
Persistent Tracking for Wide Area Aerial Surveillance

Jan Prokaj
J Gradient

jan@jgradient.com

Gérard Medioni
University of Southern California

medioni@usc.edu

Abstract

Persistent surveillance of large geographic areas from
unmanned aerial vehicles allows us to learn much about the
daily activities in the region of interest. Nearly all of the ap-
proaches addressing tracking in this imagery are detection-
based and rely on background subtraction or frame differ-
encing to provide detections. This, however, makes it diffi-
cult to track targets once they slow down or stop, which is
not acceptable for persistent tracking, our goal.

We present a multiple target tracking approach that does
not exclusively rely on background subtraction and is bet-
ter able to track targets through stops. It accomplishes this
by effectively running two trackers in parallel: one based
on detections from background subtraction providing target
initialization and reacquisition, and one based on a target
state regressor providing frame to frame tracking. We evalu-
ated the proposed approach on a long sequence from a wide
area aerial imagery dataset, and the results show improved
object detection rates and ID-switch rates with limited in-
creases in false alarms compared to the competition.

1. Introduction
Persistent surveillance of large geographic areas from

unmanned aerial vehicles (drones) allows us to learn much
about the daily activities in the region of interest. This
is not only useful for security applications, but it also has
the potential to enable real-time traffic optimizations and
map updates. Sensors that capture imagery for persis-
tent surveillance are multi-camera, large format (60-100
megapixels), have low sampling rate, provide limited res-
olution on targets, and are in grayscale (see Figure 1 for an
example). Therefore, understanding people’s activities and
movements requires multiple target tracking algorithms that
can cope with these characteristics.

Nearly all of the approaches addressing tracking in this
imagery, called wide area aerial imagery, are detection-
based and rely on background subtraction or frame differ-
encing to provide detections [14, 19, 17, 11]. Recent work
shows detection based tracking approaches are powerful

Figure 1. Wide area imagery, full frame (left) and detail (right).

[15, 4], but they assume a target detector with reasonable
performance can be learned. In wide area imagery, where
the resolution of each target is limited (about 20 × 10 pix-
els), training such a detector is difficult. Therefore, back-
ground subtraction or frame differencing is used instead.
This, however, makes it impossible to track targets once
they slow down or stop, because background models are
often built over short time scale to avoid introducing errors
from parallax, lighting changes, or inaccurate stabilization
(drift). Our goal is to achieve persistent tracking, and losing
targets every time they stop is not acceptable.

In this work, we present a multiple target tracking ap-
proach that does not exclusively rely on background sub-
traction and is better able to track targets through stops. It
accomplishes this by effectively running two trackers in par-
allel: one based on detections from background subtraction
providing target initialization and reacquisition, and one
based on a target state regressor providing frame to frame
tracking. The detection based tracker provides accurate ini-
tialization by inferring tracklets over a short time period (5
frames). The initialization period is then used to learn a
non-parametric regressor based on target appearance tem-
plates, which is able to directly infer the true target state
from a given target state sample in every frame. When the
regressor based tracker fails (loses a target), it falls back to
the detection based tracker for reinitialization.

Our primary contribution in this work is a multiple target
tracking approach for wide area aerial surveillance imagery
that is better able to track targets through stops and brings

1

us closer to persistent tracking. We evaluated the proposed
approach on a real sequence from wide area aerial surveil-
lance imagery and the results show an increased object de-
tection rate, decreased ID-switch rate, and decreased track
fragmentation, compared to competing approaches.

2. Related Work
One of the earliest works on tracking targets in wide area

imagery is by Perera et al. [14]. Detections are obtained us-
ing background subtraction, formed into short tracklets us-
ing nearest neighbor association, and the tracklets are linked
using the Hungarian algorithm. The noisy nature of back-
ground subtraction is recognized as a problem, generating
split and merged detections of targets. These are handled
by generating a set of data association hypotheses and ap-
proximately solving for the best hypothesis by iteratively
augmenting the correspondence cost matrix. This approach
may not be scalable, and its reliance on background subtrac-
tion for detection would make it difficult to handle stopping
targets.

In the approach of Xiao et al. [23], there is some attempt
to track stopping targets. In addition to the background
difference, a template-based appearance model and shape
model are used to generate three candidate detections for
every target. Detections are then associated with tracks us-
ing the Hungarian algorithm. Improved association is ob-
tained by considering road and spatial constraints. How-
ever, the spatial constraints require the enumeration of all
track-detection pairs, which is costly (in addition to the high
complexity of the Hungarian algorithm), and the road con-
straint, while useful, requires the prior knowledge of a road
network.

