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Abstract

A probabilistic model allows us to reason about the
world and make statistically optimal decisions using
Bayesian decision theory. However, in practice the in-
tractability of the decision problem forces us to adopt sim-
plistic loss functions such as the 0/1 loss or Hamming loss
and as result we make poor decisions through MAP es-
timates or through low-order marginal statistics. In this
work we investigate optimal decision making for more re-
alistic loss functions. Specifically we consider the pop-
ular intersection-over-union (IoU) score used in image
segmentation benchmarks and show that it results in a
hard combinatorial decision problem. To make this prob-
lem tractable we propose a statistical approximation to
the objective function, as well as an approximate algo-
rithm based on parametric linear programming. We ap-
ply the algorithm on three benchmark datasets and ob-
tain improved intersection-over-union scores compared to
maximum-posterior-marginal decisions. Our work points
out the difficulties of using realistic loss functions with prob-
abilistic computer vision models.

1. Introduction
A popular viewpoint on computer vision tasks is to posit

them as a probabilistic inference task. The classic recipe is
as follows [28, 15, 25], shown in Figure 1: 1. specify a prob-
abilistic model p(x, z) of the quantity of interest z and the
observed signal x; 2. observe x and obtain the conditional
posterior distribution p(z|x) of the quantity of interest; 3.
using the posterior infer summary statistics or decisions.

In the last decade this recipe has been successfully used
and adapted. In particular, nowadays models for seman-
tic image segmentation and human pose estimation are of-
ten discriminatively and hence conditionally specified as
p(z|x; θ), where θ is a high-dimensional parameter vec-
tor [49, 30]. This changes the first step of the recipe, but
the 2nd and 3rd steps remain unchanged.

A large body of work is available describing probabilistic
models and sophisticated inference procedures, but the de-
cision task (step 3.) is often overlooked. For example, [49]
simply output the most likely state argmaxz p(z|x) as an
inference result. Deciding for the most likely state corre-
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Figure 1. Typical workflow when working with a probabilistic
model: 1. Estimation: using training data to find a good model
within a specified model class, 2. Inference: infering a posterior
distribution given an observation x, 3. Decision Making: using
posterior beliefs and a given utility to make optimal decision.

sponds to a particular choice of loss function, namely the
0-1 loss, `(z, y) = 1{z 6=y}. This loss is unrealistic and does
not match the way we assess prediction quality in computer
vision benchmarks. Our work fixes this mismatch; we start
from decision theory [2, 32]: given our beliefs p(z|x) and a
loss or utility function that measures the benefit of a decision
y when the true world state is z, we would like to make op-
timal decisions, that is minimize the expected loss or equiv-
alently maximize expected utility. In this work we consider
optimal decision making with the intersection-over-union
utility (IoU) [11] when using probabilistic models.

Another method to deal with task-specific loss func-
tions is to directly learn a decision function using empirical
risk minimization (ERM) [50], popular in computer vision
through the structured SVM. However, there are advantages
to maintaining a probabilistic model: first, we can use dif-
ferent loss functions at test time; second, probabilities facil-
itate combining separate submodels, each of which can be
separately designed and trained; and third, there is currently
no consistent ERM method for structured prediction [26].

1.1. Prior Work

Previous work has investigated empirical risk minimiza-
tion (ERM) [50] with higher-order loss functions; in com-
puter vision the first work is [4] who showed how to learn
with the intersection-over-union loss restricted to bounding
boxes. For segmentation Ranjbar et al. [35] approximate the
intersection-over-union score for empirical risk minimiza-
tion, and for the binary case, Tarlow and Zemel [44, 45] pro-
pose efficient inference procedures for the loss-augmented
inference problem. Krähenbühl and Koltun [21] extend [10]
to handle higher-order loss functions. Beside the higher-
order IoU score other higher-order loss functions such as
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label count losses and their approximability with simple
models has been investigated by Pletscher and Kohli [33]
and Küttel and Ferrari [23]. This prior work puts emphasis
in learning with higher-order losses; however, for learning
they all use the empirical risk learning objective. Our work
is different in that we follow the “classic” recipe and first
construct a probabilistic model, then solve the optimal de-
cision task using the higher-order loss function. The only
prior work that has considered this optimal decision task is
Tarlow and Adams [43], who proposed a greedy algorithm.

