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Abstract

When do the visual rays associated with triplets of point
correspondences converge, that is, intersect in a common
point? Classical models of trinocular geometry based on
the fundamental matrices and trifocal tensor associated
with the corresponding cameras only provide partial an-
swers to this fundamental question, in large part because of
underlying, but seldom explicit, general configuration as-
sumptions. This paper uses elementary tools from projec-
tive line geometry to provide necessary and sufficient geo-
metric and analytical conditions for convergence in terms
of transversals to triplets of visual rays, without any such
assumptions. In turn, this yields a novel and simple min-
imal parameterization of trinocular geometry for cameras
with non-collinear or collinear pinholes.

1. Introduction
The images of points recorded by multiple cameras may

only match when the corresponding visual rays converge—
that is, intersect in a common point (Figure 1, left). For two
views, this condition is captured by the bilinear epipolar
constraint and the corresponding fundamental matrix [8, 9].
Three images can be characterized by both the pairwise
epipolar constraints associated with any two of the pic-
tures, and a set of trilinearities associated with all three
views and parameterized by the associated trifocal ten-
sor [5, 15, 16, 22]. For cameras with non-collinear pin-
holes, at least, the rays associated with three image points
that satisfy the corresponding epipolar constraints almost
always converge: The only exception is when the points
have been matched incorrectly, and all lie in the trifocal
plane spanned by the three pinholes (Figure 1, right). Inter-
estingly, Hartley and Zisserman state that the fundamental
matrices associated with three cameras with non-collinear
pinholes determine the corresponding trifocal tensor [6, Re-
sult 14.5], while Faugeras and Mourrain [3] and Ponce et
al. [12], for example, note that the rays associated with three
points only satisfying certain (and different) subsets of the
trilinearities alone must intersect. These claims contradict
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Figure 1. Left: Visual rays associated with three (correct) corre-
spondences. Right: Degenerate epipolar constraints associated
with three coplanar, but non-intersecting rays lying in the trifo-
cal plane τ (as in the rest of this presentation, the image planes are
omitted for clarity in this part of the figure). See text for details.

each other, since rays that satisfy epipolar constraints do
not always converge, but they are true under some general
configuration assumptions, rarely made explicit. It is thus
worth clarifying these assumptions, and understanding ex-
actly how much the trifocal constraints add to the epipolar
ones for point correspondences. This is the problem ad-
dressed in this paper, using elementary projective line ge-
ometry. In particular, our analysis shows that exploiting
both the epipolar constraints and one or two of the trinoc-
ular ones, depending on whether the camera pinholes are
collinear or not, always guarantees the convergence of the
corresponding visual rays. Our analysis also provides, in
both cases, a novel and simple minimal parameterization of
trinocular geometry.

1.1. Related Work

Geometric constraints involving multiple perspective
views of the same point (Figure 1, left) have been stud-
ied in computer vision since the seminal work of Longuet-
Higgins, who proposed in 1981 the essential matrix as a bi-
linear model of epipolar constraints between two calibrated
cameras [8]. Its uncalibrated counterpart, the fundamental
matrix, was introduced by Luong and Faugeras [9]. The tri-
linear constraints associated with three views of a straight
line were discovered by Spetsakis and Aloimonos [16] and
by Weng, Huang and Ahuja [22]. The uncalibrated case was
tackled by Shashua [15] and by Hartley [5], who coined the
term trifocal tensor. The quadrifocal tensor was introduced
by Triggs [20], and Faugeras and Mourrain gave a sim-
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Figure 2. Top: The possible configurations of three pairwise-
coplanar distinct lines, classified according to the way they inter-
sect. The three given lines are shown in black; the planes where
two of them intersect are shown in green; and the points where
two of the lines intersect are shown in red. Bottom: Transversals
to the three lines, shown in blue, and forming (1) a line bundle; (2)
a degenerate congruence; and (3) a line field.

ple characterization of all multilinear constraints associated
with multiple perspective images of a point [3]. The usual
formulation of the trilinear constraints associated with three
images of the same point are asymmetric, one of the images
playing a priviledged role. A simple and symmetric formu-
lation based on line geometry was introduced in [12]. A few
minimal parameterizations of trinocular geometry are also
available [1, 11, 14, 19]. From a historical point of view, it is
worth noting that epipolar constraints were already known
by photogrammeters long before they were (re)discovered
by Longuet-Higgins [8], as witnessed by the 1966 Manual
of Photogrammetry [17], but that this book does not men-
tion trilinear constraints, although it discusses higher-order
trinocular (scale-restraint condition equations).