Reilly et al. [19] also use the Hungarian algorithm for
association of detections, but propose to increase its effi-
ciency by dividing the image into cells and computing the
associations within each cell. The matching cost between
targets takes into account spatial proximity, velocity orien-
tation, orientation of the road, and local context between
cars. The road constraint and local context constraint, while
useful in dense traffic, would be less reliable or difficult to
estimate in sparse traffic scenarios. Stationary targets are
not considered, and in fact would be difficult to associate
with the proposed velocity orientation constraints.

In a more recent work of Keck et al. [11], classic mul-
tiple hypothesis tracking on detections obtained with three-
frame differencing is adopted, and implemented in a real-
time, distributed, architecture. This presumably associates
detections better than the frame-to-frame Hungarian algo-
rithm, but there is no provision for stationary targets.

In [17], Prokaj et al. presented another approach that
uses more than one frame of data to infer tracks. This ap-
proach uses long temporal windows of 8 seconds for infer-
ence, but is able to significantly reduce the space of possible

data associations by efficiently pruning detections that are
inconsistent. Detections from background subtraction are
used there as well.

Most of the detection based approaches considered so
far would be able to track stationary targets, if detections
for those targets were obtained using an appearance-based
classifier rather than background subtraction or frame dif-
ferencing. Even though we believe that this is difficult and
unreliable in our domain, there have been some attempts to
do this [6, 12]. Doretto and Yao [6] obtained very good
vehicle detection results in aerial imagery, even when the
vehicles were small. However, their experiments showed
that the most important features were color, which is not
available in our imagery. In [12], an SVM with multiple
kernels based on HoG and Haar features was trained, and
good vehicle classification results were obtained. At the
same time, in a follow up work, some of the same authors
[20] argue the need for road network context in order to
reliably detect vehicles. Therefore, we conclude that a re-
liable appearance-based detection of targets in our domain
remains out of reach.

Alternative formulations of the multiple target track-
ing problem using network flows/Linear programming have
shown excellent results in pedestrian tracking [24, 15, 4].
However, these methods have a few inherent assumptions
unsuitable in our domain. They have weak motion models,
often require a prior specification of locations where objects
enter the scene and exit, and they usually express the associ-
ation cost in terms of overlap of two detections, which will
not work in our domain where the frame rate is low.

The benefits of using a regressor rather than a classifier in
tracking have been shown by Williams et al. [22]. A regres-
sion model allows the direct inference of state from appear-
ance features, which makes it very efficient, because there
is no need to exhaustively perform classification around the
predicted position of the target. Furthermore, it is more
accurate and less susceptible to drift, because it actually
learns the necessary adjustments to correct a displaced (or
drifted) target state from appearance features. Recently, this
“structured output” was shown to outperform competing ap-
proaches [7].

3. Approach
Our goal is to achieve persistent tracking, which means

being able to track targets as soon as they begin to move,
and as long as they are visible. This rules out exclusively
relying on background subtraction or frame differencing,
because these operators would not detect targets when they
become stationary. Target appearance modelling is needed.
Since the resolution of targets in our imagery is limited,
learning a target class appearance model is difficult. There-
fore, we turn to learning a target instance appearance model.
We discuss our model in Section 3.1.2.

Detection Based Tracker

Detections from
background subtraction

Infers tracklets over 5
frames

Regression Tracker

Non-parametric regressor

Template-based features

Operates frame to frame

Correspondence

Match tracklets to tracks
using their trajectories

matched unmatched

initialize

update

tracklets tracks

Figure 2. Overview of our approach. There are two trackers running in parallel, complementing each other.

Whatever appearance model we choose, we need to be
able to initialize it and update it when target’s appearance
changes. This creates a chicken-and-egg problem, because
we are trying to learn an appearance model in order to track
a target, but in order to learn this model, we need to be able
to detect the target in the first place. Similarly, when target’s
appearance changes, we would like to update the model
with the new appearance, but we can not detect the target
with the new appearance, until we have updated the model.
To solve both of these initialization and update problems,
we propose to use an additional tracker based on detections
from background subtraction, which has minimal appear-
ance modelling. This tracker runs in parallel to and comple-
ments the main tracker based on appearance modelling. We
call the main tracker based on appearance modelling “re-
gression tracker.” The detection based tracker [17] operates
on a sliding window of 5 frames, and generates tracklets that
correspond to moving targets every frame. These tracklets
are used to initialize and update the regression tracker.