Contributions. Our work makes the following contribu-
tions. 1. We derive a closed-form statistical approxima-
tion, (8), to the intersection-over-union score for the case
of conditionally independent beliefs. 2. We propose an al-
gorithm, Alg. 2, for making approximately optimal deci-
sions under the intersection-over-union score. 3. We exper-
imentally evaluate the algorithm on multiple data sets and
demonstrate an increase in intersection-over-union score.

2. Problem and Statistical Approximation
We first formalize what it means to make optimal deci-

sions under uncertainty [2].

Problem 1 (Optimal Decision Making). Given a set Y =
{1, . . . ,K} of classes, an index set V = {1, . . . , n}, an
utility function U : YV × YV → R, and a probability dis-
tribution p over the set YV , find the optimal decision

y∗ = argmax
y∈YV

Ez∼p [U(z, y)] . (1)

Intuitively, (1) optimizes our expected utility under every
possibility z, weighted by our beliefs about the state of the
world as encoded in p. The problem could be generalized
by allowing more general decision domains but for most
applications in computer vision (1) is sufficient.

Solving (1) is difficult for three reasons. First, it is an
optimization problem over a large set whose size grows ex-
ponentially in |V|. Second, the expectation Ez∼p[·] requires
computation of an average over the same large set. Third,
the function U may not have enough structure for efficient
computation. In practice the tractability of (1) depends on
whether we can replace the expectation expression with a
simple closed-form solution. For example, in the simple
case when U is the negative Hamming loss it decomposes
additively over V so that the expectation commutes and each
variable can be optimized separately, yielding the maximum
posterior marginal (MPM) solution [25]. This is not the case
for more complicated utility functions, as we now illustrate.

2.1. Intersection-over-Union Utility

The intersection-over-union score is a popular bench-
mark score for semantic segmentation. It has become pop-

ular in the computer vision community due to the PASCAL
VOC segmentation challenges [11]. It is defined as follows.

Definition 2 (Intersection-over-Union Utility). Given a
ground truth assignment y ∈ YV and a prediction
z ∈ YV , the intersection-over-union utility is Uiou =
1
K

∑K
k=1 U

(k)
iou (z, y), where

U
(k)
iou (z, y) =

∑
i∈V 1{zi=k∧yi=k}∑
i∈V 1{zi=k∨yi=k}

(2)

is the per-class intersection-over-union utility and
1{predicate} is the indicator function which is one in case the
predicate is true and zero otherwise.

For the PASCAL VOC segmentation benchmark the set
V is the set of all pixels in all test set images. Therefore (2)
contains ratios of sums over all pixels and does not decom-
pose over pixels. This property makes (1) difficult to solve.
In particular we obtain the following specialization of (1) to
the intersection-over-union utility.

Ez∼p[Uiou(z, y)] =
1

K

K∑
k=1

Ez
[∑

i∈V 1{zi=k∧yi=k}∑
i∈V 1{zi=k∨yi=k}

]
. (3)

Equation (3) contains an expectation of a ratio, which
does not have a closed form solution. We now show how
this expectation can be approximated using techniques from
asymptotic statistics. In particular, we have the following
result due to Rice [36, 37].

Proposition 3 (Rice [36]). Let S and T be two real-valued
random variables with finite moments of all order and with
P (T = 0) = 0 and ET 6= 0. Then

E
[
S

T

]
=

ES
ET

+

∞∑
j=1

Ψj , (4)

where

Ψj = (−1)j
(ES)〈jT 〉+ 〈S,j T 〉

(ET )
j+1

. (5)

Here 〈jT 〉 denotes the j’th central moment of T so that
〈1T 〉 = 0 and we write 〈S,j T 〉 = E[(S − ES)(T − ET )j ].

In applications of this result the infinite sum is often trun-
cated. Similar but less general results are discussed in [39]
and [42, Section 4.10], and a discussion of expectations of
ratios is given by Heijmans [17].