The direct derivation of trifocal constraints for point cor-
respondences typically amounts to writing that all 4×4 mi-
nors of some k × 4 matrix are zero, thus guaranteeing that
the three lines intersect [3, 12]. These determinants are then
rewritten as linear combinations of reduced minors that are
bilinear or trilinear functions of the image point coordinates.
The whole difficulty lies in selecting an appropriate subset
of reduced minors that will always guarantee that the rays
intersect. We have already observed that the bilinear epipo-
lar constraints, alone, are not sufficient. We are not aware
of any fixed set of four trilinearities that, alone, guarantee
convergence in all cases. This suggests seeking instead ap-
propriate combinations of bilinear and trilinear constraints,
which is the approach taken in this presentation.

1.2. Problem Statement and Proposed Approach

As noted earlier, the goal of this paper is to understand
exactly how much the trifocal constraints add to the epipo-
lar ones for point correspondences. Since both types of
constraints model incidence relationships among the light
rays joining the cameras’ pinholes to observed points, we
address this problem using the tools of projective geome-
try [21] in general, and line geometry [13] in particular. As
noted earlier, the trifocal tensor was originally invented to
characterize the fact that three image lines δ1, δ2, and δ3
are the projections of the same scene line δ [15, 16, 22]
(Figure 1, left). The trilinearities associated with three im-
age points y1, y2, and y3 were then obtained by construct-
ing lines δ1, δ2, and δ3 passing through these points, and
whose preimage is a line δ passing through the correspond-
ing scene point x. By construction, this line is a transversal
to the three rays ξ1, ξ2, and ξ3, that is, it intersects them. It
is therefore not surprising that much of the presentation will
be dedicated to the characterization of the set of transversals
to a triplet of lines.

In particular, we have already seen that the fact that three
lines intersect pairwise is necessary, but not sufficient for
these lines to intersect. We will show in the rest of this pre-
sentation that a necessary and sufficient condition for three
lines to converge is in fact that they be pairwise coplanar
and admit a well defined family of transversals. We will
also give a simple geometric and analytical characterization
of these transversals under various assumptions. When ap-
plied to camera systems, it will provide in turn a new and
simple minimal parameterization of trinocular geometry.
Contributions
• We give a new geometric characterization of triplets of
converging lines in terms of transversals to these lines
(Proposition 1).
•We provide a novel and simple analytical characterization
of triplets of converging lines (Lemma 3 and Proposition 2),
that does not rely on the assumptions of general configura-
tion implicit in [12].
• We show by applying these results to camera geometry
that the three epipolar constraints and one of the trifocal
ones (two if the pinholes are collinear) are necessary and
sufficient for the corresponding optical rays to converge
(Propositions 3 and 4).
•We introduce a new analytical parameterization of epipo-
lar and trifocal constraints, leading to a minimal parameter-
ization of trinocular geometry (Propositions 5 and 6).

2. Converging Triplets of Lines
2.1. Geometric Point of View

All lines considered from now on are assumed to be dif-
ferent from each other. A transversal to some family of
lines is a line intersecting every element of this family. We
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Figure 3. Top: The possible configurations of three distinct, non-
pairwise-coplanar lines, classified according to the way they in-
tersect. Bottom: Transversals to the three lines, forming (4) two
pencils of lines having one of the input lines (in black) in common
(5) two pencils of lines having one line (in red) in common; and
(6) a non-degenerate regulus. See text for details.

prove in this section the following main result.

Proposition 1. A necessary and sufficient condition for
three lines to converge is that they be pairwise coplanar,
and that they admit a transversal not contained in the planes
defined by any two of them.

To prove Proposition 1, we need two intermediate re-
sults. In projective geometry, two straight lines are either
skew to each other or coplanar, in which case they inter-
sect in exactly one point. Our first lemma enumerates the
possible incidence relationships among three lines.