Our approach is illustrated in Figure 2. The key com-
ponents are a detection based tracker, which is explained
in [16, 17], a regression based tracker, explained in Sec-
tion 3.1, and tracklet-track matching and failure detection,
explained in Section 3.2. We now explain each of these
components in detail.

3.1. Regression Tracker

We are given a moving target’s location in the first 5
frames and our task is to track the target as long as possible,
even through stops. The usual way to proceed is to learn
a classifier (appearance model) from the initial examples,
predict (sample) the target’s state in the next frame using a
motion model, apply the classifier on each sample, update
the target’s state with the sample maximizing appearance
model likelihood or posterior, and update the classifier (and
motion model if applicable) [2, 3, 10]. We deviate from this
framework slightly to achieve better performance.

First, unlike in other domains, motion modelling is im-
portant here, because we cannot scan the entire frame (there
are hundreds of targets, each with limited resolution) and
we cannot assume the target is going to be in approximately

the same location (the frame rate is low). Fortunately, our
targets are vehicles, which have a relatively predictable mo-
tion (see Sec. 3.1.3). Nevertheless, there will be instances
where the prediction from the motion model is not going to
be accurate. In those cases, we need to rely on the appear-
ance model to find the true target state from the noisy set of
samples.

Second, similarly to [7], we argue that a binary classi-
fier is not the appropriate way to model small transforma-
tions (translations, rotations) of the target. We believe that
a much better way to proceed is to actually learn the effect
of the displacement of target’s state on appearance. This
is possible when training a regressor rather than a classi-
fier, and was first introduced by Williams et al. [22]. Dur-
ing regressor training, we provide examples labeled with
displacements of the target state, such as (∆x,∆y,∆θ) in-
stead of class labels (0/1). During testing, when we are
given a predicted state of the target, we can use the appear-
ance of the prediction to directly estimate the correct target
state (using the displacement returned by the regressor). For
example, if we give a regressor examples labeled with trans-
lations in the range [−4, 4]×[−4, 4], and then during testing
we happen to sample (-3,2) pixels away from the true target
location, our regressor will return (-3,2). This is in contrast
to a yes/no answer output by a classifier, which does not tell
us as much. This is illustrated in Figure 3a.

The primary advantage of a regressor, as first noted by
[22], is efficiency. There is no need to take many samples
or do exhaustive search, because every sample gives us in-
formation about the target’s state. In the ideal case, only one
sample is necessary to determine where the target really is.
However, the target must be at least partially visible in the
location we want to regress. If the target is not visible, in
general there is no information one can use to determine the
target’s location, and the regressor’s output would be mean-
ingless. In [22], this problem is solved by training a classi-
fier in addition to a regressor to determine when the target
is completely out of bounds. In this work, we use a more
robust unsupervised approach to solve this problem. Com-
putational savings are still made, but even without the sav-
ings, we believe that for the case of the target being partially

(a) (b)

Figure 3. A regressor is able to output the displacement to the true
target’s state, whereas a classifier is only able to say yes/no (left).
However, this only works for samples close to the target (right).

visible, a regressor is an inherently more powerful function
than a classifier (much less likely to cause drift). This is
illustrated in Figures 3 and 4.

The disadvantage of using a supervised approach to clas-
sify samples as being valid or invalid for regression is that
we need to be careful about what training examples we use
in training. The size of the training set is limited by com-
putational constraints, which makes it especially difficult
to choose good negative examples, since their variation is
large. Therefore, we use the following unsupervised ap-
proach, which we have informally observed to perform bet-
ter than using an SVM as in [22].

The key idea is to recognize that the output of the re-
gressor is going to be more trustworthy when multiple sam-
ples taken around the search region generate the same target
state. When the samples are taken from areas where the tar-
get is not visible, the output of the regressor is going to be
unpredictable and not going to create clusters. Accordingly,
we would like to find the largest cluster of target state esti-
mates with the smallest variance. In practice, we build a
histogram of the target state estimates, where the bins are
of some small fixed size. We then choose the bin with the
highest number of samples as the best cluster. If the num-
ber of samples there is higher than some threshold, these
samples are then all considered valid.

