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Abstract

The use of wearable cameras makes it possible to record
life logging egocentric videos. Browsing such long unstruc-
tured videos is time consuming and tedious. Segmenta-
tion into meaningful chapters is an important first step to-
wards adding structure to egocentric videos, enabling ef-
ficient browsing, indexing and summarization of the long
videos. Two sources of information for video segmentation
are (i) the motion of the camera wearer, and (ii) the objects
and activities recorded in the video. In this paper we ad-
dress the motion cues for video segmentation.

Motion based segmentation is especially difficult in ego-
centric videos when the camera is constantly moving due to
natural head movement of the wearer. We propose a robust
temporal segmentation of egocentric videos into a hierar-
chy of motion classes using a new Cumulative Displacement
Curves. Unlike instantaneous motion vectors, segmentation
using integrated motion vectors performs well even in dy-
namic and crowded scenes. No assumptions are made on
the underlying scene structure and the method works in in-
door as well as outdoor situations. We demonstrate the ef-
fectiveness of our approach using publicly available videos
as well as choreographed videos. We also suggest an ap-
proach to detect the fixation of wearer’s gaze in the walking
portion of the egocentric videos.

1. Introduction

Camera and storage technologies enable to record one’s
entire day on a camera. Indeed, there is a growing use of
wearable cameras which are recording many hours a day.
For example, wearable cameras are used in many police dis-
tricts in order to reduce complaints against policeman (Fig.
1). While recording egocentric video is on the rise, retrieval
and indexing of such unstructured videos is still a challenge.
Since it is very hard to watch long egocentric videos from
start to end, automated tools are needed to enable faster ac-
cess to the information in such videos.

*Chetan Arora is now with IIIT Delhi.

Figure 1: The use of egocentric cameras is increasing, and are
becoming routine in many cases. Examples show such cameras
used by policeman, by UN inspectors in Syria, and Google Glass
for personal use

Temporal segmentation adds structure to the video by
partitioning the video into chapters. This is a first step for
video summarization methods, which should also enable
fast browsing and indexing so that a user can quickly dis-
cover important activities or objects [8, 9, 11, 15].

There is a growing interest in analyzing and understand-
ing video taken from first person’s point of view. Much
work addresses understanding objects and activities seen
by the camera: hand gestures, object detection or recog-
nition, and activity recognition [5, 14, 16, 18, 19]. These
schemes perform well on specialized classes like ‘making
coffee’ or ‘applying peanut butter’. Generalizing them to
recognize variety of activities, performed routinely by the
camera wearer, may involve enormous efforts. Addition-
ally, activities targeted by these approaches usually occur
over a short period of time, giving no information about the
rest of the video.

Lu and Grauman present in [|1] an elaborate analysis
and summarization method for egocentric videos. The first
step is motion-based temporal segmentation of the video
into three classes of static, moving the head, and in tran-
sit. Kitani et al. [8] suggest unsupervised learning for video
segmentation. The down side of unsupervised learning is
that the video segmentation may have no semantic meaning
to the viewer. The motion analysis in both these approaches
uses instantaneous optical flow which is good for detecting
short term activities '. This often results in noisy or over

1By ‘short-term’ we imply activities which occur over a relatively
short period of time, possibly a few seconds, e.g. turning left or sitting
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Class Description
Level 1 Stationary Wearer is at one place. May have natural head motion or even taking a few steps if standing.
Transit Wearer is changing location with a forward motion.
Level 2 Static Head fixated. E.g. sleeping, watching television.
Moving Head  Stationary with head not fixated.
Level 2 Box Changing location inside a vehicle with partial view of surroundings.
Open View Changing location with full view of surroundings.
Sitting Usual meaning. Natural head motion present.
Level 3 Standing Usual meaning. May be taking a few steps. E.g. waiting for a bus, talking on phone.
Level 3 Walking Changing location on foot. Slow forward motion. More natural head motion due to stepping.
Wheels Faster motion compared to walking. Less head motion. E.g. bicycle.
Level 3 Car Forward motion with frontal view.
Bus Forward motion with sideways view. Riding in the train should also be considered this class.

