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Abstract

We propose to decompose the fine-grained human activ-
ity analysis problem into two sequential tasks with increas-
ing granularity. Firstly, we infer the coarse interaction sta-
tus, i.e., which object is being manipulated and where it is.
Knowing that the major challenge is frequent mutual oc-
clusions during manipulation, we propose an “interaction
tracking” framework in which hand/object position and in-
teraction status are jointly tracked by explicitly modeling
the contextual information between mutual occlusion and
interaction status. Secondly, the inferred hand/object posi-
tion and interaction status are utilized to provide 1) more
compact feature pooling by effectively pruning large num-
ber of motion features from irrelevant spatio-temporal po-
sitions and 2) discriminative action detection by a granu-
larity fusion strategy. Comprehensive experiments on two
challenging fine-grained activity datasets (i.e., cooking ac-
tion) show that the proposed framework achieves high ac-
curacy/robustness in tracking multiple mutually occluded
hands/objects during manipulation as well as significant
performance improvement on fine-grained action detection
over state-of-the-art methods.

1. Introduction
Understanding human activities in fine-grained detail

has attracted increasing research interest during recent
years [22, 15, 21]. Solution to this is of particular interest to
computer assisted daily living application. The key to detect
fine-grained actions, especially those with rich human ob-
ject interactions, is to answer two sequential questions with
increasing granularity: 1) which object is currently being
manipulated (regarded as interaction status) and 2) which
type of interaction is performed (i.e., cutting a fruit or peel-
ing a fruit). The advantage of this two-step coarse-to-fine
visual understanding pipeline is that the output of the first
step can significantly benefit the second step. On the one
hand, as the spatio-temporal locations of candidate interac-
tion actions are identified in the first step, one can easily
search and prune the large spatio-temporal video volume
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Figure 1. Motivation of the proposed work. Fine-grained action
detection is decomposed into two sequential tasks with increasing
granularity: 1) interaction tracking; and 2) action detection. The
tracked interaction status and object position (coarse granularity)
can significantly aid action detection (fine granularity).

and quickly identify a small set of sub volumes that contain
the target action. On the other hand, there exists strong cor-
relation between the action type and the type of object-in-
use. For example, it is most likely to perform cutting with a
knife in hand. Therefore, knowing what object is currently
being operated gives us very important information on what
action is being performed.

There exist comprehensive literature in human activity
recognition, and the most promising methods are based on
locally extracted spatio-temporal features [14, 26]. These
methods can be divided into two major groups: 1) global
methods compute histogram representation on densely ex-
tracted local features for action classification [14, 20, 26]
and 2) local methods search the maximally confident video
sub-volume for action detection based on sparsely extracted
local features [24, 31]. These methods, however, cannot
cope with the challenging fine-grained action detection. On
the one hand, informative local motion features only exist at
the time of interaction, therefore globally pooling local fea-
tures results in a noisy histogram representation with a large
portion of irrelevant features. On the other hand, sparsely
located features convey insufficient information for repre-
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senting an action, therefore without any prior information
on the possible spatio-temporal sub volumes that contain
the target action, it is infeasible to exhaustively search the
whole video volume and to precisely detect the action sub-
volume. To reliably detect sparse local features in a realis-
tic fine-grained action video with large content variations is
therefore extremely difficult.

Motivated by the above observations, we propose to de-
compose the difficult fine-grained action detection problem
into two sequential sub-tasks with increasing granularity,
which are simpler and more tractable than directly perform-
ing action detection. The first sub-task is to recognize the
coarse status of interaction (i.e., which object is currently
being manipulated, and therefore the temporal duration of
the interaction) and where is the occurrence of interaction
(i.e., spatial locations of the objects and hands involved in
the interaction). This sub-task requires jointly tracking mul-
tiple interacting objects (parts) and hands, which is very
challenging. Previous methods [17, 5, 9, 32, 3, 29, 4, 2] on
multiple object tracking cannot be simply applied since dur-
ing object manipulation, very frequent mutual occlusions
exist. Our key observation is that there exists rich con-
textual information between the interaction status and the
occurrence of mutual occlusion. Namely, if we know the
status of interaction (whether a certain object is being ma-
nipulated at the moment), we can predict the occurrence of
mutual occlusion and take this information into account dur-
ing tracking. For example, if we know the person is hold-
ing a knife, we can confidently predict that the knife handle
is most likely to be occluded and the hand is close to the
knife blade. Therefore, even if we cannot directly detect or
track the handle of the knife, we can still know where it is
since the geometric relationship between the hand and the
blade implicitly encodes the position of the handle. To this
end, we propose a probabilistic graphical model that uti-
lizes the contextual information between interaction status
and mutual occlusion to jointly track multiple interacting
object parts/hands under frequent mutual occlusions. Our
tracking framework is called interaction tracking.

