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Abstract

The goal of this paper is to question the necessity of fea-

tures like SIFT in categorical visual recognition tasks. As

an alternative, we develop a generative model for the raw

intensity of image patches and show that it can support im-

age classification performance on par with optimized SIFT-

based techniques in a bag-of-visual-words setting. Key in-

gredient of the proposed model is a compact dictionary

of mini-epitomes, learned in an unsupervised fashion on

a large collection of images. The use of epitomes allows

us to explicitly account for photometric and position vari-

ability in image appearance. We show that this flexibility

considerably increases the capacity of the dictionary to ac-

curately approximate the appearance of image patches and

support recognition tasks. For image classification, we de-

velop histogram-based image encoding methods tailored to

the epitomic representation, as well as an “epitomic foot-

print” encoding which is easy to visualize and highlights

the generative nature of our model. We discuss in detail

computational aspects and develop efficient algorithms to

make the model scalable to large tasks. The proposed tech-

niques are evaluated with experiments on the challenging

PASCAL VOC 2007 image classification benchmark.

1. Introduction

Our goal in this work is to investigate to which extent

generative image models can also be competitive for visual

recognition tasks. We use the raw image patch intensity

as the fundamental representation in our model. Appear-

ance patches have been successfully applied so far mostly

in image generation tasks such as texture synthesis, image

denoising, and image super-resolution [2, 10, 12].

Using raw appearance patches maximally preserves in-

formation in the original image. The main challenge with

this modeling approach in image classification tasks is that

the associated image description can be too sensitive to nui-

sance parameters such as illumination conditions or object

position. Therefore, most computer vision systems for im-

age categorization and recognition rely on features built on

top of discriminative patch descriptors like SIFT [19]. SIFT

has been explicitly designed for invariance to these nuisance

parameters, which allows it to work reliably in conjunction

with simple classification rules in a bag of visual words

framework [17, 30]. However, the SIFT and other similar

descriptors are not suitable for image generation tasks and

are very difficult to visualize [28].

Instead of designing an image descriptor to be maxi-

mally invariant from the ground up, we attempt to explicitly

model photometric and position nuisance parameters as at-

tributes of a generative patch-based representation. Specifi-

cally, we develop a probabilistic epitomic model which can

faithfully reconstruct the raw appearance of an image patch

using just a single patch selected from a compact dictionary

of mini-epitomes. Our first main contribution is to show

that explicitly matching the image patches to their best po-

sition in the mini-epitomes greatly improves reconstruction

accuracy compared to a non-epitomic baseline which does

not cater for position alignment. This allows us to accu-

rately capture the appearance of image patches by a generic,

i.e., universal rather than image specific, visual dictionary

learned from a large set of images.

We design image descriptors for image classification

tasks based on the proposed mini-epitomic dictionary. Our

second main contribution is to show that bag-of-words type

classifiers built on top of our epitomic representation not

only improve over ones built on non-epitomic patch dic-

tionaries, but also yield classification results competitive to

those based on the SIFT representation. Beyond histogram-

type encodings, we also investigate an “epitomic footprint”

encoding which captures how the appearance of a specific

image deviates from the appearance of the generic dictio-

nary. This epitomic footprint descriptor can be visualized

or stored as a small image and at the same time be used

directly as feature vector in a linear SVM image classifier.

Employing the proposed model requires finding the best

match in the epitomic dictionary for each patch in an image.

We have experimented with both a fast GPU implementa-

tion of exact search as well as approximate nearest neigh-

bor search techniques. Both allow efficient epitomic patch

matching and image encoding in about 1 sec for 400×500



images and typical settings for the model parameter val-

ues, making the model scalable to large datasets. In the

main part of the paper we report image classification re-

sults on the challenging PASCAL VOC 2007 image clas-

sification benchmark [11] and compare the performance of

our model both with a non-epitomic baseline and the tuned

implementations of SIFT-based classification techniques re-

viewed by [6]. The supplementary material elaborates on

aspects of the proposed model and includes further experi-

mental results on the Caltech-101 dataset. Accompanying

software can be found at our web sites.

2. Related work

Key element of the proposed method is the explicit mod-

eling of patch position using mini-epitomes. The epito-

mic image representation and the related idea of transfor-

mation invariant clustering were developed in [13, 15] and

also used in [31] for texture modeling, but have not been ap-

plied before for learning generic visual dictionaries on large

datasets and in the context of visual recognition tasks.