Figure 2: We suggest temporal segmentation of an egocentric video into hierarchy of 12 classes based upon cues from wearer’s head
motion. The suggested approach partitions the video into semantically meaningful long term activities (spanning tens of minutes).

segmented partitioning. Markov Random Field (MRF) reg-
ularization is used in [ 1] to smooth the temporal segmen-
tation.

We propose to temporally segment an egocentric video
into a hierarchy of activities as shown in Fig. 2. The activi-
ties proposed in the hierarchy are long term. Therefore, par-
titioning with such hierarchy produces macro level segmen-
tation of the video into meaningful chapters. The proposed
partitioning can also be used as a pre-processing algorithm
similar to the ‘pre-process’ stage in [11]. The proposed
hierarchy can be useful for providing semantically accu-
rate working sets for either activity or object recognition
schemes proposed in [5, 14, 16, 18, 19]. For example, al-

down. In contrast ‘long-term’ activities like walking/driving/biking may
occur over a period of several minutes/hours

gorithms recognizing activities like ‘making coffee’ should
perform better given the information whether the camera
wearer is stationary or driving at that time. High-level tem-
poral segmentation of the video can also aid novelty detec-
tion and summarization algorithms [3, 9].

The focus of this paper is on analyzing what a wearer
does using motion cues due to wearer’s activity. However,
temporal segmentation of an egocentric video using motion
cues poses some key challenges. Though it would have
been best to compute egomotion of the camera to find if the
wearer is stationary or moving, finding egomotion in ego-
centric video remains a challenge. Our experiments with
Voodoo [2] on egocentric videos indicated that (a) it was
hard to use Voodoo on long sequences beyond 1000 frames.
(b) the computed egomotion was unstable. The failure can
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Figure 3: Video frames are divided into a grid of large patches.
The instantaneous x-displacement of one patch over 22,000 frames
is shown on right. Frames 0-3000 correspond to forward motion
which is well hidden in the instantaneous displacements.

be attributed to dominant 3D rotation induced by the head
motion leading to degenerate epipolar geometry. Feature
tracking is harder and unreliable in such videos due to sig-
nificant depth variations and dynamic objects in the scene,
making egomotion computation further difficult. Experi-
ments with VisualSFM [1], PTAM [4] and our own imple-
mentation of egomotion estimation led to similar conclu-
sions.

We propose a new tool for long-term temporal segmen-
tation, the Cumulative Displacement Curves; replacing the
commonly used feature tracking and instantaneous motion
analysis. Using integrated motion instead of instantaneous
motion allows us to focus on long term activities. Addition-
ally, it makes our method stable and robust against natural
head motion and moving objects in the field of view. The
tool is generic and can be used to recover hierarchy of ac-
tivity classes as shown in Fig. 2.

We also suggest in this paper an approach to recognize
fixation of the camera wearer’s gaze using egocentric video.
In [7], gaze is inferred using an eye-tracking camera to
improve recognition rate. Eye-tracking along with camera
ego-motion are used in [13] to recognize indoor activities.
In [10], gaze is estimated from the camera wearer’s head
motion and hand location. While eye tracking is not pos-
sible from egocentric video, we observe that gaze fixation
is often coupled with ‘head fixation’. We therefore detect
such head fixation from egocentric video as evidence for
gaze fixation. Our method detects fixation of gaze in ‘walk-
ing’ sequences from the outward looking camera.

Inertial measurements and a wearable camera are used
by [17] to temporally segment recorded motions into activ-
ities. Our method on the other hand uses only the recorded
video, which by definition is always available in egocentric
video and works both in indoor and outdoor environments.
It is obvious that the combination with external sources,
such as GPS and inertial sensors, may give better results.

Organization of the paper is as follows. Sec. 2 de-
scribes Cumulative Displacement Curves and a technique
to generate such curves. Sec. 3 describes the classifi-
cation of wearer’s motion using the cumulative displace-
ment curves. In Sec. 4 a method to find gaze fixa-
tion in walking segments of the egocentric video is pre-
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Figure 4: Cumulative displacement curves for some patches
shown in Fig. 3. Time periods with expanding curves, as in frames
1-3000, correspond to ‘walking’. Periods where the cumulative
curves are horizontal correspond to ‘standing’. Periods with some
horizontal and some expanding curves correspond to driving.