Output of the first sub-task significantly benefits the sec-
ond sub-task, which is to effectively represent fine-grained
action and detect it. On the one hand, knowing the posi-
tions of the hands and objects-in-use as well as the inter-
action status (i.e., the start and the end time of the interac-
tion) guides us when and where to extract informative local
motion features and to effectively prune large number of
irrelevant and noisy ones. We therefore propose an interac-
tion centered motion feature pooling scheme, which rep-
resents action more compactly and discriminatively. On the
other hand, we note that strong correlation exists between
which kind of action is being performed (i.e., action label)
and which object is being manipulated (i.e., interaction sta-
tus). We therefore propose a granularity fusion approach

which combines prior information given by the tracked in-
teraction status and the pooled interaction centered motion
feature bag-of-words representations into a spatial-temporal
action graph. This graph encodes both the object-action
co-occurrence probability and the action likelihood indi-
cated by local motion features. Action detection is then
performed by efficient inference on the constructed spatio-
temporal action graph.

2. Related Work

Object-in-use contextual information has been com-
monly used for recognizing actions which involve human
and object interaction [18, 28, 30, 12, 27]. However,
these methods often represent object-in-use information in
a global and coarse way, e.g., co-occurrence, which is in-
effective for representing fine-grained action. Packer et
al. [21] presented a system that is able to recognize com-
plex, fine-grained human actions involving the manipula-
tion of objects in cooking action sequences. Koppula et
al. [13] proposed a framework that jointly detects human
activities and object affordances. These works heavily rely
on 3D skeleton tracker (i.e., Kinect); however, in real-world
interactions, some body parts are often occluded and the
3D skeleton tracking easily fails. There exist many works
on hand detection and tracking [7, 25, 16]. However, in this
work, we are not interested in tracking hand alone. Instead,
we focus on tracking the interaction between hand and ob-
ject (part). To our best knowledge, the idea of explicitly
modeling the contextual information between the interac-
tion status and mutual occlusion for jointly tracking hand
and object interaction has never been explored.

3. Coarse Granularity: Interaction Tracking

We first introduce the notations. Assume we are given
a video sequence with T frames consisting of human and
object interactions (i.e., manipulations by hand such as bak-
ing an egg, cutting an apple, mixing using chopstick etc.),
the task of tracking interaction is to jointly estimate at each
frame: 1) which objects are being manipulated; and 2)
where are the objects and hands involved in the interaction.

To this end, we assume that we need to track the posi-
tions of H objects of interest. We note that when operating
an object, part of the object is hold by hand thus it will be al-
ways occluded, e.g., handle of the pan. To explicitly utilize
this prior knowledge, we partition an object into multiple
parts, e.g., a knife can be divided into two parts which are
blade and handle, and a fry pan can also be divided into a
handle and a main body. This decomposition also facilitates
detection, since detecting a part is easier than detecting the
whole object. We assume M object parts, i.e., H < M .
For the ease of presenting our method, we use two sets of
indices, namely object index and part index. Namely, an



object is indexed by h ∈ {1, · · · ,H} and an object part is
indexed by m ∈ {1, · · · ,M}. There is a one-to-one map-
ping from part index to object index, and according to its
parent object index, the M part indices can be divided into
H groups. We denoted by π(m) = h that part m belongs
to object h, e.g., the pan handle is part of the fry pan. Note
that some objects have only one part, e.g., bowl, hand, etc.
In the meantime, we also divide M parts into two groups,
with one group including the parts which will be occluded
during hand interaction, denoted by I, e.g., the pan handle.
We index hand (part) as m = 1.

Our method falls in the tracking by detection category.
In each frame, we apply individual object part detectors and
generate multiple candidate detections by thresholding the
detection confidence scores. For object part m at frame t, its
candidate detections are indexed as {1, · · · , dtm, · · · , N t

m}.
Accordingly, we denote by x(dtm) the image coordinate of
the detection dtm. We denote by ϕ(dtm) the visual feature
vector extracted from the detection dtm. For each frame t,
we define a set of variables pt = {pt1, · · · , ptM}, where each
ptm ∈ {1, · · · , N t

m} indicates which candidate detection is
selected. We denote P = {p1, · · · ,pT }. In the meantime,
for each frame t, we introduce an interaction status variable
vt, where vt = h, h ∈ {1, 2, · · · , H} means that object h
is currently being manipulated. vt = 0 means no object
is being interacted with, i.e., hand idle. We denote v =
{v1, · · · , vT }. Note that the formulation developed in the
rest of the paper applies to single hand interaction case; for
two hands case, we run our tracking framework twice.