The idea to use a patch-based representation for image

classification first appeared in [23] and was further devel-

oped by [26], who applied it to homogeneous texture classi-

fication and compared it to the filterbank-based texton rep-

resentation of [18]. Recently, [7] demonstrated competi-

tive image classification results on the CIFAR-10 dataset of

small images with patch dictionaries trained by K-means.

Neither of these works explicitly handles patch position or

demonstrates performance comparable to modern SIFT en-

codings [6] on challenging large-scale classification tasks.

More generally, unsupervised learning of image features

has received considerable attention recently. Most related

to our work is [29], which also attempts to explicitly model

the position of visual patterns in a deconvolutional model.

However, their model requires iteratively solving a large-

scale sparse coding problem both during train and test time.

The image classification performance they report signifi-

cantly lags modern SIFT-based models such as those de-

scribed in [6], despite the fact that they learn a multi-layered

feature representation. The power of learned patch-level

features has also been demonstrated recently in [5, 9, 24].

Using mini-epitomes instead of image patches could also

prove beneficial in their setting.

Sparsity provides a compelling framework for learning

image patch dictionaries [22]. Sparsity coupled with epit-

omes has been explored in [1, 4] but these works focus on

learning dictionaries on a single or a few images. While

each image patch is represented as a linear combination of

a few dictionary elements in sparse models, it is approxi-

mated by just one dictionary element in our model. One

can thus think of the proposed model as an extremely sparse

representation, or alternatively as an epitomic form of K-

means or vector quantization.

Figure 1. In the epitomic representation each image patch moves to

find its best match within a mini-epitome. Search is over epitome

positions instead of image positions (standard max-pooling).

3. Image Modeling with Mini-Epitomes

3.1. Model description

With reference to Fig. 1, let {xi}
N
i=1 be a set of possi-

bly overlapping image patches of size h×w pixels. Our

dictionary comprises K mini-epitomes {µk}
K
k=1 of size

H ×W , with H ≥ h and W ≥ w. The length of the

vectorized patches and epitomes is then d = h · w and

D = H ·W , respectively. We approximate each image patch

xi with its best match in the dictionary by searching over the

Np = hp×wp (with hp = H−h+1, wp = W −w+1) dis-

tinct sub-patches of size h×w fully contained in each mini-

epitome. Typical sizes we employ are 8×8 for patches and

16×16 for mini-epitomes, implying that each mini-epitome

can generate Np = 9 · 9 = 81 patches of size 8×8. Our

focus is on representing every image with a common vocab-

ulary of visual words, so we use a single universal epitomic

dictionary for analyzing image patches from any image. We

have been working with datasets consisting of overlapping

patches extracted from thousands of images and with dictio-

naries containing from K = 32 up to 2048 mini-epitomes.

We model the appearance of image patches using a Gaus-

sian mixture model (GMM). We employ a generative model

in which we activate one of the image epitomes µk with

probability P (li = k) = πk, then crop an h×w sub-patch

from it by selecting the position pi = (xi, yi) of its top-

left corner uniformly at random from any of the Np valid

positions. We assume that an image patch xi is then condi-

tionally generated from a multivariate Gaussian distribution

P (xi|zi,θ) = N (xi;αiTpi
µli + βi1, c

2
iΣ0) . (1)

The label/position latent variable vector zi = (li, xi, yi)
controls the Gaussian mean via νzi

= Tpi
µli . Here

Tpi
is a d×D projection matrix of zeros and ones which

crops the sub-patch at position pi = (xi, yi) of a mini-

epitome. The scalars αi and βi determine an affine map-

ping on the appearance vector and account for some pho-

tometric variability, 1 is the all-ones d× 1 vector, and x̄
is the patch mean value. In the experiments reported in

this paper we choose πk = 1/K and fix the d×d covari-

ance matrix Σ
−1
0 = D

T
D + ǫI, where D is the gradi-



ent operator computing the x− and y− derivatives of the

h×w patch and ǫ is a small constant. This implies that we

compute distances between patches by a Mahalanobis met-

ric which corresponds to whitening the vectorized image

patches by left-multiplying them with D. Importantly, we

assume that Σ0 is modulated by the patch gradient contrast

c2i , ‖D(xi− x̄i1)‖
2
2+λ but is shared across all dictionary

elements and thus does not depend on the latent variable

vector; λ is a small regularization constant (we use λ = d
for image values between 0 and 255). We present algo-

rithms for learning the epitomic means {µk}Kk=1 in Sec. 3.4.