sented. Experiments are given in Sec. 5 using publicly
available videos [0] as well as videos shot by us. The
source code and the dataset are available at the project page:
http://www.vision.huji.ac.il/egoseg/

2. Cumulative Displacement Curves

Most methods that compute camera ego-motion start
with the detection and tracking of feature points from frame
to frame. Displacement of these features is used to find
the camera motion. Large head rotations make the tracking
of feature points very difficult in an egocentric video. We
found that computing displacements at fixed image patches
is more efficient and robust. We divide the image into a grid
of W x H cells (10 x5 in our implementation), and compute
the displacements:

dt(i?j) = (dtl(%]%di/(lmj)) (D

of each cell (i, j) € (W x H) at time ¢, where d¥ (4, j) and
d¥(i,7) denotes the = and y displacements of the cell (7, 7)
(see Fig. 3). We refer to each cell as motion detector.

In pure forward motion the displacement at any image
location is outwards from focus of expansion. In an ego-
centric video with the camera wearer moving forward, the
instantaneous displacement has large variations caused by
the head rotation (see Fig. 3). However, over a long period
of time the average of the displacement caused by head ro-
tation is practically zero. Correspondingly, integrating the
instantaneous displacements results in canceling out of the
zero mean variations due to head rotation, leaving only the
consistent displacement caused by forward motion. We de-
note the integration of instantaneous displacements as:

Dy(i,§) =Y di(i, ) 2)

k=1

and refer to it as cumulative displacement or CD in short.



Fig. 4 shows the plot of the x component of the CD
against time, which we call the CD curve. Measuring trends
in the CD curves allows us to focus on long term activi-
ties while ignoring small perturbations due to head motion.
Further, occasional failures in optical flow calculation have
negligible effects on these trends.

When walking, which is always forward, the CD curve
increases for patches on the right of the FOE, and decreases
for patches on the left of the FOE. When stationary, the
CD does not change, and the CD curve is horizontal for
all patches. These cases are shown in Fig. 4.

An interesting set of CD curves is obtained when rid-
ing inside a vehicle (car or a bus). When a person is driv-
ing a car, some parts of the frame show the outside scene
visible through the window. The CD curves for these parts
are increasing and decreasing as expected from forward mo-
tion. Other parts of the frames show the inside of the car.
CD curves corresponding to inside locations will indicate
a stationary wearer with horizontal CD curves. So when
some CD curves are horizontal, while others have upward
or downward trend, this is an indication for driving. This
situation can happen also when a wearer is sitting in a bus
looking sideways (the y CD curve may be horizontal in this
case but the « CD curve would still have large slope). We
repeat that we are looking at the long-term trends, therefore
texting on a phone or talking to somebody for a few seconds
and not looking outside have little effect on such pattern.

3. Classification of Wearer’s Motion

As described in the previous section, the trends in the
CD curves can be used to predict the wearer’s activity. The
slope of the CD curve represents the instantaneous motion
of the patch. We are interested in ‘long-term’ activities
spanning minutes and by implication the long term trends
in CD curves. We therefore smooth the CD curves by con-
volving them with a Gaussian kernel of a large o, and use
the slopes of the smoothed curve as a measure of long-term
trends. Mathematically:

.0 o
Me(i,j) = a(Dt(z,j)*N(O,U)), 3)
where M;(i,7) = (m§(i,5),mY(i,7)) is the motion vector
for cell (i, 7) at time t. We observe that M; can be equiva-
lently found by smoothing the original displacement vectors
dt (7'7 j ) :
My (i, j) = dy(i, j) * N(0,0). @)

Although gaussian smoothing worked well for our case, bi-
lateral filtering or other approaches could have been used as
well in order to find long-term trends in the CD curves.
Fig. 5(b) shows samples of motion vectors correspond-
ing to stationary, walking and riding frames. Note that the
plot of the motion vectors is very much as expected from
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(a) Instantaneous (z,y) displacement vectors are dominated by the
head rotation, and the effects of the activity, e.g. sitting, walking, or
riding, is too small to observe.
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(b) Motion vectors obtained from the cumulative displacement curves
as given in Eq. 3. Effects of head rotations are removed, and the
direction of vectors are now noiseless. For ‘walking’ the vectors are
large and have radial direction. In the ‘sitting’ case, the magnitude
mostly zero. Riding (‘car’/‘bus’) has a mixed pattern.
Figure 5: Comparing instantaneous displacement vectors and mo-
tion vectors obtained from cumulative displacement curves

“clean” motion: radially outwards when ‘walking’, partially
radially outwards when riding a ‘bus’/‘car’ and very small
when ‘sitting’. These plots are much more characteristic of
the global ego-motion, compared to the instantaneous dis-
placements in Fig. 5(a) which are dominated by the natural
head rotation. The process of building the CD curve and
measuring only long term trends removes the noise of head
rotation, enabling robust inference of the wearer’s long-
term activity.