To apply Proposition 3 to our expectation (3) we define
Sk =

∑
i∈V 1{zi=k∧yi=k} and Tk =

∑
i∈V 1{zi=k∨yi=k}

for each k ∈ Y so that we have E[U
(k)
iou (z, y)] = E[Sk/Tk].

We are interested in expanding E[Sk/Tk] = E[Sk]/E[Tk]+∑∞
j=1 Ψj , so we need to compute E[Sk], E[Tk], and Ψj .
For general p these expectations do not have sim-

ple closed-form solutions, but we can make progress



if we assume conditional independence, i.e. p(z|x) =∏
i∈V pi(zi|x), where x would be an observed image. As-

suming conditional independence is a natural modeling as-
sumption in many probabilistic models in computer vision
and does not imply unconditional independence between
different zi’s. For example, conditional independence is
assumed when using random forests [40] to predict pixel
marginals in semantic segmentation. Under this assumption
we have the following result, as also derived by [43, 21].

Proposition 4. For the above definition of Sk and Tk
and for a conditionally independent distribution p(z) =∏
i∈V pi(zi) we have, as a function of the decision y,

E[Sk] =
∑
i∈V

pi(k) 1{yi=k}, (6)

E[Tk] =
∑
i∈V

(1{yi=k} + pi(k) 1{yi 6=k}). (7)

We give the proof in the supplementary materials. We
now have simple closed-form expressions for E[Sk] and
E[Tk]. Let us examine the additional expansion terms Ψj .
For the first term Ψ1 we have the following result.

Proposition 5. For the intersection-over-union utility
E[Sk/Tk] we have Ψ1 = 0 in expansion (4).

We give the proof in the supplementary materials. It is
possible to analyze the higher order terms Ψj , j ≥ 2, but
we stop here because Proposition 5 already implies a strong
guarantee on the quality of the approximation. In particular
by standard results for the delta method, [42, Section 4.3],
we have asymptotically for n→∞ that

E
[
Sk
Tk

]
=

ESk
ETk

+O(n−1). (8)

Together with (6) and (7) this yields a closed-form approxi-
mation to E[Sk/Tk]. Note that in a typical computer vision
application n will be large (n � 103) and therefore the
approximation error will be small. This guarantee also ex-
plains the empirical success of this approximation as used
by [43, 21] where the approximation was derived heuris-
tically and described as “surrogate” and “relaxation”. We
now examine the guarantee (8) experimentally.

2.2. Experimental Validation of the Approximation

We perform the following simulation experiment. For
each of N = 5000 binary variables we sample a probabil-
ity distribution pi from a Dirichlet prior with uniform pa-
rameter α = 0.2. We then select n ∈ {100, 200, . . . , N}
and perform a Monte Carlo evaluation of E[S1/T1], E[S1],
and E[T1], where the expectation is evaluated by simulating
yi ∼ pi and zi ∼ pi one hundred thousand times. We then
compare E[S1/T1] with E[S1]/E[T1] and plot n against the
error on a log-log plot, see Figure 2.
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Figure 2. Approximation error of (8) as a function of n. Note the
log-log axes. The results are obtained using Monte Carlo simula-
tion of (8). The predicted O(n−1) behavior of the error is clearly
visible and the fitted slope coefficient is −0.9954 ≈ −1.

Because the theory predicts aO(n−1) behavior of the er-
ror we fit a line to the second half of the error observations.
The slope of the line agrees with an O(n−1) error.

3. Method
We now develop a method for making optimal decisions

under the intersection-over-union utility function. By spe-
cializing (1) to the intersection-over-union utility and by us-
ing approximation (8) with the closed form solutions (6)
and (7) we obtain the following problem, as in [43].

Problem 6 (Approximately Optimal Decision Making un-
der the Intersection-over-Union Utility). Given marginal
beliefs pi over K classes, find the prediction by solving

max
λ

1

K

K∑
k=1

∑
i∈V pi(k) λi,k∑

i∈V [pi(k) + (1− pi(k)) λi,k]
(9)

sb.t.
K∑
k=1

λi,k = 1, i ∈ V,

λi,k ∈ {0, 1}, i ∈ V, k ∈ Y.