3.2. Epitomic patch matching

To match a patch xi to the dictionary, we seek the mini-

epitome label and position zi = (li, xi, yi), as well as

the photometric correction parameters (αi, βi) that maxi-

mize the probability in Eq. (1), or equivalently minimize

the squared reconstruction error (note that D1 = 0)

R2(xi; k, p) =
1

c2i

(

‖D (xi − αiTpµk)‖
2+λ(|αi|−1)2

)

,

(2)

where the last regularization term discourages matches be-

tween patches and mini-epitomes whose contrast widely

differs. We can compute in closed form for each candi-

date match νzi
= Tpi

µli in the dictionary the optimal

β̂i = x̄i − α̂iν̄zi
and α̂i =

x̃
T

i
ν̃zi

±λ

ν̃
T
zi

ν̃zi
+λ

, where x̃i = Dxi

and ν̃zi
= Dνzi

are the whitened patches. The sign in

the nominator is positive if x̃T
i ν̃zi

≥ 0 and negative oth-

erwise. Having computed the best photometric correction

parameters, we can substitute back in Eq. (2) and evaluate

the reconstruction error R2(xi; k, p).

Epitomic matching versus max-pooling Searching for

the best match in the epitome resembles the max-pooling

process in convolutional neural networks [14]. However in

these two models the roles of dictionary elements and im-

age patches are reversed: In epitomic matching, each im-

age patch is assigned to one dictionary element. On the

other hand, in max-pooling each dictionary element (fil-

ter in the terminology of [14]) looks for its best matching

patch within a search window. Max-pooling thus typically

assigns some image patches to multiple filters while other

patches may remain orphan. This subtle but crucial differ-

ence makes it difficult for max-pooling to be used as a basis

for building whole image probabilistic models, as the prob-

ability of orphan image areas is not well defined. Contrary

to that, mini-epitomes naturally lend themselves as building

blocks for probabilistic image models able to explain and

generate the whole image area.

3.3. Efficient epitomic search algorithms

We search over all mini-epitomes and positions in them

to select the mini-epitome label and position pair (k, p)
which achieves the least reconstruction error. The most ex-

pensive part of this matching process is computing the inner

product of every patch in an image with all h×w sub-patches

in every mini-epitome in the dictionary.

Exact search The complexity of the straightforward algo-

rithm for matching N image patches to a dictionary with K
mini-epitomes is O(N ·K ·hp ·wp ·h ·w). For the patch and

epitome sizes we explore in our experiments, it takes more

than 10 sec to exactly match a 400×500 grayscale image

with an optimized Matlab CPU implementation. Our opti-

mized GPU software has drastically reduced this computa-

tion time: for a dictionary with K=256 mini-epitomes, epit-

omic matching takes 0.7 sec on a laptop’s NVIDIA GTX

650M graphics unit and 0.1 sec on a workstation’s NVIDIA

Tesla K20. The starting point of our implementation has

been the fast CUDA convolution library cuda-convnet [16]

but we are able to achieve epitome-specific improvements

by exploiting the fact that patches within a mini-epitome

share filter values, which allows us to make better use of

the GPU’s fast shared memory. As a result, matching with

a 16×16/8×8 epitomic dictionary is only about 5 times

more expensive than matching with a non-epitomic 8×8 dic-

tionary, although the epitomic dictionary contains 81 times

more patches. We have also tested the recursive algorithm

of [21] and FFT techniques [13], but they have proven less

efficient than our GPU code for the range of epitome and

patch sizes we have experimented with.

