi, and
πl ◦∆Ŝi is the ground truth 2D-offset oflth landmark inith
training sample.

We use a standard regression random forest [2] to learn
each local mapping functionφt

l . The split nodes in the trees
are trained using the pixel-difference feature [5, 3]. To train
each split node, we test 500 randomly sampled features and
pick the feature that gives rise to maximum variance reduc-
tion. Testing more features results in only marginal im-
provement in our experiment. After training, each leaf n-
ode stores a 2D offset vector that is the average of all the
training samples in the leaf.

We only sample pixel features in a local region around
the landmark that is estimated. Using such a local region is
critical to our approach. In the training, the optimal region
size is estimated in each stage via cross validation. We will
discuss more details in Section3.3.

During testing, a sample traverses the trees until it reach-
es one leaf node for each tree. The output of the random
forest is the summation of the outputs stored in these leaf
nodes. Supposing the total number of leaf nodes isD, the
output can be rewritten as:

wt
lφ

t
l

(

Ii, S
t−1

i

)

, (3)
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Figure 2. Local binary features. (a) The local feature mapping
functionφt

l encodes the corresponding local region into a binary
feature; all local binary features are concatenated to formhigh-
dimensional binary features. (b) We use random forest as thelocal
mapping function. Each extracted binary feature indicateswhether
the input image contains some local patterns or not.

wherewt
l is a2-by-D matrix in which each column is the

2D vector stored in the corresponding leaf node, andφt
l is a

D-dimensional binary vector. For each dimension inφt
l , its

value is 1 if the test sample reaches the corresponding leaf
node and 0 otherwise. Therefore,φt

l is a very sparse binary
vector. The number of non-zero elements inφt

l is the same
as the number of trees in the forest, which is much smaller
thanD. We call suchφt

ls “local binary features”. Figure2
illustrates the process of extracting local binary features.

3.2. Learning global linear regressionW t

After the local random forest learning, we obtain not on-
ly the binary featuresφt

l , but also the local regression output
wt

l . We discardsuch learned local outputwt
l . Instead, we

concatenate the binary features to a global feature mapping
functionΦt and learn a global linear projectionW t by min-
imizing the following objective function:

min
W t

N
∑

i=1

‖∆Ŝt
i −W tΦt(Ii, S

t−1

i )‖2
2
+ λ||W t||2

2
, (4)

where the first term is the regression target, the second term
is a L2 regularization onW t, andλ controls the regular-
ization strength. Regularization is necessary because the
dimensionality of the features is very high. In our exper-
iment, for 68 landmarks, the dimensionality ofΦt could
be 100K+. Without regularization, we observe substantial
overfitting. Because the binary features are highly sparse,
we use a dual coordinate descent method [13] to deal with
such a large-scale sparse linear system. Since the objective
function is quadratic with respect toW t, we can always
reach its global optimum.

We find that such global “relearning” or “transfer learn-
ing” significantly improves performance. We believe this is
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Figure 3. The horizontal axis stands for the local region radius.
The vertical axis stands for the alignment error on a test set. From
left to right, standard deviation of the distribution of∆s are 0.05,
0.1, 0.2. Herein both local region radius and alignment error is
normalized by the size of face rectangle.

for two reasons. On one hand, the locally learned output by
random forest is noisy because the number of training sam-
ples in a leaf node may be insufficient. On the other hand,
the global regression can effectively enforce a global shape
constraint and reduce local errors caused by occlusion and
ambiguous local appearance.

3.3. Locality principle

As we have described previously, we apply two impor-
tant regularization methods in feature learning, as guidedby
a locality principle: 1) we learn a forest for each landmark
independently; 2) we only consider the pixel features in the
local region of a landmark. In this section, we explain why
we made such choices.

Why the local region? We begin with the second
choice. Suppose we want to predict the offset∆s of a s-
ingle landmark and we select features from a local region
with radiusr. Intuitively, the optimal radiusr should de-
pend on the distribution of∆s. If ∆s of all training samples
are scattered widely, we should use a larger; otherwise we
use a small one.

To study the relationship between the distribution of∆s

and the optimal radiusr, for a landmark we synthesize train-
ing and test sample regions whose∆s follow a Gaussian
distribution with different standard deviations. For eachdis-
tribution, we experimentally determine the optimal region
radius (in terms of test error) by training regression forests
on various radii. We use the same forest parameters (tree
depth and number of trees) as in our cascade training. We
repeat this experiment for all landmarks and take the aver-
age of the optimal region radius.

Figure3 shows the results of three distributions whose
std. are 0.05, 0.1, and 0.2 (normalized distance by face rect-
angle size). The optimal radiuses are 0.12, 0.21 and 0.39.
The results indicate that the optimal region radius is almost
linearly to the standard deviation of∆s. Therefore, we can
conclude that, given limited computation budget (the num-

Stage1 Stage3 Stage5

Figure 4. The best local region sizes at stage 1, 3, and 5.

ber of features tested in training forests), it is more effective
to only consider candidate features in a local region instead
of the global face image.

