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Abstract

Based on the concept of lacunarity in fractal geometry,
we developed a statistical approach to texture description,
which yields highly discriminative feature with strong ro-
bustness to a wide range of transformations, including pho-
tometric changes and geometric changes. The texture fea-
ture is constructed by concatenating the lacunarity-related
parameters estimated from the multi-scale local binary pat-
terns of image. Benefiting from the ability of lacunarity
analysis to distinguish spatial patterns, our method is able
to characterize the spatial distribution of local image struc-
tures from multiple scales. The proposed feature was ap-
plied to texture classification and has demonstrated excel-
lent performance in comparison with several state-of-the-
art approaches on four benchmark datasets.

1. Introduction

Texture is a fundamental part of visual feature, since im-
ages often exhibit variations of intensities with certain re-
peated patterns. Texture provides a powerful cue for many
vision-related applications, such as material classification,
object recognition, natural scene identification. Although
it is easy for human to identify texture, defining texture is
challenging. Many existing texture description and classifi-
cation methods (e.g., [L1, 118} 112,35, 133]) model texture as a
collage collected from certain types of textons. As a result,
texture is represented as histogram of local image patterns.

The representation of local image patterns differs in the
existing methods: it can be predefined, such as using fil-
ter response [30, |6, [10], binary codes [23} [16], and tem-
plates [29]; or be adaptive to image, e.g., using SIFT fea-
tures [15} 33], affine-invariant regions [13]], random projec-
tions of image patches [14], and local feature clusters [27]].
The adaptive image pattern representation usually involves
feature detection and clustering technique. Thus the re-
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sulted texture descriptors often show strong robustness to
geometric and illumination changes, as well as partial oc-
clusions. However, the extracted patterns are sparse over
image space, implying that the resulted features inevitably
lose details in discrimination. Moreover, the clustering pro-
cess makes the computational cost dramatically increase.

In contrast to the adaptive ones, the predefined image
patterns are more discriminative but with weaker invari-
ance. This inspires us to develop a robust statistical method
to integrate such image patterns into a global feature that en-
joys both robustness and discriminability. Our work is moti-
vated by the observation that the spatial distribution of local
image patterns exhibits statistical self-similarities within a
certain range of scales [[10]. Such self-similarities can be
well described by the so-called fractal geometry.

In recent years, fractal analysis has emerged as a promis-
ing approach to capturing the self-similarities of texture.
Based on fractal analysis, many successful approaches (e.g.,
[10} [30L [29]) have been proposed for texture classification.
The basic idea of these methods is to use multiple fractal
dimensions to summarize the spatial distribution of image
patterns. While the fractal-dimension-based analysis used
in these methods has led to impressive results, other power-
ful tools for fractal analysis have not been fully exploited,
and one of them is the so-called lacunarity analysis. Com-
pared with fractal dimension, lacunarity is more general
in characterizing spatial features and can be readily used
to describe multi-fractal and even non-fractal patterns [24].
In the past, several lacunarity-analysis-based methods (e.g.,
[25} 20, [17]) have been proposed. However, these methods
have not been successfully applied to classifying complex
textures from real world.

In this paper, we proposed an effective method to char-
acterize the spatial distribution of image patterns using la-
cunarity analysis. The extracted features encode the scal-
ing behaviors of the lacunarity of image patterns. Our
method was applied to texture classification and evaluated
on four benchmark datasets. Our method has demonstrated
excellent performance in comparison with the existing ap-
proaches. The rest of this paper is organized as follows.
Sec. [2]introduces the background knowledge about local bi-



nary patterns and lacunarity analysis. Sec.[3]is devoted to
the proposed method. The evaluation is reported in Sec.
and the conclusion is drawn in Sec.