Approximate search We have also investigated the use

of approximate nearest neighbor (ANN) methods for epit-

omic patch matching. Contrary to exact search methods,

ANN search time typically grows sub-linearly with the dic-

tionary size, and is thus better scalable to extremely large

dictionary sizes. The approach we have followed is to ex-

tract all patches from each mini-epitome along with their

negated pairs, whiten, and then normalize them to be unit-

norm vectors, resulting in an inflated epitomic dictionary

with K · Np · 2 elements. After similarly whitening and

normalizing the input image patches, we search for their

best match with standard off-the-shelf kd-tree and hierar-

chical kmeans algorithms as implemented in the FLANN

library [20]. When using kd-trees, we have found it crucial

to apply a rotation transformation based on the fast 2-D dis-

crete cosine transform (DCT), instead of searching directly

for the best match in the image gradient domain. We pro-

vide more details about this important technical point in the

supplementary material. We also present experiments there

which show that the performance loss due to ANN is neg-



(a) Our epitomic patch dictionary (K = 256) (b) Non-epitomic dictionary (K = 1024)
Figure 2. Patch dictionaries learned on the full VOC 2007 training set, ordered column-wise from top-left by their relative frequency.

ligible, for moderate search times comparable to those of

SIFT-based VQ encoding algorithms.

3.4. Epitomic dictionary learning

Parameter refinement by Expectation-Maximization

Given a large training set of unlabeled image patches

{xi}
N
i=1, our goal is to learn the maximum likelihood model

parameters θ = {µk}Kk=1) for the epitomic GMM model in

Eq. (1). We employ the EM algorithm [8] and maximize the

expected complete log-likelihood

L(θ) =

N
∑

i=1

K
∑

k=1

∑

p∈P

γi(k, p)·

log
(

πkN (xi;αiTpµk + βi1, c
2
iΣ0)

)

, (3)

where P is the set of valid positions in the epitome. In the

E-step, we compute the assignment of each patch to the dic-

tionary, given the current model parameter values. We use

the hard assignment version of EM and set γi(k, p) = 1 if

the i-th patch best matches in the p-th position in the k-th

mini-epitome and 0 otherwise. In the M-step, we update

each of the K mini-epitomes µk by

(

∑

i,p

γi(k, p)
α2
i

c2i
T

T
p Σ

−1
0 Tp

)

µk =

∑

i,p

γi(k, p)
αi

c2i
T

T
p Σ

−1
0 (xi − βi1) . (4)

In all reported experiments we run EM for 10 iterations.

Diverse dictionary initialization with epitomic K-

means++ Careful parameter initialization helps EM con-

verge faster and reach a good local optimum solution. The

K-means++ algorithm [3] selects a diverse subset of train-

ing data instances as initialization to dictionary learning. It

randomly picks the first one and then incrementally grows

the dictionary by selecting subsequent elements with proba-

bility proportional to their squared distance to the elements

already in the dictionary. We adapt the standard K-means++

algorithm to our epitomic setup and select a H×W training

image patch as a new mini-epitome with probability propor-

tional to the sum of R2(xi; k, p) in a neighborhood of size

hp×wp around the i-th patch. This corresponds to spatially

smoothing the squared reconstruction error R2(xi; k, p) by

a hp×wp box filter.

Learned epitomic dictionary We show in Fig. 2 the epit-

omic dictionary with K = 256 mini-epitomes we learned

with the proposed algorithm on the full VOC 2007 training

set. We juxtapose it with the corresponding non-epitomic

dictionary with K = 1024 members we learned with the

same algorithm, simply setting H = W = h = w = 8. We

have chosen the non-epitomic dictionary to have 4 times

as many members so as both dictionaries occupy the same

area (note that 162/82 = 4) and thus be commensurate in

the sense that they have equal number of parameters.

As expected, the non-epitomic dictionary looks very

similar to the K-means patch dictionaries reported in [7].

Our epitomic dictionary looks qualitatively different: It

is more diverse and contains a rich set of visual pat-



(a) Original image (b) Reconstructed (PSNR=29.2dB)
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Figure 3. (a,b) Image reconstruction example with the K = 512

epitomic dictionary. (c) Image reconstruction on VOC 2007 test

set: K = 512 epitomic vs. K = 2048 non-epitomic dictionaries.

terns, including sharp edges, lines, corners, junctions, and

sinewaves. It has less spatial redundancy than its non-

epitomic counterpart, which needs to encode shifted ver-

sions of the same pattern as distinct codewords.

3.5. Reconstructing patches and images

Beyond qualitative comparisons, we have tried to sys-

tematically evaluate the generative expressive power of our

epitomic dictionary compared to the non-epitomic baseline.