Lemma 1. Three distinct lines can be found in exactly six
configurations (Figures 2 and 3, top): (1) the three lines are
not all coplanar and intersect in exactly one point; (2) they
are coplanar and intersect in exactly one point; (3) they are
coplanar and intersect pairwise in three different points; (4)
exactly two pairs of them are coplanar (or, equivalently, in-
tersect); (5) exactly two of them are coplanar; or (6) they
are pairwise skew.

The proof is by enumeration. Lemma 1 has an immedi-
ate, important corrolary—that is, when three lines are pair-
wise coplanar, either they are not coplanar and intersect in
one point (case 1); they are coplanar and intersect in one
point (case 2); or they are coplanar, and intersect pairwise
in three different points (case 3). In particular, epipolar
constraints are satisfied for triplets of (incorrect) correspon-
dences associated with images of points in the trifocal plane
containing the pinholes of three non-collinear cameras.

To go further, it is useful to introduce a notion of linear
(in)dependence among lines. The geometric definition of

independence of lines matches the usual algebraic definition
of linear independence, in which, given a coordinate sys-
tem, a necessary and sufficient for k lines to be linearly de-
pendent is that some nontrivial linear combination of their
Plücker coordinate vectors (Section 2.2.1) be the zero vector
of R6. Geometrically, the lines linearly dependent on three
skew lines form a regulus [21]. A regulus is either a line
field, formed by all lines in a plane; a line bundle, formed
by all lines passing through some point; the union of all
lines belonging to two flat pencils lying in different planes
but sharing one line; or a non-degenerate regulus formed by
one of the two sets of lines ruling a hyperboloid of one sheet
or a hyperbolic paraboloid. Linear (in)dependence of four
or more lines can be defined recursively. Armed with these
definitions, we obtain an important corollary of Lemma 1.

Lemma 2. Three distinct lines always admit an infinity of
transversals, that can be found in exactly six configurations
(Figures 2 and 3, bottom): (1) the transversals form a bun-
dle of lines; (2) they form a degenerate congruence consist-
ing of a line field and of a bundle of lines; (3) they form a
line field; (4) they form two pencils of lines having one of
the input lines in common; (5) they form two pencils of lines
having a line passing through the intersection of two of the
input lines in common; or (6) they form a non-degenerate
regulus, with the three input lines in the same ruling, and
the transversals in the other one.

Lemma 2 should not come as a surprise since the
transversals to three given lines satisfy three linear con-
straints and thus form in general a rank-3 family (the de-
generate congruence is a rank-4 exception [21]). Without
additional assumptions, not much more can be said in gen-
eral, since Lemma 2 tells us that any three distinct lines
admit an infinity of transversals. When the lines are, in ad-
dition, pairwise coplanar, cases 4 to 6 in Lemmma 2 are
eliminated, and we obtain Proposition 1 as an immediate
corollary of this lemma.

2.2. The Analytical Point of View

2.2.1 Preliminaries

To translate the geometric results of the previous section
into analytical ones, it is necessary to recall a few basic
facts about projective geometry in general, and line geome-
try in particular. Readers familiar with Plücker coordinates,
the join operator, etc., may safely proceed to Section 2.2.2.
Given some choice of coordinate system for some two-
dimensional projective space P2, points and lines in P2 can
be identified with their homogeneous coordinate vectors in
R3. In addition, if x and y are two distinct points on a line
ξ in P2, we have ξ = x × y. A necessary and sufficient
condition for a point x to lie on a line ξ is ξ · x = 0, and
two lines intersect in exactly one point or coincide. A nec-



essary and sufficient conditions for three lines to intersect is
that they be linearly dependent, or Det(ξ1, ξ2, ξ3) = 0.

In three dimensions, given any choice of coordinate sys-
tem for a three-dimensional projective space P3, we can
identify any line in P3 with its Plücker coordinate vector
ξ = (u;v) in R6, where u and v are vectors of R3, and we
use a semicolon to indicate that the coordinates of u and v
have been stacked onto each other to form a vector in R6.
In addition, if x and y are two distinct points on some line
ξ = (u;v) in P3, we have

u =

[
x4y1 − x1y4
x4y2 − x2y4
x4y3 − x3y4

]
, and v =

[
x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1

]
. (1)

A Plücker coordinate vector is only defined up to scale,
and its u and v components are by construction orthoganal
to each other—this is sometimes known as the Klein con-
straint u · v = 0. Let us consider the symmetric bilinear
form R6 × R6 → R associating with two elements λ =
(a; b) and µ = (c;d) of R6 the scalar (λ|µ) = a ·d+b ·c.
A necessary and sufficient for a nonzero vector ξ in R6 to
represent a line is that (ξ|ξ) = 0, and a necessary and suf-
ficient condition for two lines λ and µ to be coplanar (or,
equivalently, to intersect) is that (λ|µ) = 0.