Here λi,k is an indicator variable, selecting for each
yi one label λi,k = 1 so that yi = k. Problem 6 is
a sum of ratios of affine functions. The number of ra-
tios equals the number K of classes in the problem. This
type of optimization problem is known in the optimization
community by different names: sum-of-ratio linear frac-
tional program [38], multiple ratio hyperbolic 0-1 program-
ming problem [46], and generalized linear fractional pro-
grams [6]. For binary variables these problems are known
to be NP-hard in general even for a single ratio. But if we re-
lax the constraint λi,k ∈ {0, 1} to the interval λi,k ∈ [0, 1],
the known results are surprising: a sum containing only a
single ratio is solvable in polynomial time by the Charnes-
Cooper transformation [7], a sum of two ratios is also solv-
able in polynomial-time [20] and is known to be pseudo-
convex under restrictive conditions [6, Section 7.5] that do



not apply in our case. For three and more ratios the problem
remains hard even in the relaxed domain [38].

One sensible approach to solving (9) is proposed in [43],
where the authors use greedy local search, iteratively chang-
ing one variable at a time to improve the objective. The
method is simple to implement, efficient, and maintains a
feasible solution at all times; we describe it in the sup-
plementary materials. However, in many optimization
problems—for example discrete energy minimization prob-
lems [18]—such a simple greedy approach can be outper-
formed by approaches that make use of the problem struc-
ture. This is generally the case when the problem has an in-
trinsic complexity leading to local optima where the greedy
method could get stuck in. Our proposed method uses the
problem structure more globally but is based on solving
a relaxation and therefore could lead to non-integral so-
lutions. The question which method is preferable is then
an empirical question of how intrinsically complex the ob-
jective (9) really is. If it is sufficiently simple the greedy
method may work better, but if it is complex we may see
the more global method to work better.

Our approach to solving (9) will be to iteratively improve
a solution y by optimizing over blocks of variables corre-
sponding to pairs of labels, holding all other variables fixed.
Doing so yields a tractable subproblem where only two frac-
tions appear in (9) and we use Konno’s algorithm [20] to
solve the corresponding relaxed subproblem.

3.1. Optimizing over Two Classes

The strategy to optimize over a large subset of vari-
ables depending on the current candidate solution has been
used in the α-β-swap graphcut algorithm [5] and is also
used for solving a number of hard combinatorial problems
in the framework of very large scale neighborhood search
(VLSN) [1], [30, Section 4.5.1]. Applying it to (9) we ob-
tain the following subproblem restricted to two classes.

Problem 7 (Two Class Problem). For two distinct classes
k1, k2 ∈ Y , and a reference labeling y ∈ YV , let W ⊆
Wk1k2 = {i ∈ V : yi = k1 ∨ yi = k2}, W 6= ∅, that
is, an arbitrary non-empty subset of the variables currently
labeled k1 or k2. To find the optimal labeling restricted to
the setW , we set λi,k1 = µi, λi,k2 = 1− µi, and solve

max
µ

a0 +
∑
i∈W aiµi

b0 +
∑
i∈W biµi

+
c0 +

∑
i∈W ciµi

d0 +
∑
i∈W diµi

, (10)

sb.t. µi ∈ {0, 1}, i ∈ W,

where from the terms involving k1 and k2 in (9) we have

a0 =
∑
i∈V\W pi(k1) 1{yi=k1},

ai = pi(k1), i ∈ W,
b0 =

∑
i∈V pi(k1) +

∑
i∈V\W(1− pi(k1)) 1{yi=k1},

bi = 1− pi(k1), i ∈ W,
c0 =

∑
i∈V\W pi(k2) 1{yi=k2} +

∑
i∈W pi(k2),

ci = −pi(k2), i ∈ W,
d0 = |W|+

∑
i∈V\W

(
pi(k2) + (1− pi(k2)) 1{yi=k2}

)
,

di = pi(k2)− 1, i ∈ W.