For this purpose, having trained the two dictionaries on

the PASCAL VOC 2007 train set, we have quantified how

accurately they perform in reconstructing the images in the

full VOC 2007 test set. From each test image, we ex-

tract its 8×8 overlapping patches (with stride 2 pixels in

each direction) that form the set of ground truth patches

{xi}
N
i=1. For each patch xi we compute its closest match

x̂i = (αiTpµk + βi1) in each of the two dictionaries by

finding the parameters (αi, βi) and (k, p) that minimize the

squared reconstruction R2(xi; k, p) in Eq. (2) – note that

p = (0, 0) in the non-epitomic case.

We quantify how close xi and x̂i are in terms of nor-

malized cross-correlation in both the raw intensity and

gradient domains, NCC(i) = (xi−x̄i)
T (x̂i−x̄i)+λ

‖xi−x̄i‖λ‖x̂i−x̄i‖λ

and

NCCD(i) = (xi−x̄i)
T
D

T
D(x̂i−x̄i)+λ

‖D(xi−x̄i)‖λ‖D(x̂i−x̄i)‖λ

respectively, where

‖x‖λ , (xT
x + λ)1/2. Note that NCC takes values be-

tween 0 (poor match) and 1 (perfect match).

We can also reconstruct the original full-sized images by

placing the reconstructed patches x̂i in their corresponding

image positions and averaging at each pixel the values of

all overlapping patches that contain it. We quantify the full

image reconstruction quality in terms of PSNR. We show

an example of such an image reconstruction in Fig. 3(a,b).

Note that reconstructing an image from its SIFT descriptor

[28] is far less accurate and less straightforward than using

a generative image model such as the proposed one.

To evaluate the reconstruction ability of each dictionary,

we plot in Fig. 4 the empirical complementary cumulative

distribution function (CCDF=1-CDF, where CDF is the cu-

mulative distribution function) for the selected metrics. If

p = CCDF(v), then p×100% of the samples in the dataset

have values at least equal to v (higher CCDF curves are bet-

ter). The plots summarize VOC 2007 test set statistics of:

(a/b) the NCC/ NCCD for all N ≈ 5×107 patches and (c)

the PSNR for all 4952 images.

There are several observations we can make by inspect-

ing Fig. 4. First, for either dictionary type, whenever we

double the dictionary size K, the CCDF curves shift to the

right/up by a rouphly constant step. For example, we can

read from Fig. 4(a) that the K = 32 epitomic dictionary

already suffices to explain 58% of the image patches with

NCC ≥ 0.8. Each time we double K we explain 3% more

image patches at this level, with the K = 512 epitomic dic-

tionary being able to reconstruct 70% of the image patches

at NCC ≥ 0.8. In comparison, the K = 2048 non-epitomic

baseline can only reconstruct 62% of the image patches at

the same accuracy level.

Second, comparing the performance of the two dictio-

nary types, we observe that our epitomic model signifi-

cantly improves over the non-epitomic baseline in terms

of reconstruction accuracy. For example, we can see that

the K = 64 epitomic dictionary is roughly as accurate

as the K = 2048 non-epitomic dictionary which has 32

times more elements (the same holds for the K = 32/1024
dictionaries). Accounting for the fact that each 16× 16
mini-epitome occupies 4 times larger area than each clus-

ter center of the 8×8 non-epitomic dictionary, implies that

the epitomic dictionary is 32/4 = 8 times more compact

(in terms of number of model parameters) than the non-

epitomic baseline. We further show in Fig. 3(c) that the

epitomic dictionary consistently performs better (except for

1 out of the 4952 test images) in terms of image reconstruc-

tion PSNR (1.34 dB on average).

4. Image Classification with Mini-Epitomes

4.1. Image classification tasks

Here we show how the proposed dictionary of mini-

epitomes can be used in image classification tasks. We fo-

cus our evaluation on the challenging PASCAL VOC 2007
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Figure 4. Image reconstruction evaluation on the full VOC 2007 test set with our epitomic patch dictionary vs. a non-epitomic dictionary

for various dictionary sizes K (powers of 2). (a,b): Normalized cross-correlation of raw (NCC) and whitened (NCCD) image patches.

(c): PSNR of reconstructed whole images. Plots depict 1-CDF (higher is better).

image classification benchmark [11].

We extract histogram-type features from both epitomic

and non-epitomic patch representations which we feed to

1-vs-all SVM classifiers. We use χ2 kernels approximated

by explicit feature maps [27] and also employ spatial pyra-

mid matching [17]. Our implementation closely follows the

publicly available setup of [6], which presents a systematic

evaluation and tuned implementation of SIFT features cou-

pled with state-of-the-art encoding techniques.