Figure 4 illustrates this approach. The left side of the fig-
ure shows that the motion model assumes the target is mov-
ing faster than it really is (the vehicle is actually coming to a
stop). As a result, the samples are biased towards the front
of the vehicle and many are not even on the target. After
applying a regressor, the variance of the samples is signif-
icantly decreased. Furthermore, the valid samples identi-
fied using our unsupervised approach increase the precision
even more, correctly locating the center of the target.

The regression tracker algorithm is summarized in Algo-
rithm 1. The main components of the tracker are a regres-
sor, feature extractor, and a motion model. We explain these

Figure 4. A regressor improves target state estimates. The left im-
age shows samples before a regressor is applied. The right image
shows the same samples after a regressor is applied. Crosses col-
ored in red denote the final set of valid samples.

components next.

Algorithm 1 Regression Tracker
Input: zt = target state in frame t, M = motion model,

ϕ = feature extraction, reg = trained regressor
Output: zt+1 = target state in frame t+ 1

// sample from the motion model
1: S = {x | x ∼ M(zt)}

// regress each sample
2: R = {N (x;µ,Σ) | N (x;µ,Σ) = reg(ϕ(s)) ∀s ∈ S}

// find the valid subset of samples
3: Rµ = {µ | N (x;µ,Σ) ∈ R}
4: h = histogram(Rµ)
5: bmax = argmaxh(b)
6: V = {N (x;µ,Σ) | µ ∈ h[bmax] ∧N (x;µ,Σ) ∈ R}

// check the uncertainty of the subset
7: Vµ = {µ | N (x;µ,Σ) ∈ V }
8: if |Vµ| < t1 ∨ det(cov(Vµ)) > t2 then
9: return

10: p(x) =
∑

N∈V N (x;µ,Σ)
11: x∗ = argmax p(x)

// reduce false alarms
12: check frame difference is consistent with est. motion

13: zt+1 = updateMotionModel(x∗)

3.1.1 Non-Parametric Regression

In regression we are trying to estimate the quantitative value
of a function f at a previously unseen point x0. In our ap-
plication, we are trying to estimate the target’s displacement
given some features extracted at a sample image location.
There are various forms of regression, each with different
assumptions about the structure of the feature space, and

number of parameters. An RVM was used by Williams et
al. in [22]. Its advantage is that it is fully probabilistic, but
it comes at a cost of more computationally expensive train-
ing. In this work we use a simple, non-parametric (kernel)
regression called the Nadaraya-Watson kernel-weighted av-
erage [8]. The regressor is of the form

f(x0) =

∑N
i=1 k(x0,xi)yi∑N
i=1 k(x0,xi)

(1)

where (xi,yi) is the training set, and k is the kernel func-
tion. In our application, xi would be a feature vector and
yi would be the corresponding displacement in the tar-
get’s state, (∆x,∆y,∆θ) when regressing target’s transla-
tion and rotation. In addition to the average, we can estimate
uncertainty in the regressor’s ouput as the kernel-weighted
covariance. Therefore, our regressor actually provides a
Gaussian distribution N for each sample it evaluates.

There are several choices for the kernel function, and we
adopt one based on the KL-divergence [13], since our fea-
tures are effectively probability distributions (see below).
The kernel function is

k(x0,xi) = exp(−λKL(x0,xi)) (2)

where λ is a smoothing parameter determining the width
of the local neighborhood, and KL denotes the Kullback-
Leibler divergence. We determine the value of λ empiri-
cally.

3.1.2 Features for Regression

Some of the recent state of the art methods have relied on
templates as their features of choice [10, 5]. We follow this
work, and also use template-based features for regression.
The template model is built from the 5 examples obtained
using the detection-based tracker. It is rotationally vari-
ant, and we model target orientation as part of our state.
When estimating the template, we rotate all the examples to
a canonical orientation and scale them to a canonical size of
20 × 10. The template is estimated as the average canon-
ical image. When evaluating a test sample, it is also first
transformed to this canonical frame.

The small size of our targets can be a problem when
using templates, because a relatively large portion of the
template can be background. To avoid the influence of the
background, we also estimate a target shape mask using
thresholded background difference images of the 5 exam-
ples. When measuring the difference between a template
and a test sample, the difference is only calculated for the
pixels inside the shape, thus minimizing the influence of the
background. Figure 5 illustrates the template learning pro-
cess.