Let us denote the basis points of some arbitrary pro-
jective coordinate system by x0 to x4, with coordinates
x0 = (0, 0, 0, 1)T , x1 = (1, 0, 0, 0)T , x2 = (0, 1, 0, 0)T ,
x3 = (0, 0, 1, 0)T , and x4 = (1, 1, 1, 1)T . Points x0 to
x3 are called the fundamental points. The point x4 is the
unit point. Let us also define four fundamental planes pj
(j = 0, 1, 2, 3) whose coordinate vectors are the same as
those of the fundamental points. The unique line joining
two distinct points is called the join of these points and it is
denoted by x ∨ y. Likewise, the unique plane defined by a
line ξ = (u;v) and some point x not lying on this line is
called the join of ξ and x, and it is denoted by ξ ∨ x. Al-
gebraically, we have ξ ∨ x = [ξ∨]x, where [ξ∨] is the join
matrix defined by

[ξ∨] =

[
[u×] v
−vT 0

]
. (2)

A necessary and sufficient condition for a point x to lie on
a line ξ is that ξ ∨ x = 0.

2.2.2 Back to Transversals

Let us translate some of the geometric incidence constraints
derived in the previous section into algebraic ones. We
assume that some projective coordinate system is given,
and identify points, planes, and lines with their homoge-
neous coordinate vectors. Let us consider three distinct

lines ξj = (ξ1j , . . . , ξ6j)
T (j = 1, 2, 3) and define

Dijk =
ξi1 ξi2 ξi3
ξj1 ξj2 ξj3
ξk1 ξk2 ξk3

(3)

to be the 3 × 3 minor of the 6 × 3 matrix [ξ1, ξ2, ξ3] cor-
responding to its rows i, j, and k. A necessary and suffi-
cient condition for this matrix to have rank 2, and thus for
the three lines to form a flat pencil (Section 2.1), is that
all the minors T0 = D456, T1 = D234, T2 = D315, and
T3 = D126 be equal to zero.

Lemma 3. Given some integer j in {0, 1, 2, 3}, a neces-
sary and sufficient condition for ξ1, ξ2, and ξ3 to admit a
transversal passing through xj is that Tj = 0.

Proof. Let us prove the result in the case j = 0. The
proofs for the other cases are similarA necessary and suf-
ficient condition for a line δ = (u;v) to pass through x0 is
that v = 0 (this follows from the form of the join matrix).
Thus a necessary and sufficient condition for the existence
of a line δ passing through x0 and intersecting the lines
ξj = (uj ;vj) is that there exists a vector u 6= 0 such that
(ξj |δ) = vj · u = 0 for j = 1, 2, 3, or, equivalently, that
the determinant T0 = D456 = |v1,v2,v3| be zero.

Combining Proposition 2 and Lemma 3 now yields the
following important result.

Proposition 2. A necessary and sufficient condition for
three lines ξ1, ξ2, and ξ3 to converge is that (ξi|ξj) = 0 for
all i 6= j in {1, 2, 3}, and that Tj = 0 for all j in {0, 1, 2, 3}.

Proof. The condition is clearly necessary. To show that is is
sufficient, note that since the three lines are pairwise copla-
nar, they either intersect in exactly one point (cases 1 and
2 of Lemma 2), or are all coplanar, intersecting pairwise in
three distinct points, with all their transversals in the same
plane (case 3). But the latter case is ruled out by Lemma 3
and the condition Tj = 0 for j = 0, 1, 2, 3 since the funda-
mental points xj are by construction not all coplanar, and at
least one of them (and thus the corresponding transversal)
does not lie in the plane containing the three lines.