4.2. Image description with miniepitomes

Here we focus on extracting histogram type descriptors

treating our epitomic dictionary as a bag of visual words.

From each image, we densely extract h×w overlapping

patches {xi}Ni=1 (with stride 2 pixels in each direction).

Matching each patch xi to the epitomic dictionary yields its

closest h×w patch in the epitomic dictionary, encoded by

the epitomic label li ∈ 1 : K and the position pi = (xi, yi),
with xi = 0 : wp − 1 and yi = 0 : hp − 1. We use hard

assignments (VQ) in all reported results.

In this setting, the most straightforward way to summa-

rize the content of an image is to build a histogram with K
bins, each counting how many times the specific epitome

has been activated. This “Epitome-Pos-1x1” descriptor is

very compact but completely discards the exact position of

the match within the epitome.

Our epitomic dictionary allows us to also encode the po-

sition information pi into the descriptor. While some of the

H×W mini-epitomes in our learned dictionary (see Fig. 2)

are homogeneous, others contain h×w patches with visu-

ally diverse appearance. We can encode the exact position

pi of the match in the epitome by a product histogram with

K · Np bins, where Np = hp×wp. However this yields a

rather large descriptor (note that Np = 81 in our setting)

which is very sensitive to the exact position. We opt instead

to encode the epitome position pi more coarsely. Specifi-

cally, we summarize the match positions in a t× t spatial

grid of bins yielding an “Epitome-Pos-t×t” descriptor with

total length K · t · t. For example, in the Epitome-16/8-Pos-

4x4 descriptor the epitomic position bins have size 3×3
pixels and stride 2 pixels in each direction. The (bx, by) bin

(bx, by = 0 : 3) gets a vote for each matched patch whose

position pi = (xi, yi) satisfies 2bx ≤ xi < 2bx + 3 and

2by ≤ yi < 2by + 3.

In all experiments we also encode the sign of the match,

putting matches with positive and negative αi’s in different

bins, which we have found to considerably improve perfor-

mance at the cost of doubling the descriptor size.

4.3. Classification results

For all the results involving the epitomic as well as the

non-epitomic patch models, we have learned dictionaries of

various sizes on the full VOC 2007 train set. We summarize

our results in Table 1 and illustrate them with plots in Fig. 5.

We first explore in Fig. 5(a) how epitome and patch sizes

as well as dictionary sizes affect the performance of the epit-

omic model. We find that the performance of the epitomic

model is not too sensitive to the exact setting of the epit-

ome/patch size. Similarly to the findings of [7], we observe

that the performance of all descriptors increases when we

use dictionaries with more elements.

In Fig. 5(b) we show that position encoding considerably

improves the recognition performance of the epitomic dic-

tionary, with the coarse 2×2 scheme exhibiting an excellent

trade-off between performance and descriptor size.

We can evaluate the proposed epitomic model relative

to the non-epitomic baseline along multiple axes. First, as

we can see in Figs. 5(a,b), the epitomic dictionary performs

much better than the non-epitomic baseline for fixed dic-

tionary size K. Second, we can see in Fig. 5(c) that epit-

omes have an edge over non-epitomes for fixed histogram

descriptor length K · t · t. Note that descriptor length di-

rectly affects the classifier training and evaluation time, as

well as the number of labeled data required for training.

Third, epitomes perform better than non-epitomes when

the two models have the same number of parameters, e.g.,



Epitome Position Dictionary Size K
/Patch Encod. 32 64 128 256 512 1024 2048

16/8 1x1 40.66 45.22 48.07 49.00 51.98 53.54 54.37

2x2 47.11 49.89 51.59 52.89 54.50 56.12 56.16

4x4 49.59 51.98 53.10 54.75 55.62 56.45 56.18

9x9 52.03 53.53 54.03 54.07 - - -

12/8 1x1 41.01 44.94 47.24 49.56 51.76 53.48 55.33

2x2 46.20 47.89 50.19 51.91 53.64 55.17 56.47

10/8 1x1 41.12 44.07 46.85 49.33 51.28 53.01 54.87

2x2 44.10 46.32 48.71 50.98 52.85 54.52 55.71

2x2/4 44.46 46.73 48.37 51.03 52.31 54.33 55.08

12/6 1x1 40.69 43.83 46.55 49.73 51.05 52.37 54.24

2x2 46.80 48.72 50.96 52.70 53.91 54.80 55.40

3x3 48.43 50.40 52.17 53.45 55.16 55.11 55.47

8/8 1x1 38.02 40.92 44.54 46.75 48.84 51.13 52.73

6/6 1x1 38.17 41.89 45.01 47.35 48.88 51.15 52.85

Table 1. Image classification results (mAP) of our epitomic dictio-

nary on the Pascal VOC 2007 dataset.