The o of the Gaussian used for smoothing the CD curve
in Eq. 3 controls the shortest event that can be detected.
In our experiments we use the Gaussian smoothing corre-
sponding to a time resolution of roughly 17 seconds. This
implies that if a person is walking for 10 minutes and
stops in between for more than 17 seconds, the proposed
scheme should output walking-standing-walking segmenta-
tion. Stopping for less than 17 seconds will result in a single
walking segmentation. An implication of the proposed ap-
proximation is the reduced accuracy on the activity bound-
aries. The Gaussian smoothing filters the high frequency
components representing activity boundaries in a CD curve.
Smoothing such edges results in mixed slopes at the bound-
aries, thereby reducing the classification accuracy of the al-
gorithm on the activity boundaries.

After obtaining the motion vectors, we train SVM classi-
fiers for each binary classification in the proposed class hi-
erarchy (see Fig. 2). These classifiers use various features
derived from motion vectors. We describe these features
below.



3.1. Radial Projection Response

It is expected that in forward motion the motion vectors
(as shown in Fig. 5(b)) will point radially outwards from
focus of expansion. To test if M; follows such a pattern, we
perform the following steps. We threshold M, (i, j) by its
magnitude and normalize it to a unit vector:

M(i,j) . o
T A M)l =
HMt(Zh])”’ 1 || t(l ])” T (5)

0, otherwise

—

Mt(laj) =

We set 7 to be a small number (in our implementation
7 = 0.002) in order to ignore insignificant motion vectors.
Next, we project all motion vectors, Z\//E (i,7), on a template
containing unit vectors pointing out radially from the focus
of expansion:

Ci;—FOE —

Ry(i,j) = 55—~ - Meli ) (6)
IC:; — FOE]

where C; ; is the (z,y) coordinates of the center of cell

(1,7) and and FOE is the location of focus of expansion.

Note that R (i, j) is the cosine of the angle between the mo-

pAY

tion vector M; (¢, 7) and a vector pointing outwards from the
focus of expansion, through the center of cell (¢, 7). Finally,
we obtain the score S; by counting the number of motion
vectors ]\//Tt(z, j) whose directions are within angle ¢ of the
corresponding vector in the radial projection template:

Et(l,j) _ {17 Rt(l,j) Z COS(¢) (7)

0, otherwise

Se =Y Ru(i.j). ®)
(4.5)
We call S; the Radial Projection Response.

For a stationary wearer (static/sitting/standing) the mo-
tion vectors are very small, and the radial projection re-
sponse is low. The radial projection response is high when
the wearer is in transit (‘box’ or ‘open view’). Using the ra-
dial projection response to distinguish between moving and
stationary is much more robust than using the magnitude of
the motion vectors alone.

3.1.1 Estimating the FOE Location

Since we do not know the location of focus of expan-
sion (FOE) a-priori, and since the FOE location may even
change during the sequence, we need to compute the FOE.
For each time instance independently, we search several lo-
cations, and select as the FOE the location which maximizes
the radial projection response at that time instance.

For efficiency reasons we restricted the candidate FOE
locations to the center 50% of the frame’s area. This works

well for walking, as in most cases the viewing direction of
the camera is forward. For the stationary case, where no sig-
nificant FOE exists, choosing any candidate near the center
works OK.

3.2. Motion Clusters

The radial projection response (Eq. 8) can be used to
classify the video segment as stationary or transit. The
radial projection response is also low during riding, since
there may be only a few motion detectors outside the vehi-
cle indicating a moving pattern. What can distinguish riding
from stationary is the fact that when stationary most motion
detectors have small motion vectors, whereas in riding the
motion vectors corresponding to outside regions have large
magnitude. Therefore, we sort the motion vectors by mag-
nitude and compute the average magnitude of top 6% and
bottom 6% of motion vectors. The two averages and their
difference are used as features in the SVM classifier.