In our cascade training, at each stage, we search for
the best region radius (from 10 discrete values) by cross-
validation on an hold-out validation set. Figure4 shows
the best region radiuses found at stage 1, 3, and 5. As
expected, the radius gradually shrinks from early stage to
later stage, because the variation of regressed face shapes
decreases during the cascade.

Why a single landmark regression?It may appear that
independent regression of each landmark is sub-optimal.
For example, we could probably miss a good feature that
can be shared by multiple landmarks. However, we argue
that local regression has a few advantages over the global
learning such as in [5].

First, the feature pool in local learning is less noisy.
There may be more useful features in global learning. But
the “signal-to-noise ratio” in global learning could be lower,
which will make feature selection more difficult.

Second, using local learning does not mean that we do
local prediction. In our approach, the linear regression in
the second step exploits all learned local features to make a
global prediction. Because the local learning of landmarks
is independent, the resulting features are by nature more di-
verse and complementary to each other. Such features are
more appropriate for global learning in the second step.

Last, the local learning is adaptive in different stages. In
the early stage, the local region size is relatively large and
a local region actually covers multiple landmarks. The fea-
tures learned from one landmark can indeed help its neigh-
boring landmarks. In the late stage, the region size is small
and local regression fine-tunes each landmark. Local learn-
ing is actually more appropriate in the late stage.

Note that we do not claim that global learning is infe-
rior to our local learning by nature. We believe that local
learning delivers better performance mainly due to practical
reasons. Given limited training capability (the amount of
training data, affordable training time, available computing
resources, and power of learning algorithm), the local ap-
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proach can better resist noisy features in the global feature
pool, which is extremely large and may cause over fitting.
We hope our empirical findings in this work can encourage
more similar investigations in the future.

4. Experiments

DatasetsThere are quite a few datasets for face align-
ment. We use three more recent and challenging ones. They
present different variations in face shape, appearance, and
number of landmarks.

LFPW (29 landmarks) [1] is collected from the web. As
some URLs are no longer valid, we only use 717 of the
1,100 images for training and 249 of the 300 images for
testing. Although each image is labeled with 35 landmarks,
we use 29 of 35 landmarks in our experiments, following
previous work [5].

Helen(194 landmarks) [17] contains 2,300 high resolu-
tion web images. We follow the same setting in [17]: 2000
images for training and 330 images for testing. The high
resolution is beneficial for high accuracy alignment, but the
large number of landmarks is challenging in terms of com-
putation.

300-W (68 landmarks) is short for 300 Faces in-the-
Wild [23]. It is created from existing datasets, including
LFPW [1], AFW [35], Helen [17], XM2VTS [20], and a
new dataset called IBUG. It is created as a challenge and
only provides training data. We split their training data into
two parts for our own training and testing. Our training set
consists of AFW, the training sets of LFPW, and the train-
ing sets of Helen, with 3148 images in total. Our testing
set consists of IBUG, the testing sets of LFPW, and the test-
ing sets of Helen, with 689 images in total. We do not use
images from XM2VTS as it is taken under a controlled en-
vironment and is too simple. We should point out that the
IBUG subset is extremely challenging as its images have
large variations in face poses, expressions and illumination-
s.

Evaluation metric Following the standard [1, 5], we
use the inter-pupil distance normalized landmark error. For
each dataset we report the error averaged over all landmarks
and images. Note that the error is represented as a percent-
age of the pupil-distance, and we drop the notation% in the
reported results for clarity.

In the following section, we first compare our approach
against state-of-the-art methods, then validate the proposed
approach via comparison with certain baseline methods.

4.1. Comparison with state-of-the-art methods

During our training, we use similar data augmentation
as in [5] to enlarge the training data and improve general-
ization ability: each training image is translated to multi-
ple training samples by randomly sampling the initial shape
multiple times. Note that during testing we only use the
mean shape as the initialization. We do not use multiple
initializations and median based refinement as in [5].

Our approach has a few free parameters: the number of
stagesT , the number of trees in each stageN1, and the tree
depthD. To test different speed-accuracy trade-offs, we
use two sets of settings: 1) more accurate:T = 5, N =
1200, D = 7; and 2) faster: (T = 5, N = 300, D = 5). We
call the two versionsLBF (local binary features) andLBF
fast.

Our main competitors are the shape regression based
methods, including explicit shape regression (ESR) [5] and
supervised descent method (SDM) [32]. We implement
these two methods and our implementation achieves com-
parable accuracy to that which was reported by the original
authors. For comparison with other methods, we used the o-
riginal results in the literature. Table1 reports the errors and
speeds (frames per second or FPS) of all compared methods
on three datasets. Note that we also divide the testing set of
300-W into two subsets: the common subset consists of the
testing sets of Helen and LFPW, and the challenging IBUG
subset. We report all results on the two subsets as well.