3. Converging Triplets of Visual Rays
3.1. Bilinearities or Trilinearities?

Let us now turn our attention from general systems of
lines to the visual rays associated with three cameras. As
noted earlier, it follows from Lemma 1 that the epipolar
constraints alone do not ensure that the corresponding view-
ing rays intersect (Figure 1, right). On the other hand, the
only case where they do not is when the corresponding rays
lie in the trifocal plane when the camera pinholes are not
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Figure 4. Degenerate epipolar constraints associated with three im-
ages when the three pinholes are collinear and the rays are copla-
nar but don’t intersect in a common point.

collinear, or in any plane containting the line joining the
three pinholes when they are (Figure 4).

Contrary to the claim of [12, Appendix], the trilinear
conditions Tj = 0 (j = 0, 1, 2, 3) associated with three vi-
sual rays do not guarantee, on their own, that the rays inter-
sect: In fact, one can in general construct a two-dimensional
family of triplets of non-intersecting visual rays passing
through three given non-collinear pinholes and satisfying
these constraints. Likewise, although one can show that
some set of trilinearities can always be chosen to ensure the
convergence of the corresponding visual rays, we are not
aware of any fixed set of trilinearities with the same guaran-
tees, which in turns appears to contradict [3, Sec. 4.2.2]
(also the discussion in [7]). This apparent contradiction
stems from the fact that both Faugeras and Mourrain [3]
and Ponce et al. [12] characterize the convergence of visual
rays by the vanishing of certain trilinear reduced minors of
a k × 4 matrix, and have to (implicitly at times) resort to
general configuration assumptions to select a representative
set of minors. Characterizing the convergence of triplets of
lines directly in terms of both binocular and trinocular con-
straints, as in Proposition 2, avoids this difficulty.

3.2. Bilinearities and Trilinearities

By definition, for any choice of projective coordinate
system, the four fundamental points xj (j = 0, 1, 2, 3) are
not coplanar. When the three pinholes are not collinear, it is
thus always possible to choose a projective coordinate sys-
tem such that one of the fundamental points, say x0, does
not lie in the trifocal plane, and we obtain the following im-
mediate corollary of Proposition 2.

Proposition 3. Gven three cameras with non-collinear pin-
holes c1, c2, and c3, and any projective coordinate sys-
tem such that x0 does not belong to the trifocal plane, a
necessary and sufficient for the three rays ξj = cj ∨ yj

(j = 1, 2, 3) to converge is that is that (ξi|ξj) = 0 for all
i 6= j in {1, 2, 3}, and T0 = 0.

When the three pinholes are collinear (but of course dis-

β
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c3

β

x0

c1

2

Figure 5. For collinear pinholes, there exists a single scene plane
π0 in the pencil passing through the baseline β that containts x0

and for which the condition T0 = 0 is ambiguous.

tinct), the three cameras admit a single pencil of epipolar
planes, and three rays in epipolar correspondence are in fact
always coplanar (Figure 4). The trifocal constraints are nec-
essary in this case to ensure that the three lines intersect
in exactly one point. Note that, given three cameras with
collinear pinholes, one can always choose a projective co-
ordinate system such that the two fundamental points x0

and xj (for any j in {1, 2, 3}) and the baseline joining the
three pinholes are not coplanar. The following result char-
acterizes the fact that visual rays intersect in this setting.

Proposition 4. Given three cameras with collinear pin-
holes c1, c2, and c3, and any projective coordinate system
such that the fundamental points x0 and x1 and the base-
line β joining the pinholes are not coplanar, a necessary
and sufficient condition for the three rays ξj = cj ∨ yj

(j = 1, 2, 3) to intersect is that is that (ξi|ξj) = 0 for all
i 6= j in {1, 2, 3}, and T0 = Tj = 0 for some j 6= 0.

Proof. The condition is clearly necessary. Because of the
epipolar constraints, the three rays must be coplanar, and
either intersect in three distinct points with all their transver-
sals in the same plane, intersect in a single point, or coincide
with the baseline. Unless the point x0 lies in the plane π0

that contains the rays (Figure 5), the first case is ruled out
by the condition T0 = 0. If x0 lies in π0, xj does not (by
construction), and the first case is ruled out by Tj = 0.

3.3. Minimal Parameterizations

3.3.1 Non-Collinear Pinholes

We assume in this section that the three pinholes are not
aligned. In this case, we can always choose a projective
coordinate system such that the three fundamental points
distinct from x0 are the three camera centers—that is, cj =
xj for j = 1, 2, 3, and x0 does not lie in the trifocal plane.