Given this template, we would generate a training set for
regression by displacing the template with known varying

Figure 5. Target template as well as the shape mask is learned from
5 examples. The template is expressed in a canonical coordinate
frame. Figure 4 shows the original target orientation and size.

Figure 6. Subset of the displaced versions of the template used in
regression. Each image has a corresponding shape mask.

amounts of translation and rotation. See Figure 6 for an
illustration. During test time, we would measure the differ-
ence between a test canonical image and each of the training
examples (displaced versions of the template), and measure
the similarity of each training example to the test sample us-
ing a kernel function. This would work in theory, but since
our targets are small with little texture, the regressor might
have a difficulty recognizing the difference between small
displacements. Therefore, we add more context. Instead
of basing the kernel weight on the difference of a test sam-
ple with one training example, we base the kernel weight
on the distribution of differences between several training
examples.

The feature vector is computed as follows. Assume we
are training a regressor to predict translations in the range
[−M,M] × [−N,N]. The number of displaced versions
of the template and its corresponding mask is then K =
(2M + 1) ∗ (2N + 1). Reasonable values of M and N
are M = 6 and N = 4, giving K = 117. Let’s denote
each displaced template by Ti and each displaced mask by
Si. Given a test sample I (transformed to the coordinate
frame), the feature vector x is

x =
[
g(I−T0)

T g(I−T0), · · · , g(I−TK)T g(I−TK)
]

(3)
where

g(D[j]) =

{
10 Si[j] ≤ 128
min(|D[j]|, 10) otherwise . (4)

The size of the feature vector is K, and each element is
the sum of the squared differences between the test sam-
ple and a displaced template. However, the differences are
truncated to be no larger than 10. Furthermore, for pixels
outside of the shape mask, the difference is automatically
10. By normalizing this feature vector we get a probability
distribution that could be used in our kernel function.

3.1.3 Motion Modelling

A motion model is used to predict the target’s location in
the next frame. Unlike previous approaches, which use the
constant velocity motion model, we adopt a data driven ap-
proach. We use a tracking ground truth to generate exam-
ples of target’s motion over a short time interval, and train a
multi-variate regressor [21] on these examples for predict-
ing the target’s location. Specifically, we do the following.

For each ground truth track, we generate all possible
fixed length sequences of target’s position. Given a se-
quence of length T , we use the T−1 positions, expressed as
2D coordinates, as input (features) to the regressor and the
last position as output. The target coordinates are normal-
ized to achieve translation and rotation invariance. Trans-
lation invariance is achieved by subtracting the position of
the target in the first frame of the sequence. Rotation invari-
ance is achieved by rotating the resulting coordinates by the
major direction of the target’s motion. This direction is esti-
mated from the displacement of the target between the first
and the last input position. For example, for T = 6, the
2 ∗ (T − 1) dimensional input vector s, and 2 dimensional
output vector y is then

s = [0 0x2 y2 x3 y3 x4 y4 x5 0] (5)
y = [x6 y6] . (6)

Since the first 2 elements, as well as the last element, of s
are always 0, they do not need to be considered as features
in training. We used a small ∼ 700 element dataset for
training the MVRVM in this paper, and obtained 19 “sup-
port vectors” after training. Note that when physical units
are used (meters), this model only needs to be trained once,
and can be theoretically applied in any dataset.

Sampling from this motion model is equivalent to sam-
pling from a Gaussian distribution with a mean correspond-
ing to the predicted position of the target in the next frame.
The covariance of the Gaussian distribution should reflect
the uncertainty in the prediction. When the target, a vehicle
in our case, is moving at high speed, this uncertainty is small
in the direction perpendicular to the moving direction, and
high in the direction parallel to the moving direction. This
is because vehicles cannot make a quick turn when under-
going fast motion. On the other hand, when a vehicle is
moving at a slower speed, the uncertainty is high in all di-
rections, because the vehicle can make a sharp turn in any
moment. Therefore, we use a velocity-dependent covari-
ance, which is omnidirectional at slow speeds and unidirec-
tional at high speeds.

3.2. Tracker Correspondence

The key idea of our proposed tracking algorithm is the
use of two trackers that run in parallel and complement each
other. For this to work, we need to have a correspondence

between targets from each tracker. We determine this cor-
respondence by comparing the trajectories of tracklets from
the background subtraction based tracker with trajectories
of tracks from the regression tracker. More specifically, we
match a tracklet with a track that has the maximum overlap
with it. If this overlap is greater than some threshold, and if
the tracklet and track are not moving in opposite directions,
they are associated together.