3.3. Statistical Information

We also use the following per frame statistical informa-
tion to help in the classification: Number of motion detec-
tors with successful instantaneous displacement computa-
tion, average magnitude of the motion vectors (z and y sep-
arately) as obtained from Eq. 3 and average and standard
deviation of the instantaneous displacements as given by
Eq. 1. This information is available per frame and is ap-
pended to the feature vectors used by SVM classifiers.

4. Detecting Period of Gaze Fixation

In a forward camera motion all CD curves should have
upward or downward trend (depending upon location of
the motion detector) with a fixed slope corresponding to
wearer’s speed. The curve for the walking portion can be
approximated well by a smoothed version of the curve as
described in previous section. Because of the left and right
motion of wearer’s head, the original curve correspondingly
moves above and below the smooth approximation respec-
tively. This natural motion of the head temporally stops
when a wearer’s gaze is fixated on something. The event
is visible as all CD curves remaining temporarily below or
above their smooth approximations. We detect this anomaly
to identify gaze fixation and thereby important segments in
the walking portion of video. Figure 6 explains the process.

We consider the area between the original curve and the
smoothed curve as positive when the original curve is above
the smoothed curve and negative when below. The absolute
value of the area is proportional to both the magnitude of
head movement and the time period for which it remains
left or right with respect to the forward viewing direction.
We find the cumulative difference curve by integrating the
signed area. As a wearer keeps moving his head equally to
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Figure 6: Original (solid) and smoothed (dashed) cumulative dis-
placement curves of 3 selected motion detectors, for the selected
frame range in a test sequence. Because of the left and right motion
of wearer’s head, the original curve correspondingly moves above
and below the smooth approximation respectively. The periodic
alternation of the head left and right temporally stops when the
gaze is fixated on something. In a cumulative displacement curve
the effect is seen as original curve remaining temporarily below or
above the smooth approximation. The same can be detected and
used to identify gaze fixation.
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Figure 7: Cumulative difference curve corresponding to cumula-
tive displacement curves in Fig. 6. The two dashed lines represent
the threshold beyond which the motion detector fires. The gaze
fixation has been detected at around frame 2200.

the left and right, the cumulative difference curve has glob-
ally horizontal trend near zero, with top and bottom peaks
corresponding to head crossing the forward viewing direc-
tion after going left and right respectively. When the gaze
is fixated on something, we see significantly higher peaks
in cumulative difference curves (see Fig. 7). We identify
such extraordinarily high peaks in each cumulative differ-
ence curve separately (corresponding to each motion detec-
tor). The corresponding motion detector is then flagged as
supporting a gaze fixation hypothesis. If more than a certain
number of motion detectors supports the fixation hypothe-
sis, the frame is classified as part of gaze fixated segment.
It may be noted that there can be spurious peaks in a indi-
vidual cumulative difference curve due to moving objects
(especially close objects) in the scene. While gaze fixation

Accuracy # Samples
Classifier Avg. Class1 Class2 Class1 Class 1
Box vs. Open 93%  94%  92% 176K 853K
Car vs. Bus 4% 3%  75% 121K 58K

Sitting vs. Standing  70%  72%  67% 499K 453K
Static vs. Moving 96%  98%  94% 25K 999K
Stationary vs. Transit 90%  86%  93% 992K 1053K
Walking vs. Wheels 93%  96%  91% 778K 126K

Table 1: Classification results for each of the binary classification
tasks. Class 1 in the classifier refers to prior class in the name of
classifier. E.g., in a ‘Box vs. Open’ classifier, class 1 refers to
‘Box’ and second to ‘Open’. We show class-wise accuracy from
which binary confusion matrices can be derived.

is visible at all motion detectors, peaks from moving ob-
jects will not be supported by all motion detectors, and can
be removed by voting.