To solve Problem 7 we adapt the algorithm of Konno
et al. [20]. This algorithm is based on first relaxing µi ∈
[0, 1], then transforming (10) by means of the Charnes-
Cooper transformation [7] followed by a parametric sim-
plex method for linear programming [8].

The Charnes-Cooper transformation defines a set ui of
variables and one additional variable u0 and introduces the
coupling constraints u0 = 1/(d0 +

∑
i∈W diµi), and ui =

µiu0. Problem 7 can now be rewritten in the new variables
as a sum of a ratio and a linear function as follows.

max
u0,u

a0u0 +
∑
i∈W aiui

b0u0 +
∑
i∈W biui

+ c0u0 +
∑
i∈W

ciui,

sb.t. d0u0 +
∑
i∈W

diui = 1,

ui ≤ u0, i ∈ W,

u0 ≥ 0, ui ≥ 0, i ∈ W.

To get rid of the final ratio we introduce an auxiliary pa-
rameter ξ = b0u0 +

∑
i∈W biui, and obtain the following

family of parametric linear programs.

P(ξ) = 1

ξ

{
max
u0,u

ξc0u0 + ξ
∑
i∈W

ciui + a0u0 +
∑
i∈W

aiui,

sb.t. b0u0 +
∑
i∈W

biui = ξ, (11)

d0u0 +
∑
i∈W

diui = 1,

ui ≤ u0, i ∈ W, (12)

u0 ≥ 0, ui ≥ 0, i ∈ W
}
.

The algorithm of Konno et al. [20] is an efficient paramet-
ric linear programming method to globally maximize P by
sweeping ξ from the minimum possible value to the maxi-
mum possible value, tracing the optimal solution for every
value of ξ. The solution path is a sequence of quadratic
functions in ξ and we visualize a typical example in Fig-
ure 3. Compared to standard parametric programming for
linear programs [3, Section 5.5] as used in computer vi-
sion [19], problem P(ξ) is more challenging because the
parameter ξ appears both in the objective function as well
as in the constraint (11). As a result, if we want to increase ξ
while maintaining an optimal solution, we need to perform
either a primal simplex update or a dual simplex update [8].

3.2. Implementation

Algorithm 1 describes the main loop of the algorithm.
The objective function—we show an example in Figure 3—
is defined between ξmin and ξmax and composed of piece-
wise quadratic functions in ξ. The algorithm starts with
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Figure 3. Typical example of function P(ξ) to be maximized in
ξ ∈ [ξmin, ξmax] by the parametric simplex method. P(ξ) is piece-
wise quadratic, in this case comprised of 441 segments.

Algorithm 1 Konno’s algorithm [20] for (10)
1: function PARASIMPLEX(a0, ai, b0, bi, c0, ci, d0, di)
2: ξmin ← b0/d0
3: ξmax ← (b0 +

∑
i∈W bi)/(d0 +

∑
i∈W di)

4: i∗ ← argmaxi∈W(ai + ξminci)
5: B ← {u0, ui∗} ∪ {si : i ∈ W} . feasible basis
6: B ← PRIMALSIMPLEX(B) . optimal basis
7: ξ ← ξmin
8: while ξ < ξmax do
9: (ξ, ξ, type, v)← COMPUTERANGE(B)

10: ξ̂ ← argmaxξ∈[ξ,ξ] P(ξ) . 1D quadratic

11: Compute maximizer µ(ξ̂)
12: ξ ← ξ . next interval
13: if type = primal then
14: B ← PRIMALSIMPLEX(B, v) . v enters B
15: else if type = dual then
16: B ← DUALSIMPLEX(B, v) . v leaves B
17: end if
18: end while
19: return global maximizer µ(ξ∗) of P
20: end function

ξ = ξmin and in each iteration increases ξ such that the
next interval defining another quadratic function is reached
(lines 12). Within each interval we obtain the closed form
solution (line 10) and keep track of the global optimal so-
lution ξ∗. We transform (12) to the standard slack form
ui − u0 + si = 0, where si ≥ 0 is a slack variable.