Once we have this correspondence, we do a “reconcilia-
tion” step in every frame where we determine for each tar-
get whether the regression tracker has lost track and needs
to be updated with the associated tracklet. We do this by
first checking whether the two trajectories of a track and
its corresponding tracklet are diverging. This is determined
by measuring the amount of overlap over time. If the over-
lap decreases in every frame by more than a threshold, the
trajectories are deemed to be diverging, and we need to de-
termine which tracker to trust more. If the trajectories are
converging, no further action is necessary.

To determine which tracker to trust more, we generate
a feature vector containing tracker confidence values from
both trackers. The confidence value for observations esti-
mated by the detection-based tracker is the max-marginal
probability (belief) resulting from MAP inference in [17].
The confidence values for observations estimated by the re-
gression tracker are the probability from the mixture-of-
Gaussian distribution on line 10 of Algorithm 1, as well
as a likelihood value returned from a simple blob appear-
ance model based on a center-surround feature (not dis-
cussed here). This feature vector is then used in a logis-
tic regression classifier to make a decision which tracker to
trust more. This classifier is trained offline with manually
labeled examples of diverging trajectories. The labels are
binary, indicating which trajectory is the correct one.

If the regression tracker is classified to be less trustwor-
thy than the detection based tracker for a particular target,
we initialize a new regression model from the tracklet, and
add it to the list of regression models maintained by the re-
gression tracker. In other words, we only update the appear-
ance model in the regression tracker when it fails, which
brings in significant computational savings. When a regres-
sion tracker has multiple regression models, Algorithm 1 is
applied for each, and the regression model with the smallest
determinant on line 8 of the Algorithm is chosen. We limit
the number of regression models to 10 most recent. We also
reset the motion model in the regression tracker to follow
the motion of the tracklet.

4. Results
We evaluated the proposed algorithm on a sequence from

a publicly available wide area aerial imagery dataset [1].
The dataset was mosaicked [16], stabilized [16], and georef-
erenced prior to tracking. We selected a 1408 × 1408 (429

m × 429 m) region for evaluation (see [9]). The dataset
provides ground truth for 1025 frames. The selected region
has about 24 targets in every frame (410 tracks in total), and
several places where cars stop and start.

Evaluation Metrics. We examined the algorithm’s detec-
tion and tracking performance. Detection performance was
characterized by: Detection Rate/Recall (the fraction of de-
tections in the ground truth found in the estimated tracks),
Precision (the fraction of detections in the estimated tracks
found in the ground truth), False Positives per Frame, False
Positives per Ground Truth (average number of false pos-
itives for every ground truth detection), and MODA (Mul-
tiple Object Detection Accuracy, see N-MODA in [18]).
Tracking performance was characterized by: Track Swaps
(average number of ID-switches in a ground truth track),
Track Breaks (average number of times a ground truth track
is not tracked from one frame to the next), and MOTA (Mul-
tiple Object Tracking Accuracy, where cs = 1 [18]). Com-
putational efficiency was measured by the average number
of frames processed per second, but only for C++ code.

Setup. We used a detector based on background subtrac-
tion to provide detections to the algorithm. Since the de-
tector can be configured in many ways to achieve different
precision and recall performance, we performed the evalua-
tion with two representative configurations. In one configu-
ration, the detector has an F1 score of 0.13, and in the other
one, the detector has an F1 score of 0.21. Both configura-
tions were fully evaluated using the metrics above, allowing
one to better understand the context of the tracking perfor-
mance.

We compared our approach to [17], [15], and [19]. All
of the approaches used the same detector configuration, and
for all approaches, estimated tracks shorter than 5 frames
were removed from evaluation (considered to be mostly un-
reliable). A window size of 8 frames was used in [17].

Evaluation of [15] was based on a modified version of
the publicly available MATLAB code provided by its au-
thors. All detections were given equal cost, and other costs
were set such that only tracks of at least 5 frames would be
generated. Detections were linked if the distance between
them was less than 60 pixels (18 m), and they were from
adjacent frames (no occlusion allowed). Adding edges be-
tween detections from frames further apart did not help.

Evaluation of [19] was based on our own implementation
of the algorithm with no gradient suppression. We deliber-
ately did not include gradient suppression to keep the set of
target detections the same in all approaches, and evaluate
the tracking (data association) performance. We set p = 0,
not allowing any occlusions, as doing otherwise did not im-
prove the result.