5. Experiments

We tested our algorithm on a dataset of videos shot at
Disney World [6] and videos downloaded from YouTube.
Along with these we have videos captured by us using Go-
Pro cameras. In all there are more than 65 hours of video.
All videos are shot from a head-mounted camera by 13 sub-
jects in various locations, performing all sorts of activities,
under various lighting conditions and times of the day. The
test videos captured by us are with resolution of 1280 x 720
at 30 frames per second (FPS). Other videos (Disney and
YouTube) are with various resolutions at FPS of either 15
or 25. We have manually annotated the videos taken from
YouTube and the ones captured by us. Disney videos come
with annotations which we have updated for our experi-
ments. The videos captured by us along with our anno-
tations for the complete dataset is available at the project
page: http://www.vision.huji.ac.il/egoseg/. We have also re-
leased the source code for our implementation at the project
page.

Frame to frame instantaneous displacements were com-
puted using LK [12] on the patches of a 10 x 5 grid. motion
vectors were normalized for frame size of 1 x 1. In all ex-
periments, we fixed 7 = 0.002, ¢ = w/2. We flagged a
motion detector as supporting gaze if the cumulative differ-
ence is more than a standard deviation away from its mean.
We flag the frame as gaze if more than 80% motion detec-
tors support the gaze hypothesis. All experiments ran on a
desktop PC.

5.1. Motion Classification

To evaluate the accuracy of our motion classification we
labeled each video frame as one of the seven leaf-nodes in
the graph shown in Fig. 2. We labeled frames to be ex-
cluded from the experiment as ‘DontCare’. This is typi-
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Walking 83% 0% 6% 6% 4% 1% 0%
Car 1% 74% 3% 15% 0% 3% 4%
Standing 14% 2% 47% 4% 0% 31% 2%
Bus 3% 19% 27% 43% 0% % 1%
Wheels 9% 0% 0% 6% 86% 0% 0%
Sitting 3% 1% 22% 1% 0% 62% 10%
Static 0% 1% 1% 0% 0% 1% 97%

Table 2: Confusion matrix for the cascaded classifier tree. Rows
are ground truth. Diagonal elements represents class accuracy, off
diagonal elements give pairwise confusion.

Class Label Accuracy # Samples
Static-Moving 91% 1083115
Sitting-Standing 82% 1036217
Box-Open 87% 1197623
Car-Bus 76% 228108
Walking-Wheels 82% 969515

Table 3: Inner nodes of the hierarchy have important semantic
meaning. Therefore we give the accuracy of the cascaded classifier
considering each inner node as a class label by itself.

cally for completely dark frames where tracking failed com-
pletely. For the Disney videos of [6], we manually corrected
their annotations at a few places where it was not accurate
enough for our needs. For example when in a train, while
the original annotation referred to as train ride, we changed
the annotation to ‘sitting” when the train stops for a long
period of time.

We train a separate SVM classifier for each binary clas-
sification task represented by an inner node in the classifica-
tion hierarchy shown in Fig. 2. As features, we concatenate
the radial projection response, number of blocks with suc-
cessful LK evaluation, all motion vectors, top and bottom
motion vector cluster centroid and their distance, instan-
taneous displacement average and standard deviation (for
static-moving classifier only). We have a dataset of 140
sequences (including Disney, YouTube and the ones cap-
tured by us), from which we choose sequences at random
for training. We keep choosing a sequence at random until
we get 12500 training samples/frames for each class. The
remaining sequences are used for testing. Table 1 gives the
accuracy obtained for each of the binary classification task
independently. Table 2 gives the confusion matrix of the
cascaded classifier, where a classifier down the hierarchy
process only the frames classified as positive by its parent.
For example, Static-Moving classifier operates only on the
frames marked ‘stationary’ by Stationary-Transit classifier.

While Table 2 is important from the perspective of know-
ing the classification performance at the leaf nodes of the
hierarchy, we consider inner nodes of the hierarchy equally
important. For example its useful to know that we can clas-
sify accurately when a wearer is transiting in ‘open’ or in
‘box’, even if we can’t accurately tell whether by a ‘car’ or
a ‘bus’. Table 3 gives the accuracy of the cascaded classifier
at the inner nodes. The results compare favorably with the
ones obtained in the related area [7], though there is no di-
rect comparison between the two approaches. The work of
Kitani et al. [8], though targeting temporal partitioning, is
not directly comparable to ours, owing to its unsupervised
nature and focus on short term atomic actions. It may be
noted that we haven’t employed any smoothing on the clas-
sifier results and every frame is classified separately using
the features described above. We expect that using a regu-
larization framework like MRF on the classification results,
as done by Lu and Grauman [! 1], may further improve the
results.