With our choice of coordinate system, and the notation
yj = (y1j , y2j , y3j , y4j)

T , the three epipolar constraints



can be written as

(x1 ∨ y1|x2 ∨ y2) = 0
(x1 ∨ y1|x3 ∨ y3) = 0
(x2 ∨ y2|x3 ∨ y3) = 0

⇐⇒
y41y32 = y31y42
y41y23 = y21y43
y42y13 = y12y43

. (4)

Given these constraints, we know from Proposition 2 that
a necessary and sufficient conditions for the three visual
rays to intersect is that T0 = 0 (the other three trilinearities
are trivially satisfied with our choice of coordinate system),
which is easily rewritten in our case as

y21y32y13 = y31y12y23. (5)

Note that y4j = 0 if and only if yj lies in p0, which is
also the trifocal plane in our case. As expected, it follows
immediately from Eqs. (4) and (5) that, unless y41 = y42 =
y43 = 0, that is, the observed point lies in the trifocal plane,
the epipolar constraints imply the trifocal ones. We now
need to translate Eqs. (4-5) to the corresponding equations
in image coordinates. Let us denote by Πj (j = 1, 2, 3)
the 4 × 3 matrix formed by the coordinate vectors of the
basis points for the retinal plane of camera number j. The
position of an image point with coordinate vector uj in that
basis is thus yj = Πjuj . Let us denote by πT

ij the ith row
of the matrix Πj , and use superscripts to index coordinates,
i.e., for k = 1, 2, 3, πk

ij denotes the kth coordinate of πij .

Proposition 5. Given three cameras with non-collinear
pinholes and hypothetical point correspondences u1, u2,
and u3, a necessary and sufficient condition for the three
corresponding rays to converge is that

uT
1 F12u2 = 0
uT
1 F13u3 = 0
uT
2 F23u3 = 0

where
F12 = π41π

T
32 − π31π

T
42

F13 = π41π
T
23 − π21π

T
43

F23 = π42π
T
13 − π12π

T
43

, and

(6)
(π21·u1)(π32·u2)(π13·u3) = (π31·u1)(π12·u2)(π23·u3),

(7)
where the vectors π1 = (π21;π31;π41), π2 =
(π12;π32;π42), and π3 = (π13;π23;π43), satisfy the 6
homogeneous constraints

π1
21 = 0,
π2
31 = π3

41,
π2
32 = 0,
π3
12 = π1

42,
π3
13 = 0,
π1
23 = π2

43,
(8)

and are thus defined by three groups of 7 coefficients, each
one uniquely determined up to a separate scale. This is a
minimal, 18dof parameterization of trinocular geometry.

Proof. Equations (6) and (7) are obtained immediately by
substitution in Eqs. (4) and (5). Together, they provide a
24dof parameterization of the trifocal geometry by the three
vectors πj = (π1j ;π2j ;π3j) (j = 1, 2, 3), each defined up
to scale in R9 by 8 independent parameters. Locating the
camera pinholes at the fundamental points xj (j = 1, 2, 3)

freezes 9 of the 15 degrees of freedom of the projective am-
biguity of projective structure from motion. It is possible to
exploit the remaining 6 degrees of freedom, and to impose
the constraints of Eq. (8) on the vectors πj .

Indeed, the general form of a projective transform Q
mapping the three fundamental points xj onto themselves
has 7 coefficients defined up to scale. Applying such a
transform to the matrices Πj (j = 1, 2, 3) defined in some
arbitrary projective coordinate system, and writing that the
matrices QΠj must satisfy the constraints of Eq. (8) yields
a system of 6 homogeneous equations in the 7 nonzero en-
tries of Q. Note that we can generate many different sets of
homogeneous constraints by choosing different sets of en-
tries of the vectors π1, π2, and π3. It can be shown that
there is always some choice for which the system defining
Q admits a unique solution defined up to scale, and that this
solution is nonsingular, thus defining a valid change of co-
ordinates. Together, Eqs. (6), (7) and (8) provide us with a
minimal, 18dof parameterization of the trinocular geometry
by the three vectors π1, π2 and π3 now each defined up to
scale in R9 by only 6 independent parameters.