Discussion. The results are shown in Table 1, and more
results are available on our website [9]. The object detec-
tion rate of the proposed approach is higher than that of
the competing methods, which are purely detection based.
This indicates that the proposed approach, which combines
a detection-based tracker with a frame-to-frame regression
tracker, makes a better use of the available set of detections
to track targets longer than the competing methods.

The precision of the proposed approach is less than that
of [17], but still beats [15] and [19]. As described, these
approaches do not model target appearance, and rely on the
detector to provide a decent set of detections. When the de-
tector is noisy, as in our experiments, these approaches find
it difficult to determine which detections are false. Since
the resolution of targets in our imagery is limited, it is not
clear how much would the precision improve if appearance
modeling had been implemented there. Motion modelling
is also limited in different ways in [15] and [19].

The proposed approach is also a clear leader in tracking
accuracy, as measured by the number of ID-switches and
track breaks. The average number of ID-switches does not
change at all with different detector configurations, which
indicates the robustness of our approach. Notice that as
the detector gets noisier (higher recall, lower precision), the
proposed approach’s MOTA does not drop, and actually in-
creases a bit, in contrast to [15] and [19]. This is primarily
because the increase in false detections is not as high as in
[15] and [19], while the increase in recall is just as much,
and the average number of ID-switches stays constant.

The main limitation of the proposed approach is in-
creased computation time, which we are currently address-
ing. Also, while the approach clearly handles stopping tar-
gets better, some failures remain. One of the reasons is the
initialization of the regression model. The regression model
is initialized using detections from background subtraction,
and when a target is moving slowly, the shape mask is go-
ing to be incorrectly estimated. With the wrong shape mask,
our template based features do not work as well, and regres-
sion performance is degraded. Another reason is the failure
of the track correspondence or reconciliation procedure to
correct the failing regression model of a track with a detec-
tion based tracker.

5. Conclusions
Current approaches for multiple target tracking in wide

area imagery often rely on background subtraction, which
is noisy and does not provide detections when targets stop.
We have presented a multiple target tracking approach that
does not have this complete reliance and is better able to
track targets through stops, bringing us closer to persistent
tracking. Results on wide area surveillance imagery show
increased detection rates, and decreased ID-switches with
limited increases in false alarms. In the future, we plan

Tracking performance with detector F1=0.13 Tracking performance with detector F1=0.21
Proposed [17] [15] [19] Det. only Proposed [17] [15] [19] Det. only

Detect. Rate (Recall) 0.48 0.41 0.36 0.44 0.57 0.43 0.38 0.32 0.40 0.50
Precision 0.92 0.97 0.14 0.14 0.08 0.95 0.98 0.25 0.28 0.13
False Pos. per Frame 1.03 0.35 53.5 65.1 163 0.54 0.19 23.6 24.7 80.5
False Pos. per GT 0.04 0.01 2.23 2.72 6.81 0.02 0.01 0.99 1.03 3.35
MODA 0.44 0.39 -1.87 -2.27 -6.25 0.41 0.37 -0.66 -0.63 -2.85
Track Swaps 0.20 0.36 1.23 1.31 - 0.20 0.19 0.86 0.51 -
Track Breaks 0.99 1.77 2.80 3.10 - 0.92 1.79 2.13 2.00 -
MOTA 0.43 0.39 -1.90 -2.30 - 0.41 0.37 -0.68 -0.63 -
Frames per Second 0.12 19.3 - 3.80 - 0.12 33.1 - 9.07 -

Table 1. Comparison of the proposed approach with competing methods for different detector configurations. The proposed approach has
the highest recall, and the lowest average number of ID-switches and track breaks. The false alarm rate is low, only slightly worse than
[17]. Its primary limitation is the increased computational cost. ‘-’ indicates unavailable or irrelevant values.

to decrease the computational complexity of the proposed
approach and investigate joint tracking of multiple targets
with explicit constraints between them, which would likely
be important in dense tracking scenarios.