2. Preliminaries
2.1. Local binary pattern

There is an abundant literature on extracting image pat-
terns. One representative way is the so-called local bi-
nary pattern (LBP). The original LBP operator proposed
by Ojala et al. [21] forms labels for image pixels by thresh-
olding the 3 x 3 neighborhood of each pixel with the center
value and summing the resulted binary numbers weighted
by powers of two. To adapt the LBP operator to the neigh-
borhoods of different sizes [23]], a circular symmetric neigh-
borhood denoted by (P, R) is defined. Here P denotes the
number of the sampling points and R denotes the radius of
the neighborhood. The pixel value of a sampling point is bi-
linearly interpolated if the point does not lie at the integer
coordinates. The modified operator, denoted by LBPp g,
can be written as

Ju

LBPp R = Z s(gp — ge) * 2P, (1)
=0

3

where s(z) is the thresholding function that is assigned the
value 1 if x is positive and 0 if negative, g. is the gray value
of the center pixel and g, (p = 0,1, ..., P — 1) is the gray
value of the neighbors. Since s(g, — g.) is invariant to any
monotonic photometric changes, the operator LBPp r is ro-
bust to lighting changes.

However, the operator LBPp g is sensitive to image ro-
tation. Hence, the rotation-invariant LBP operator [22], de-
noted by LB Tpi’ R 1s developed by circularly rotating each
LBP binary code into its minimum value:

LBPY = min{R(p,LBPpg) |p =0,1,...,P—1}, (2)

where R(p,x) performs a circular bit-wise right shift on
x by p times. For instance, the bit sequences 10110000,
00101100 and 11000010 arise from different rotations of
the same local pattern and they all correspond to the nor-
malized sequence 00001011.

One further extension of LBP is to eliminate the patterns
with frequent bitwise jumps in their binary codes, which
can reduce the sensitivity to noise. The jump frequency is
measured by a uniformity measure U defined as

U(LBPpr) =|s(gp—1 — gc) — s(g0 — gc)|+

P-1

3)
Z |5(9p = 9c) = s(gp—1 — ge)|-
p=1

The measure U counts the number of bitwise transitions
from O to 1 or vice versa when the bit pattern is considered

circular. A local binary pattern is called uniform [23] if the
uniformity measure on the pattern is at most two. The corre-
sponding uniform rotation-invariant LBP operator LBP}”}?

is defined as

LBP: p, if U(LBPpR) <2;

P+1, @

LBPTiu2 _
PR { otherwise.

The operator LBP};’;}Q2 assigns a single label to all the non-
uniform patterns, which benefits reducing the length of
LBP-based feature and implementing a simple rotation-
invariant descriptor. By using a look-up table, the calcu-
lation of LBPTP’:’"R? is very efficient. Note that there are many
other LBP variants (e.g., [8, 34]]) that have demonstrated
better performance in texture description. We employ the
LBP operator LBP}T}% for its simplicity. Our results show
that such a simple coding strategy can perform well.

2.2. Lacunarity analysis

Lacunarity, originally introduced by Mandelbrot [19], is
a specialized term in fractal geometry referring to a measure
on how patterns fill space. Geometric objects appear more
lacunar if they contain a wide range of gap sizes. More
precisely, lacunarity measures the deviation of a geometric
object from translational invariance [7]. At a given scale,
low lacunarity indicates being homogeneous and transition-
ally invariant because all gap sizes are the same, whereas
objects of high lacunarity are heterogeneous and not tran-
sitionally invariant. But note that high-lacunarity objects
which are heterogeneous at small scales can be quite ho-
mogeneous at larger scales or vice versa. In other words,
lacunarity is a scale-dependent measure on the spatial com-
plexity of patterns.

A simple way to calculate lacunarity on a binary image
B is the gliding box method [5]]. As depicted in Fig.[I] a box
of size r x r is first gliding through the image. The number
of the mass points (black pixels) within the box at each po-
sition is calculated. A histogram, denoted as X Z(n) is then
built upon the collection of the values from all the boxes.
Here n denotes the number of mass points falling into the
box, and X2 (n) is the number of the boxes containing n
mass points. See Fig. [I]for an illustration of the calculation
process. The lacunarity at scale r is defined as

E[(X7)?]