To the best of our knowledge, the minimal parameteriza-
tion of trinocular geometry proposed by Papadopoulo and
Faugeras [11] is the only other one known so far to be one-
to-one and parametric (other minimal ones, e.g., [1, 19], im-
pose algebraic constraints). Contrary to [11], our parame-
terization does not require the use of a computer algebra
system to impose rank constraints (see [11] for details). In
addition, our parameterization is symmetric, none of the
cameras playing a priviledged role.

Let us close this section by noting that Eq. (7) has an
interesting geometric interpretation: Any point with coordi-
nate vectoru1 in the first image that matches points with co-
ordinate vectors u2 and u3 in the other two, must satisfy (7)
and thus belong to the “trinocular line” (our terminology):

τ 1 = [(π32 ·u2)(π13 ·u3)]π21− [(π12 ·u2)(π23 ·u3)]π31.
(9)

This should not come as a surprise since classical trifocal
geometry is defined in terms of line correspondences, and
Eq. (7) merely expresses the fact that the image point y1

lies on the projection τ 1 of the line τ 0 passing through x0

that intersects the rays passing through the other two image
points, y2 and y3. What is less well known is that the lines
τ 1 belong to the pencil generated by the lines π21 and π31,
which intersect at the point z1 = π21 × π31 of the first
image. The same reasoning applies to the other two images.

3.3.2 Collinear Pinholes

Let us now assume that the three pinholes are collinear (as
noted in [10], this case may be important in practice, in
aerial photography for example). Let us position the two



pinholes c1, c2 in x1 and x2, and the third pinhole, c3,
in x1 + x2. We are free to do this since this amounts to
choosing c1 and c2 as the fundamental points of the base-
line joining the three pinholes, and c3 as its unit point. From
Eq. (4):

y41y32 = y31y42, y41y33 = y31y43, y42y33 = y32y43,
(10)

and write T0 = 0 and T3 = 0 respectively as

y31y32(y23 − y13) + y33(y31y12 − y21y32) = 0,
y41y42(y23 − y13) + y43(y41y12 − y21y42) = 0.

(11)

The other two minors T1 and T2 are zero with our choice of
coordinate system.

We can rewrite as before Eqs. (10) and (11) in terms of
the rows of the matrices Πj (j = 1, 2, 3). Given the special
role of y23 − y13 in Eq. (11), it is convenient to introduce
the vector ω3 = π23 − π13, and we obtain the following
characterization of the trinocular geometry.

Proposition 6. Given three cameras with collinear pin-
holes and hypothetical point correspondences u1, u2, and
u3, a necessary and sufficient condition for the three corre-
sponding rays to converge is that

uT
1 F12u2 = 0
uT
1 F13u3 = 0
uT
2 F23u3 = 0

where
F12 = π41π

T
32 − π31π

T
42

F13 = π41π
T
33 − π31π

T
43

F23 = π42π
T
33 − π32π

T
43

,

(12)
0 = (π31 · u1)(π32 · u2)(ω3 · u3)+
(π33 · u3)[(π31 · u1)(π12 · u2)− (π21 · u1)(π32 · u2)],
0 = (π41 · u1)(π42 · u2)(ω3 · u3)+
(π43 · u3)[(π41 · u1)(π12 · u2)− (π21 · u1)(π42 · u2)],

(13)
where the vectors π1 = (π21;π31;π41), π2 =
(π12;π32;π42) and π3 = (ω3;π33;π43) satisfy the 8 ho-
mogeneous constraints

π1
21 = 0, π2

31 = 0, π1
12 = 0, π2

42 = 0,
π3
31 = π3

21, π3
32 = π3

42, ω1
3 = ω2

3 = ω3
3 ,

(14)

and are thus defined by three groups of, respectively, 6, 6,
and 7 independent coefficients, each uniquely determined
up to a separate scale, for a total of 16 independent param-
eters. This is a minimal, 16dof trinocular parameterization.