Implementing Algorithm 1 is challenging because both a
primal and dual simplex method need to be implemented [8,
3]. With care a matrix-free implementation can be achieved
by deriving closed-form solutions to two linear systems re-
lated to the constraint system defining P(ξ) and by using a
non-standard update strategy to the reduced costs [48]. Our
optimized C++ source code is available from the author’s
homepage. Despite our optimizations to the implementa-
tion the overall runtime of Algorithm 1 remains O(n2). We
show typical runtimes in Fig. 4 and observe that they are
empirically independent of the coefficients.

3.3. Optimizing (9) by Local Search

Our proposed method is fast enough to optimize predic-
tions for a single image. Unfortunately, because the current

use of IoU in segmentation benchmarks applies to the en-
tire test data set the quadratic runtime prohibits us to op-
timize over the decision variables of all images simultane-
ously. We therefore divide the set of all variables into ran-
dom subsets of a specified size. Each subset is optimized
sequentially and because each problem corresponds to a
neighborhood around the current solution we can guarantee
monotonic improvement of the objective (9). The overall
procedure is shown in Algorithm 2. We use a subproblem
size M = 2000 for the experiments. For a subproblem size
of M = 1 Algorithm 2 becomes the greedy method of [43].

Algorithm 2 Large Neighborhood Local Search for (9)
1: function OPTIMIZEIOU(p,V,K, iters,M )
2: yi ← argmaxk=1,...,K pi(k) . initialize with MAP
3: for t = 1, . . . , iters do
4: S ← RANDOMSHUFFLE((1, 2, . . . ,K))
5: for j = 1, . . . , bK/2c do . in parallel
6: k1 ← S(2j − 1), k2 ← S(2j)
7: Wk1k2 ← (i ∈ V : yi = k1 ∨ yi = k2)
8: Wk1k2 ← RANDOMSHUFFLE(Wk1k2)
9: for r = 0, 1, . . . , b|Wk1k2 |/Mc do

10: W ←Wk1k2(rM + 1, . . . , (r + 1)M)
11: Compute a0, ai, b0, bi, c0, ci, d0, di
12: µ← PARASIMPLEX(a, b, c, d)
13: for i ∈ W do
14: yi ← k1 if µi ≥ 1

2 , k2 otherwise
15: end for
16: end for
17: end for
18: end for
19: return approximately optimal decision y
20: end function

4. Experiments and Results
We now validate the key contribution; that is, we would

like to demonstrate that given the same marginal posteriors
our method can optimize the intersection-over-union score.
We use three baselines: the greedy method [43], the simple
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Figure 4. O(n2) runtime of Algorithm 1 as a function of n with
one unit standard deviation over 10 replications with randomly
chosen problem coefficients. For n = 2000, the size we adopt
in Algorithm 2, we have a runtime of 156ms on a single core of an
Intel Xeon E5-1650 3.20GHz CPU.



MAP decision (RF-MAP/MPM), which in our case is iden-
tical to the maximum posterior marginal (MPM) [25], and a
simple “inverse weighted” MAP method (iwMAP). For this
method we sum for each class k our total beliefs over all
variables, as γk =

∑
i∈V pi(k), then compute the inverse-

weighted beliefs p̃i(k) = (pi(k)/γk)/(
∑
` pi(`)/γ`). We

then compute the MAP decision using p̃. The intuition is
that the reweighting makes our new total beliefs over all
classes uniform and hence can give more probability mass
to apriori less likely classes. For our methods we also re-
port the believed accuracy and IoU score. The believed IoU
score is simply our objective (9), and the believed accuracy
is (
∑
i∈V pi(yi))/|V|. We run Algorithm 2 for 30 and 60 it-

erations to obtain approximately optimal decisions RF-IoU-
opt30 and RF-IoU-opt60 under the IoU utility.

For all experiments we use marginals obtained using a
random forest applied to each pixel [41]. We use the de-
cision tree implementation released by the authors of [31]
and augment the features used with simple Histogram-of-
Gradients, integral image, and image location features but
otherwise use the default settings. We use three semantic
scene segmentation data sets: LabelMeFacade [13], Stan-
ford Background [16], and PASCAL VOC 2012 [11]. Al-
though we downscale images for optimizing our decision
objective, we always assess accuracy and intersection-over-
union score on the original full resolution images.