A(B)= =
() (EX7])

®)

The lacunarity A, (B) is a scale-dependent variable. For the
objects with self-similarities, the lacunarity exhibits power-
law behaviors [19] with respect to its scale, i.e.,
1 D(B)
An(B) o (=), (6)

r

where D(B) is a scale-independent exponent.
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Figure 1. The gliding box travels over the whole image, and is
centered on each pixel (this is simplified in the left figure). The
number of holes inside the box are calculated. These numbers are
used to build a histogram, as depicted in the right figure.

3. Our Method

Since image patterns exhibit power-law behaviors, as
discussed in Sec[l] the lacunarity on the image patterns is
assumed to satisfy Eqn. (6). By taking logarithm on both
sides of Eqn. (6), we obtain

InA,.(B) = D(B)Inr + L(B). (7

The variables D(B) and L(B) indeed encode the scaling
behaviors of the lacunarity of image patterns. Hence, for
binary image B we derive our lacunarity-related feature de-
noted by LAC(B) as follows:

LAC(B) = [D(B), L(B)]. ®)

To estimate D(B) and L(B), the linear least square fitting
technique is used.

The reliability of the LAC feature depends on the types
of the image patterns used in calculation. Here we employ
the local binary patterns (LBPs) presented in Sec The
reason is the LBPs defined in Eqn. (@) are robust to light-
ing changes, image rotation and moderate amount of noise.
Moreover, the LBPs have computational simplicity and ef-
ficiency. To exploit structures existing in different scales,
the LBPs are extracted in a multi-scale manner. Given
an image I, we compute a sequence of LBP code maps
Ji,J2,...,Jn by applying the uniform rotation-invariant
LBP operator LBP}%2 defined in Eqn (@) to I with a series
of parameters

{(Pi7R’l:))7; = 1,2,N}

In details, the code map J; is a label image generated by ap-
plying LBPgﬁ%i to I. The parameter P; defines the shape of
neighborhood, and R; determines the size of the neighbor-
hood as well as the scale of the encoded patterns. By using
different values of P, the generated code maps can capture
various types of local structures in texture, and, by using
multiple values of R, the multi-scale analysis is conducted.
Note that for digital image, larger R would result in more
freedom in choosing P. Our experiment show that, only

Algorithm 1 Pattern Lacunarity Spectrum (PLS)

Input: Texture image
Output: Texture feature PLS(I)

1. Calculate LBP code maps J1, Ja, ...Jn using (I)-(@)
with a series of parameters {(P;, R;),i = 1,..., N }:

J; =LBPE"% (I),i=1,..,N.

2. Generate binary images {B; ;,j = 1,...,P; + 2}
using (O) from each LBP code map:

17 Zf J’L(x7y> = j;
0, otherwise.

Bi,j (iﬂ, y) = {
3. Compute lacunarity-related features L; ; on each bi-
nary image using (7) and (8):
Li,j = LAC(BZJ), 1= ]., ) N,j = 1, ,PZ + 2.
4. Output PLS feature via concatenation over L; ;:

PLS(I) = LﬂL’i,j’ 1= 177N,j = 1, ,PZ + 2.
i,

a few values of R and P are able to characterize the rich
structures of texture and achieve excellent performance.

Next, a series of binary images {B; ;,j = 1, ..., P; + 2}
are generated from each code map J; via pixel classification
with respect to the code value of each LBP:

17 Zf Jz(x7y> :j;
0, otherwise.

B j(x,y) = { €))

See Fig.[3]for some examples of the binary images. Each bi-
nary image provides the spatial locations of the image pat-
terns of the same type. To characterize the spatial distri-
bution of the image patterns, the LAC feature is computed
using Eqn. [8]on each binary image and concatenated as the
pattern lacunarity spectrum (PLS) feature:

PLS(I) = [HLAC(B;;),i=1,..,N,j=1,... P, + 2,

i (10)

where |+ denotes the concatenation of the LAC vectors.
The proposed approach is illustrated in Fig. [2] and out-
lined in Alg.[T} See Fig.[d]for the illustration of the PLS fea-
ture. It can be seen that the PLS feature can enjoy both the
inter-class discrimination and intra-class similarity. Note
that the number of binary images generated from each LBP
code map J; varies with the parameter (P;, R;) of the LBP
operator LBP}%Q%. By the definition of LBPﬁfjg, the total



length of the proposed PLS feature is Zi\; 2(P; +2).
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Figure 2. Flowchart of the proposed method.
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Figure 3. Binary images generated from the LBPs. Column (a) are
four different texture images. Column (b)-(d) are the correspond-
ing binary images generated by pixel classification from the LBPs
of the original texture images.

4. Experimental Evaluation

In this section, the proposed method is evaluated by ap-
plying it to texture classification. The parameters of the pro-
posed method are set as the same through all experiments.

The scale range used for estimating lacunarity is set to be
a series of integers from 2 to 14. The parameter series
{(P;, R;)} for multi-scale LBP coding are set as {(4, 1),
(16,2), (16, 3), (8,5), (16,5)}. There are two reasons for
selecting such LBP parameters. Firstly, the number of the
sampling points in each scale is set to be 4, 8 or 16 respec-
tively, according to the corresponding scale. Secondly, for
computing the multi-scale LBPs, the scales are defined as a
series of integers which start from 1 and is increased by a
factor of 1.5, which is common in the existing multi-scale
representation methods (e.g., [15,31]). For compactly, only
four scales are used, i.e., 1, 2, 3, and 5. Therefore, the total
length of the final PLS feature is 140.

4.1. Configuration

We followed the experimental setup used in [33} 29, 10].
The performance is evaluated in terms of classification ac-
curacy. A fixed-size random subset of images is selected
from each class as the training set to train a classifier, and
all the remaining images are used as the test set. The clas-
sification accuracy is defined as the percentage of the sam-
ples correctly classified . The aforementioned process is re-
peated 100 times and the average classification accuracy is
reported. The support vector machine (SVM) implemented
by Pontil et al. [26]] is used as the classifier with the Gaus-
sian RBF kernel. The cost factor of the SVM is set as the
number of images in the dataset, and the shape parame-
ter of the RBF kernel is determined by the standard cross-
validation. It is observed that the shape parameter is stable
and falls in the range of [0.25, 0.50].

Four challenging texture datasets are selected for the
evaluation, including the UMD dataset [4], the UIUC
dataset [3]], the KTH-TIPS dataset [2], and the ALOT
dataset [1]. These datasets have been widely used in the
evaluations of many existing texture classification meth-
ods. The details of these datasets are summarized in Tab. [l
Our method is compared against several state-of-the-art ap-
proaches with reported results on the datasets. Note that not
all the methods have available results on each dataset. Thus,
the compared methods are not all the same on each dataset.
Meanwhile, because the configurations of the datasets are
inconsistent, the details of the evaluation on each dataset
are slightly different.

The UMD and UIUC datasets. The experimental config-
urations on these two datasets are the same. For each class,
twenty samples are used for training and the rest for testing.
Our method was compared against five methods:

e (H+L)(S+R) [12] characterizing texture by the his-
togram of clustered affine-invariant regions. The
affine-invariant region can be seen as one type of im-
age patterns with strong robustness.

e VG-Fractal |27], which produces a 13-dimensional lo-
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(b) The feature vector collecting all the D(B) values.
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(c) The feature vector collecting all the L(B) values.

Figure 4. The PLS features computed on three types of texture. Each type of texture contains three sample images, as shown in (a). Here
the corresponding LBP parameters (P, R)s for generating the PLS features are (4, 1), (8, 1), (4,2), and (8, 2). For the sake of clarity, the
values of D(B) and L(B) in Eqn. (7) are collected respectively and shown in (b) and (c). The feature vectors of the texture images of the

same type are plotted in the same color.