the K = 512 Epitome-16/8-Pos-2x2 dictionary achieves

54.50 mAP vs. 52.73 mAP of the comparable K = 2048
Non-Epitome-8/8. Fourth, we compare epitomes and non-

epitomes that require the same number of reconstruction

error computations for matching with the exact search al-

gorithm (note however that Sec. 3.3 presents more efficient

matching algorithms for epitomes). For this purpose, we

run an experiment with the K element Epitome-10/8-Pos-

2x2 dictionary and only searching at 4 candidate positions

(xi, yi) ∈ {0, 2}2 in each mini-epitome (2x2/4 entry in Ta-

ble 1 and Fig. 5(c)). This performs very similarly to the

comparable 4 ·K element Non-Epitome-8/8 dictionary.

Overall, classification performance of both models is

strongly correlated with the total number of patches con-

tained in the dictionary, yet the epitomic representation

offers distinct advantages over the non-epitomic baseline:

It generates a given number of patches with much fewer

model parameters, it controls the descriptor length by ad-

justing the coarseness of epitome position encoding, and is

amenable to fast search.

Comparing with the performance of VQ descriptors

based on SIFT, see Table 2, the most impressive finding is

that epitomic descriptors built on dictionaries with as few as

K = 256 or 512 mini-epitomes yield performance around

55% mAP, which takes SIFT dictionaries of size 10K to

achieve. Our best result at 56.47% mAP with 2048 mini-

epitomes even slightly outperforms the best SIFT VQ re-

sult reported in [6], attained with a dictionary of 25K visual

words. This result is also comparable to KCB and LLC-

based methods for encoding SIFT but still lags behind the

state-of-the-art Fisher Vector descriptor whose performance

is about 61% mAP [6, 25].

Epitomic footprint encoding We have also explored an

epitomic footprint encoding, which is related to the mean-

Method mAP Method mAP Method mAP

VQ-4K 53.42 KCB-4K 54.60 LLC-4K 53.79

VQ-10K 54.98 KCB-25K 56.26 LLC-10K 56.01

VQ-25K 56.07 FV-256 61.69 LLC-25K 57.60

Table 2. Image classification results (mAP) of top-performing

SIFT-based methods on the Pascal VOC 2007 dataset [6].

vector Fisher Vector encoding in [25]. The main idea is to

encode the difference between the appearance content of a

specific image compared to the generic epitome, which cap-

tures how much the epitome needs to adapt to best approxi-

mate a novel image. An appealling property of the epitomic

footprint descriptor is that it can be visualized or stored as

a small image and at the same time be used directly as fea-

ture vector in a linear SVM image classifier, yielding per-

formance around 52% mAP in our experiments. Please see

Fig.6 for a visualization and the supplementary material for

further details and examples.

(a) Image (b) Epitomic footprint
Figure 6. Epitomic footprint descriptor.

5. Discussion and Future Work

We have shown that explicitly accounting for illumina-

tion and position variability can significantly improve both

reconstruction and classification performance of a patch-

based image dictionary. Moreover, we have demonstrated

that the proposed epitomic model can perform similarly to

SIFT in image classification, implying that generative patch

image models can be competitive with discriminative de-

scriptors when properly accounting for nuisance factors.

In future work, we plan to extend the current system to-

wards capturing visual attributes such as depth or color and

modeling a richer set of spatial transformations, including

scale and rotation. We also plan to build deep variants of

our model, employing epitomes in hierarchical models.
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Figure 5. (a) Performance of the epitomic dictionary model (without epitome position encoding) and the non-epitomic baseline for different

epitome/patch sizes, as a function of dictionary size K. (b) Effect of encoding the epitome position at different detail levels. (c) Comparison

of the epitomic model (with or without position encoding) and the non-epitomic baseline, for the same total histogram length.
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