Proof. Equations (12) and (13) are obtained immediately
by substitution in Eqs. (10) and (11). Together they provide
a 24dof parameterization of the trifocal geometry by the
three vectors πj (j = 1, 2, 3), each defined up to scale in R9

by 8 independent parameters. Locating the camera pinholes
in x1, x2, and x1 + x2 freezes 7 of the 15 degrees of free-
dom of the projective ambiguity of projective structure from
motion. Similar to the proof of Proposition 5, the remaining
8 degrees of freedom can be used to impose the constraints

Figure 6. (Top) Example trinocular lines recovered from corre-
spondences in three images; (Bottom) Estimated epipolar lines
(two sets per image). Note that the two families of epipolar lines
associated with an image typically contain (near) degenerate pairs
that can be disambiguated using trilinearities.

of Eq. (14) on the vectors πj . Together, Eqs. (12), (13) and
(14) provide us with a minimal, 16dof parameterization of
the trinocular geometry by the three vectors π1, π2 and π3

now each defined up to scale in R9 by only 5, 5, and 6 inde-
pendent parameters.

3.4. Preliminary Implementation

Proposition 5 can be used to estimate the vectors πj

associated with three cameras with non-collinear pinholes
from at least six correspondences between three images:
Initial values for these vectors are easily obtained from
the corresponding projection matrices, estimated from six
triplets of matching points using an affine or projective
model [2, 18]. The vectors πj are then refined by minimiz-
ing the mean-squared distance between all data points and
the corresponding epipolar and trinocular lines. We have
constructed a preliminary implementation of this method,
and Figure 6 shows an example with 38 correspondences
between three images, and the corresponding epipolar and
trinocular lines (data courtesy of B. Boufama and R. Mohr).
Table 1 shows the average distances between the data points
and these lines. The mean distance to epipolar lines is on the
order of 1pixel, and comparable to that obtained by classical
techniques for estimating the fundamental matrix from pairs
of images on the same data [4, Ch. 8]. Our method, on the
other hand, is by construction robust to degeneracies with
points lying near the trifocal plane. Further experiments
and comparisons with other minimal parameterizations of
the trinocular geometry [1, 11, 14, 19] are of course needed
to truly assess the promise of our approach.

4. Discussion
We have characterized both geometrically and analyt-

ically the role of point trilinearities in multi-view geom-



Init. E12 E13 E23 E21 E31 E32 T1 T2 T3
Aff. 1.0 1.0 0.9 1.0 0.9 0.9 6.3 0.9 0.8
Proj. 2.0 1.6 1.3 1.9 1.5 1.2 7.7 1.7 1.1

Table 1. Quantitative results for the dataset of Figure 6 and
affine [18] and projective [2] initializations. Here, “Eij” refers
to the distance between points in image i and the corresponding
epipolar lines associated with image j, and “Tj” refers to the dis-
tance between points in image j and the corresponding trinocular
line associated with the other two images.

etry. Although the nature of our presentation has been
mainly theoretical (what are trifocal constraints really for?),
our analysis has led to a new minimal parameterization
of trinocular geometry for both non-collinear and collinear
pinholes, and we have presented a preliminary implementa-
tion in the non-collinear case. A full-fledged experimental
evaluation of this implementation and its extension to the
collinear case is next on our agenda.

One may of course wonder whether the fact that four
lines intersect in exactly one point can also be character-
ized geometrically or analytically. Indeed, there exists a
quadrifocal tensor expressing the corresponding four-view
constraints [20], and it has been shown to be redundant with
the epipolar and trifocal constraints. In retrospect, it is geo-
metrically obvious that a necessary and sufficient condition
for four lines to intersect in exactly one point is that any
two triplets of lines among them also does: This follows
immediately from the fact that these triplets have two lines
in common, so the point where these two lines intersect is
aso the point where all four lines intersect.

In other words, there is no need to write any equation
to realize that considering four lines together instead of a
set of triplets does not add anything to the geometric pic-
ture in this case. On the other hand, the natural algebraic
constraints to write among four lines is that they be linearly
dependent, which is equivalent to writing that all 4× 4 mi-
nors of the 6× 4 matrix formed by their Plücker coordinate
vectors be zero. This yields a set of quadrilinear constraints
similar to the quadrifocal ones. However, the elements of a
rank-3 family of lines do not necessarily intersect in a single
point: Instead they form a regulus, in one of the configura-
tions shown in Figure 3, which of course includes bundles.
Thus quadrilinearities, on their own, are neither necessary
(which was already known), nor sufficient, to characterize
the fact that the corresponding visual rays intersect. This is
intriguing, and perhaps a step toward future work.
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