Table 1. Details of four texture datasets

Dataset Num. of images Num. of classes ~ Resolution  Scale change Illumination condition
UMD 1000 25 1280 x 900 significant uncontrolled
UIuC 1000 25 640 x 480 significant uncontrolled
KTH-TIPS 810 10 200 x 200 small controlled
ALOT 25000 250 1536 x 1024 significant controlled

cal descriptor for each image pattern via local fractal
analysis, and builds the texture feature upon the his-
togram of clusters of the local descriptors.

MFS [30] characterizing the spatial distribution of the
image intensity patterns as well as the image gradient
patterns by multiple fractal dimensions.

OTF [29] extending the MFS method by using multi-
scale oriented templates instead of gradient operator
to locate image patterns. A scale alignment strategy
using wavelet tight frame decomposition is involved.

WMFS [10], an extension of MFS that replaces the
gradient operator with wavelet filters to build up im-
age patterns. A scale normalization scheme based on
interest point detection is involved.

Besides, one more method is involved in the UIUC dataset:
e BIF [6]], defines image patterns based on the partition

of the filter-response space of a set of six Gaussian
derivative filters.

The KTH-TIPS dataset. The evaluation is the same as
above except the compared methods. Besides the aforemen-
tioned (H+L)(S+R), WMFS, and BIF methods for compari-
son, two histogram-based methods are involved:

e VZ-MRS8 9], in which the image patterns are character-
ized by the filter responses of a predefined filter bank.

e (H+L)(S+S) [33]], an extension of the (H+L)(S+R)
method introducing robust local detector and descrip-
tor to represent image patterns.

The ALOT dataset. The evaluation is consistent with that
of [10]], i.e., the number of the training samples for each
class is set as 5, 10,..., 45, 50 respectively. Note that the im-
age resolution of the ALOT dataset is much larger than the
other three datasets. To speed up the computation, all the
images were down-sampled by half before feature extrac-
tion. As there are only a few available results on the ALOT
dataset, we focus on the comparisons with three fractal-
dimension-based methods. These methods are the afore-
mentioned MFS, OTF, and WMFS methods.



4.2. Results

Table 2| summarizes the performance of the compared
methods on the four benchmark datasets. For the number
of training samples are not fixed in the evaluation on the
ALOT dataset, we only report the classification accuracies
generated by using 20 training samples in Tab. 2} It can
be seen from Tab. 2] that our approach is very competitive
compared with the state-of-the-art methods.

Figures [3 [6] [7] show the per-class classification accu-
racy achieved by PLS on the UMD, UIUC and KTH-TIPS
datasets respectively. As can be seen, more than a half of the
classes are 100% correctly classified on the UMD dataset.
On the UIUC dataset, the classification accuracy of the class
C14 is the lowest. On the KTH-TIPS dataset, the proposed
method performed the worst when dealing with the class
C06. Tt is worth noting that the resolution of the images
from the KTH-TIPS dataset is much lower than the other
datasets. The low resolution might decrease the perfor-
mance of the fractal-based methodsﬂ as discussed in [30].
But the proposed method can still achieve excellent perfor-
mance on the low-resolution dataset due to the robust image
pattern representation provided by multi-scale LBPs.

The classification accuracies of the compared methods
on the ALOT dataset are shown as curves in Fig.[9} One in-
teresting observation from the figure is that, when the num-
ber of the training samples is small, the performance of OTF
is better than WMFS, while WMFS outperforms OTF as the
number of training samples increases. Note that the scale of
the ALOT dataset is much larger than the others. In this
case, insufficient training samples might cause instability
of classification performance due to the sensitivity of the
feature to environmental changes. In contrast, our method
performs the best regardless of the number of the training
samples. This demonstrates that the proposed PLS feature
enjoys both the discriminative ability and the robustness to a
wide range of environmental changes. See Fig.[§|for the per-
class classification accuracy achieved by PLS on the ALOT
dataset when using 50 samples per class for training.