Comparison of accuracyOverall, the regression-based
approaches are significantly better than ASM-based meth-
ods. Our proposed approach LBF wins by a large margin
over all datasets. Our faster version is also comparable with
the previous best. Specifically, our method achieves signif-
icant error reduction with respect to ESR and SDM of 30%
and 22%, respectively, on the challenging IBUG subset. We
believe this is due to the good generalization ability of our
method. In Figure7–9, some example images and com-
parison results from IBUG are shown. Note that the per-
formance on LFPW is almost saturated, because the human
performance is 3.28 as reported in [3].

Comparison of speedOur approach, ESR, and SDM are
all implemented in C++ and tested on a single core i7-2600
CPU. The speed of other methods is quoted from the orig-
inal papers. While ESR and SDM are already the fastest
face alignment methods in the literature, our method has a
even larger advantage in terms of speed. Our fast version
is dozens of times faster and achieves thousands of FPS for
a large number of landmarks. The high speed comes from
the sparse binary features. As each testing sample has only

1We fix the total number of trees so few trees will be used for each
landmark if there are more landmarks.
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LFPW (29 landmarks)
Method Error FPS
[1] 3.99 ≈ 1
ESR[5] 3.47 220
RCPR[3] 3.50 -
SDM[32] 3.49 160
EGM[34] 3.98 < 1
LBF 3.35 460
LBF fast 3.35 4200

Helen (194 landmarks)
Method Error FPS
STASM[21] 11.1 -
CompASM[17] 9.10 -
ESR[5] 5.70 70
RCPR[3] 6.50 -
SDM[32] 5.85 21
LBF 5.41 200
LBF fast 5.80 1500

300-W (68 landmarks)

Method Fullset
Common
Subset

Challenging
Subset

FPS

ESR[5] 7.58 5.28 17.00 120

SDM[32] 7.52 5.60 15.40 70
LBF 6.32 4.95 11.98 320
LBF fast 7.37 5.38 15.50 3100

Table 1. Error and runtime (in FPS) on LFPW, Helen and 300-W datasets, respectively. The errors of ESR and SDM are from our
implementation. Note that ESR and SDM have reported error onLFPW in the original papers. Their accuracy is similar as ours (3.43 and
3.47, respectively)
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Figure 5. Comparison between local learning and global learning.

a small number of non-zero entries in its high dimensional
features, the shape update is performed only a few times by
efficient look up table and vector addition, instead of ma-
trix multiplication in the global linear regression. The sur-
prisingly high performance makes our approach especially
attractive for applications with limited computational pow-
er. For example, our method runs in about 300 FPS on a
mobile. This opens up new opportunities for online face
applications on mobile phone.

4.2. Validation of proposed approach

We verify the effectiveness of the two key components of
our approach,local learningandbinary features, by com-
paring them with baseline methods that only differ in those
aspects but remain exactly the same in all others. We use
the 300-W dataset and LBF settings.

Local learning vs. global learning. In the baseline
method, the difference is that, during the learning of lo-
cal binary features, the pixels are indexed over the global
shape, in the same way as [5], instead of only in a local re-
gion around the local landmark as in the proposed approach.
Regression is performed on the entire shape instead of only
the local landmark. All other parameters are the same to
ensure the same training effort. We call this baselineglobal
learning. Figure5 shows that the proposedlocal learningis
significantly better (25% error reduction) and verifies thatit
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Figure 6. Comparison between tree induced binary features and
local forest regression.

is capable of finding much better features.

Tree induced binary features vs. local forest regres-
sion. In the baseline method, we do not use the locally
learned high dimensional binary features for global regres-
sion. Instead, we directly use the local random forest’s re-
gression output (a 2D offset vector) of each landmark as
features to learn a global regression in the same way. Note
that the learning process of the local trees is also exactly
the same. Figure6 shows that high dimensional binary fea-
tures clearly outperform the simple raw output from local
regression as features, because the former faithfully retains
the full information of local learning.

5. Conclusion

In this work, we have presented a novel approach to
learning local binary features for highly accurate and ex-
tremely fast face alignment. The shape regression frame-
work regularized by locality principle is also promising
for use in other relevant areas such as anatomic structure
segmentation and human pose estimation. Furthermore, it
is worth exploring the refitting strategy in other scenarios
where regression trees are applied.
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Figure 7. Example results from the Challenging Subset of the300-W dataset.
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Figure 8. Example images from the Challenging Subset of 300-W dataset where our method outperforms ESR and SDM. These cases are
extremely difficult due to the mixing of large head poses, extreme lighting, and partial occlusions.
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Figure 9. Some failure cases from the Challenging Subset of 300-W dataset.
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