References
[1] AFRL. WPAFB 2009. https://www.sdms.afrl.af.

mil/index.php?collection=wpafb2009. 6
[2] S. Avidan. Ensemble tracking. IEEE Transactions on PAMI,

29(2):261–271, 2007. 3
[3] B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking

with online multiple instance learning. In IEEE CVPR, pages
983–990, 2009. 3

[4] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. Multiple
object tracking using k-shortest paths optimization. IEEE
Transactions on PAMI, 33(9):1806 –1819, sept. 2011. 1, 2

[5] T. B. Dinh, N. Vo, and G. Medioni. Context tracker: Ex-
ploring supporters and distracters in unconstrained environ-
ments. In IEEE CVPR, pages 1177–1184, 2011. 5

[6] G. Doretto and Y. Yao. Region moments: Fast invariant
descriptors for detecting small image structures. In IEEE
CVPR, pages 3019–3026, 2010. 2

[7] S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured
output tracking with kernels. In IEEE ICCV, 2011. 2, 3

[8] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning. Springer, 2001. 5

[9] J Gradient. Persistent Tracking for Wide Area Aerial Surveil-
lance. jgradient.com/pubs/prokaj.cvpr14/. 7

[10] Z. Kalal, J. Matas, and K. Mikolajczyk. P-n learning: Boot-
strapping binary classifiers by structural constraints. In IEEE
CVPR, pages 49–56, 2010. 3, 5

[11] M. Keck, L. Galup, and C. Stauffer. Real-time tracking of
low-resolution vehicles for wide-area persistent surveillance.
In IEEE WACV, pages 441–448, 2013. 1, 2

[12] P. Liang, G. Teodoro, H. Ling, E. Blasch, G. Chen, and
L. Bai. Multiple kernel learning for vehicle detection in wide
area motion imagery. In International Conference on Infor-
mation Fusion (FUSION), pages 1629–1636, 2012. 2

[13] P. J. Moreno, P. P. Ho, and N. Vasconcelos. A kullback-
leibler divergence based kernel for svm classification in mul-
timedia applications. In Advances in NIPS 16. 2004. 5

[14] A. Perera, C. Srinivas, A. Hoogs, G. Brooksby, and W. Hu.
Multi-object tracking through simultaneous long occlusions
and split-merge conditions. In IEEE CVPR, volume 1, pages
666–673, 2006. 1, 2

[15] H. Pirsiavash, D. Ramanan, and C. Fowlkes. Globally-
optimal greedy algorithms for tracking a variable number of
objects. In IEEE CVPR, pages 1201 –1208, 2011. 1, 2, 7, 8

[16] J. Prokaj. Exploitation of Wide Area Motion Imagery. PhD
thesis, University of Southern California, 2013. 3, 6

[17] J. Prokaj, M. Duchaineau, and G. Medioni. Inferring track-
lets for multi-object tracking. In IEEE CVPRW (WAVP),
pages 37–44, 2011. 1, 2, 3, 6, 7, 8

[18] R. Kasturi, D. Goldgof, P. Soundararajan, et al. Framework
for performance evaluation of face, text, and vehicle detec-
tion and tracking in video: Data, metrics, and protocol. IEEE
Transactions on PAMI, 31(2):319–336, Feb 2009. 7

[19] V. Reilly, H. Idrees, and M. Shah. Detection and tracking of
large number of targets in wide area surveillance. In ECCV,
volume 6313 of LNCS, pages 186–199. 2010. 1, 2, 7, 8

[20] X. Shi, H. Ling, E. Blasch, and W. Hu. Context-driven mov-
ing vehicle detection in wide area motion imagery. In ICPR,
pages 2512–2515, 2012. 2

[21] A. Thayananthan, R. Navaratnam, B. Stenger, P. Torr, and
R. Cipolla. Multivariate relevance vector machines for track-
ing. In ECCV, vol 3953 of LNCS, pages 124–138. 2006. 6

[22] O. Williams, A. Blake, and R. Cipolla. A sparse probabilistic
learning algorithm for real-time tracking. In IEEE ICCV,
volume 1, pages 353–360, 2003. 2, 3, 4, 5

[23] J. Xiao, H. Cheng, H. Sawhney, and F. Han. Vehicle detec-
tion and tracking in wide field-of-view aerial video. In IEEE
CVPR, pages 679 –684, 2010. 2

[24] L. Zhang, Y. Li, and R. Nevatia. Global data association for
multi-object tracking using network flows. In IEEE CVPR,
pages 1–8, 2008. 2

https://www.sdms.afrl.af.mil/index.php?collection=wpafb2009
https://www.sdms.afrl.af.mil/index.php?collection=wpafb2009
jgradient.com/pubs/prokaj.cvpr14/