4.1. LabelMeFacade Dataset

The LabelMeFacade data set [13] uses nine semantic la-
bels describing facade elements. There are 845 test im-
ages which we downscale by a factor of 0.125 for a total of
4,429,952 decision variables. The baseline results from ran-
dom forests in Table 1 are comparable in accuracy (71.28%)
with the state-of-the-art (67.33%), but yield an improved
IoU score after optimization (IoU-opt60, IoU-greedy).

Method Acc. belief/actual IoU belief/actual
RF [13] - / 49.06 - / -
ICF [14] - / 60.68 - / -
ICFHGWS+ [14] - / 67.33 - / -
RF-MAP/MPM 78.69 / 71.28 34.79 / 31.74
RF-iwMAP 55.30 / 53.76 32.35 / 32.01
RF-IoU-greedy [43] 75.75 / 69.60 38.75 / 35.96
RF-IoU-opt30 75.60 / 69.47 38.67 / 35.91
RF-IoU-opt60 75.72 / 69.56 38.70 / 35.91

Table 1. LabelMeFacade results (845 test images) [13].

4.2. Stanford Background Dataset

The Stanford background dataset [16] uses 8 semantic
classes and 715 images; the standard setup is five-fold cross
validation. We produce full resolution marginal posteriors
for each of the five test-folds and then downscale the images

by a factor of 0.25 for a total of 3,377,600 decision vari-
ables. The results are reported in Table 2. Our multiclass
accuracy (74.7%) is roughly comparable with the state-of-
the-art (81.9% in [24]). Among our results the MAP/MPM
decision has the highest accuracy and the IoU-opt60/IoU-
greedy decisions have the highest IoU score.

Method Acc. belief/actual IoU belief/actual
Gould et al. [16] - / 76.4 - / -
Kumar/Koller [22] - / 79.42 - / -
Lempitsky et al. [24] - / 81.90 - / -
Tighe/Lazebnik [47] - / 77.5 - / -
Farabet et al. [12] - / 81.4 - / -
RF-MAP/MPM 75.75 / 74.70 50.42 / 50.51
RF-iwMAP 69.21 / 69.90 47.67 / 49.59
RF-IoU-greedy [43] 75.15 / 74.58 51.79 / 52.36
RF-IoU-opt30 75.14 / 74.56 51.78 / 52.34
RF-IoU-opt60 75.14 / 74.58 51.79 / 52.36

Table 2. Five fold cross-validation results (715 images) for the
Stanford Background dataset [16].

4.3. PASCAL VOC 2012 Dataset

The PASCAL VOC semantic segmentation bench-
mark [11] is a challenging segmentation dataset with 21
classes. We train a random forest on the “train” subset and
produce a posterior for “val”, and also train on the “trainval”
subset and produce a posterior for “test”. We downscale the
posterior with a factor or 0.125 to obtain 4,104,672 decision
variables for “val” (1449 images) and 4,123,073 decision
variables for “test” (1456 images). The results are shown in
Table 3 and Table 4. For this challenging dataset we do not
come close to the state-of-the-art performance; however, on
“val” the IoU score achieved by the MAP/MPM decision
is improved from 3.51% to 11.08%. Because both deci-
sions are obtained from the same posterior marginals this
increase is directly attributable to our algorithm. As with
the previous datasets the best accuracy is achieved by the
MAP/MPM decision (RF-MAP/MPM), the best IoU score
by the IoU-decision (RF-IoU-greedy).

5. Discussions

The results demonstrate that methods which explicitly
optimize for the IoU performance outperform methods that
are unaware of the utility function. However, the sim-
ple greedy local search method [43] is surprisingly good,
slightly outperforming our global method. This is an in-
dication that the objective (9) is simple and does not have
many local optima. For practical purposes one can there-
fore use the more efficient greedy method. Note that this
behaviour is different to what is observed in discrete energy
minimization problems [18] where greedy methods like it-
erated conditional modes (ICM) are regularly outperformed



Method Acc. belief/actual IoU belief/actual
RF-MAP/MPM 80.47 / 73.33 3.82 / 3.51
RF-iwMAP 21.00 / 24.61 4.09 / 6.68
RF-IoU-greedy [43] 68.43 / 69.17 7.60 / 11.65
RF-IoU-opt30 65.98 / 66.95 7.20 / 10.68
RF-IoU-opt60 68.03 / 68.63 7.38 / 11.08

Table 3. PASCAL VOC 2012 validation set results (1449 images).