5. Conclusion

Dense image patterns, such as local binary patterns, pro-
vide rich discriminative information for image classifica-
tion. To integrate the information provided by the image
patterns, many existing methods resort to histogram-based
statistics. However, such histogram-based methods often
lose the spatial details about how the image patterns are dis-
tributed. In this paper, based on the concept of lacunarity
analysis, a robust texture descriptor called PLS is proposed,
which extracts the power-law behaviors of the spatial distri-

Hntuitively, the boxes of the same size used for estimating fractal-
related parameters in low-resolution image are less reliable than those in
high-resolution image.
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1

Figure 5. The per-class classification accuracy (%) achieved by
PLS on the UMD dataset.
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Figure 6. The per-class classification accuracy (%) achieved by
PLS on the UIUC dataset.

bution of local image patterns. The fundamental assumption
of our method is that, the local patterns in texture image, if
belong to the same type, would exhibit linear behavior with
respect to their lacunarity in the log-log coordinates system.
Such a linear behavior is characterized by the slope and the



Table 2. The classification accuracies (%) on four benchmark datasets.

Dataset VG-Fractal MFS (H+L)(S+R) VZ-MR8 H+L)(S+S) OTF WMFS BIF PLS

UMD 96.36 93.93 96.95 - - 98.84  98.68 - 98.99
UluC 92.31 92.74 97.02 - - 98.14 98.60 98.80 96.57
KTH-TIPS - - 91.30 94.80 96.10 - 96.54  98.50 98.40
ALOT - 78.89 - - - 89.33  89.71 - 93.35

[ I

94.00 96.67 100 9333 91.33 98.00 99.33 98.67 99.33 100 99.33 10Q 100 98.67 94.00 100 100

Sl A " ‘a i

98.67 99.33 99 33 98 67 99 33 100 98.00 99.33 99.33 99.33 99.33 98 00 98 67 100 100 99.33 86.00 100
ﬂﬁﬁ(@ | 4 ‘f‘;:' ‘;’
w ; 4‘! \P ]

199.33 99.33 100 78.00 98.00 98.67 100 99.33 100 9733 9400 96.00 100 100 98.67 100  92.67 90.00

AL o --%’“’* %K@~

[ | porera ] 8 I [ i B
100 9333 9733 100 9533 98.00 97.33 87.33 99.33 100 100 97.33 98.00 100 96. OO 9600 95.33 9733

Gf = b

100 93.33 89 33 88 00 96 67 98 67 100 95 33 96. 67 98 67 100 96.67 100 98.00 94. 00 87 33 98 00 98 67

L

100 9467 9800 9400 100 87.33 9933 97.33 9867 100
5578 Ry

e m&&* S fl -k I \i“

100 9733 9800 99.33 9867 9867‘9933 99.33 9600 100  98.67

100 98.00 98.00

91 33 95 33 9§ 33 98 67 92. 67 100 97 33 ! 98.00

100 99. 33 100  99.33 91 33 99 33 100 100 100 99.33 9533 98.67 100 100 100 100 100 100
o e L 2 “‘Ug ;
LA Sl ‘ s 2 L

A - LN
98 00 98.67 100 87.33 92.67 88.67 98.00 100 99.33 100 98.00 99.33 10 100
v : Wh ﬁ ) v e S

sl

100 9467 98. 007 9733 196.00 100 99.33 94.67 98.00 100 98.00 98.00 97.33
7 : — R = R =2

100

w7

9867

100“ 100 100 99.33

86.00 100 9733 9400 98.00 9600

98.00 100 98.67 100 100 100

[SERiCS e

100 9733 84.00 9

‘98 00 100 100 100 v 99. 33 99 33 100 99 33 100 98 00 »

00 98.67 100 100 9933 100 98.67 ‘100 9667 9867 98.67 9800 93.33 95.33 9733 100‘

Figure 8. The per-class classification accuracy (%) achieved by PLS on the ALOT dataset.

intercept in our method. To locate the image patterns as image patterns, and apply our method to scene classifica-
well as to classify them into various types, local binary pat- tion.

terns are employed due to its simplicity and computational
efficiency. Experiments on four benchmark datasets have
demonstrated the power of our approach. In future, we will
analyze the performance of our method using other types of
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