We observed that the classifier accuracy is markedly bet-
ter for the sequences in which activities happen on a time
range of several minutes. One of the explanation for this is
the choice of blurring for segmenting the CD curves result-
ing in undesired smoothing on the activity boundary. When
the activity itself is long, this has relatively little effect. On
the other hand if the activity occurs over a span of few sec-
onds, the blurring results in unwanted mixing of features
from temporally adjacent activities leading to reduced ac-
curacy of the classifier. This is particularly visible in the
‘Sitting vs. Standing’ classifier. Many of the sequences
that we have for riding scenario have intermittent stoppages
which are labeled as ‘sitting’. The feature vector in this
short term sitting gets affected by the temporally adjoining
activities which is mostly riding in our sequences. This is
one of the reasons for the relatively weaker performance by
the ‘Sitting vs. Standing’ classifier.

Another limitation of the proposed classification scheme
is what we refer to as ‘mixed activities’. For example,
the proposed scheme is able to distinguish between ‘stand-
ing’ and ‘walking’ quite accurately. However, there may
be some semantically meaningful activities like ‘waiting’
which involves a mix of stationary and walking and does not
fit atomically into the proposed framework. Fig. 8 shows
some other failure cases.

5.2. Detecting Gaze Fixation

The publicly available dataset [6] did not have any seg-
ments for gaze fixation. We therefore tested our strategy for
detecting gaze fixation on ‘walking’ sequences captured by
us. The ground truth annotations were done manually. We
consider a fixation of the wearer’s head for more than 5 sec-
onds as a valid gaze fixation. Table 4 lists results achieved
on various test sequences. The proposed scheme is able to
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Figure 8: Activity classification failures. (a) Waiting in line, a mix
of standing and walking. Our algorithm fails to handle mixed ac-
tivities. (b) Riding an open train. The pattern of the approximated
motion field is very close to the ‘open’ class pattern. (c) Stand-
ing while the train is coming into the station. While some of the
frame is static, other parts are moving fast and therefore the frame
is classified as ‘box’.

Se Frames # Fixation # True Aceurac

e Detected Positives uracy
C1-C2 32017 47 39 82.97%
Y1-Y8 121208 219 163 74.43%
Total 153225 266 202 75.93%

Table 4: Gaze Fixation Results on sequences taken by two sub-
jects. Total of 10 sequences were tested.

detect more than 75% fixation instances correctly.

Some of the failure cases that we have observed arise
from ambiguity in gaze fixation as observed from head mo-
tion. For example, a left and right turn in quick succession
leads to similar ‘bumps’ in the cumulative difference curve
as observed during the gaze fixation. The same bump is ob-
served if a person turns in place. There could have been
couple of heuristics to improve upon such cases. For exam-
ple, it is expected that during a gaze fixation at an interesting
object, the person would try to see it again and again. Such
repeated ‘short’ gaze would cause consecutive bumps in the
cumulative difference curves and can be used to distinguish
gaze from large head motion because of other reasons. We
leave such improvisations for future work.

6. Conclusion

Temporal segmentation of an egocentric video into 12
hierarchical classes (7 disjoint classes) is presented. The
proposed classification hierarchy partitions the video such
that semantically meaningful inference can be made for ev-
ery frame of the video. Unlike prior approaches, we fo-
cus on long time activities preventing over-segmentation of
the video. Wide variations in the scene and movement of
wearer makes any inference in the egocentric video a chal-
lenging task. Use of cumulative displacement curves al-
lows us to model long-term activity patterns which have
been used for the temporal segmentation and detecting gaze
fixation. Classification using feature vectors derived from
the proposed cumulative displacement curves is simple, ef-
ficient and robust against local tracking failures. The im-

portant shift in the focus from what user sees to what user
does has led to a highly accurate classifier. We expect simi-
lar head movement patterns to be distinct in other activities
like working on computer, writing or washing dishes. The
same therefore can be generalized to detect such targeted
short-term activities as well. We leave such improvements
for the future work.
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