Method Acc. belief/actual IoU belief/actual
BONN O2PCPMC — / — — / 47.0
NUS — / — — / 47.3
UVA CRF — / — — / 11.3
RF-MAP/MPM 84.25 / — 4.01 / 3.61
RF-iwMAP 23.35 / — 4.02 / 7.53
RF-IoU-greedy [43] 73.63 / — 7.67 / 12.47
RF-IoU-opt30 71.27 / — 7.27 / 11.49
RF-IoU-opt60 72.92 / — 7.58 / 12.27

Table 4. PASCAL VOC 2012 test set results (1456 images).

by more global methods. Further analysis of the objec-
tive (9) is needed to explain this observation.

More generally our work raises a number of issues when
using probabilistic models in computer vision and some
specific points with the IoU utility.

Computational tractability of higher-order utility/loss
functions. We have assumed conditionally independent
beliefs pi for each variable i ∈ V . Arguably this is a strong
simplifying assumption. Yet, even with this assumption the
decision problem (Problem 6) remains a hard combinato-
rial optimization problem. It is reasonable to assume that
for more complex models the task would remain at least
as hard. Given this intractability, it is then interesting to
note that in the recent “marginal-based learning” framework
of [10] it is possible to do gradient-based parameter opti-
mization using the intersection-over-union utility as demon-
strated in [21]. Although the framework is based on empir-
ical risk minimization (ERM) it retains the probabilistic in-
ference method as internal component. It may be the case
that ERM is better suited for tractably learning with higher-
order loss functions because the hard part—handling the
higher-order loss—can be handled during training, whereas
test-time prediction remains efficient [45, 33].

The importance of calibrated probabilities. We have
seen in the experimental results that our believed accuracy
and believed intersection-over-union scores deviate from
the actual scores. Could it be that we have “overfitted” our
decisions by optimizing (1)? No, this is not possible: we al-
ready have beliefs p, and we merely make the best decision
under what we believe. The explanation for the observed
deviation is that our probabilities p are not perfectly cali-
brated. That is, we may believe that a variable yi is in a cer-

tain state with a certain probability, but we systematically
over- or underestimate this probability. As a consequence
the expectation (1) does not correctly estimate the conse-
quences of our decisions, as also observed in [43, 34].

How can we improve the calibration of our posterior
probabilities? If our probabilistic model class is sufficiently
accurate then known results guarantee that we will eventu-
ally be well-calibrated [9]. However, in realistic computer
vision applications our model is misspecified and even when
using Bayesian inference there is a systematic miscalibra-
tion [27]. Then a more pragmatic approach to calibration
may be to use bagging and recalibration methods, [29].

Sampling theory and decomposability. In the VOC seg-
mentation challenge [11] the IoU utility is evaluated on the
confusion matrix of the entire test data set. We argue against
this on the basis that the data set was created by sampling a
set of images at random from a large population of images
on the internet. Therefore one unit of observation is a sin-
gle image and the utility function should decompose along
these independent units. Applying the IoU utility on the en-
tire data set is not meaningful: if you do, your decisions on
a particular image can potentially be improved by consid-
ering future independent observables. On the other hand,
applying the IoU utility to individual images is meaningful.

6. Conclusion
In this work we have studied the intersection-over-union

score, a popular higher-order utility function used in image
segmentation benchmarks. Starting with decision theory we
proposed a statistical approximation and algorithm for mak-
ing approximately optimal decisions under the IoU utility.
The experiments have confirmed improved results. We hope
to stimulate further research into learning and optimal deci-
sion making with higher-order loss functions.
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[13] B. Fröhlich, E. Rodner, and J. Denzler. A fast approach for
pixelwise labeling of facade images. In ICPR, 2010.
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