The objective function for “tracking interaction” is for-
mulated as

Q(P,v) = QD(P,v) +QI(P,v) +QM (P,v), (1)

where QD denotes the detection cost which measures
how the selected candidate detections match object mod-
els; QI models the interactions between different object
parts/hands; and QM enforces the (motion) dynamic model.
The graphical representation of our tracking framework is
illustrated in Figure 2.

3.1. Hand and Object Part Detection Cost

The hand and object part detection cost can be expanded
as

QD(P,v) =
T∑

t=1

M∑
m=1

ED(ptm, vt). (2)

For object part m at time stamp t, the matching cost
ED(ptm = dtm, vt) measures the loss of selecting a can-
didate detection dtm for ptm given the interaction status for
the current frame vt, which is further defined as

ED(ptm = dtm, vt) = wD(m, vt)× s(ptm, dtm), (3)

vt 

 

1 
vt+1 

vt = pan Vt+1 = pan 

Figure 2. Graphical model of the proposed tracking framework.
Note that both fry pan and knife have two parts (i.e., handle + main
body). Different weighting parameters are illustrated according to
the interaction status vt = vt+1 = pan.

where s(ptm, dtm) measures the dissimilarity between candi-
date detection dtm and the object part m’s appearance model
as

s(ptm, dtm) = −lnp(ϕ(dtm)|θ(m)), (4)

Here θ(m) denotes the classification model trained for ob-
ject part m. Using the extracted visual feature vectors
from positive and negative object samples (patches) from
the training data, we train a kernel SVM model f(x|θ(m))
for each object class (using RBF kernel). We take the
sigmoid function of the SVM output score z = f(x =
ϕ(dtm)|θ(m)) to represent the detection confidence as

p(ϕ(dtm)|θ(m)) =
1

1 + exp(−z)
. (5)

The visual features for each candidate image patch, i.e.,
ϕ(dtm), are the concatenated feature vector consisting of
histogram of oriented gradients (HOG) [6] and HSV color
histogram. To cope with object deformation, multiple as-
pect ratios are modeled for objects.

The weighting parameter wD(m, vt) is defined as

wD(m, vt) =

{
wL

D, if π(m) = vt ∧m ∈ I
wH

D , else.
(6)

The weighting coefficients wH
D , wL

D indicate how important
it is to find a good match for object part m. The interaction
status vt plays the role as a switch variable which adjusts
the weighting coefficient according to the interaction status.
Namely, when object π(m) is being interacted, it is most
likely that some part m of it is occluded by hand (formally,
π(m) = vt∧m ∈ I). In this case, finding a good match for
this object part is less important, i.e., smaller value of the
weighting factor wL

D. In other case, it is less possible that
the object part m is occluded, and detecting it is important,
i.e.,wH

D > wL
D. We denote wD = (wH

D , wL
D)T and we

impose wH
D ≥ wL

D.



3.2. Interacting Hand and Object Part Cost

The cost induced by the interaction between hand and
object is defined as

QI(P,v) =

T∑
t=1

M∑
m=1

M∑
n=m+1

EI(p
t
m, ptn, vt). (7)

At time stamp t, the interaction cost induced by object part
n and m is defined as

EI(p
t
m, ptn, vt) = wI(m,n, vt)× s(ptm, ptn). (8)

The compatibility function s(ptm, ptn) (the smaller, the more
compatible) for object part m and n is defined as

s(ptm, ptn) =
1

σ̂x
mn

∥∆xt
mn − δ̂mn∥2

+
1

σ̂v
∥ ˙xt

m − ẋt
n∥2. (9)

Here ∆xt
mn is the measured distance between object part

m and n. δ̂mn is the empirical mean distance between the
interacting object part m and n estimated from the anno-
tated training data. σ̂x

mn is the corresponding estimated
variance for δ̂mn. We denote by ˙xt

m the velocity of ob-
ject part m at frame t, i.e., ˙xt

m = xt+1
m − xt

m. σ̂v is the
empirical variance of object velocity estimated from the an-
notated training data. Namely, the compatibility between
two object parts m and n consists of two measurements:
1) the difference between their current and empirical mean
relative distance; and 2) their current relative speed. The
definition for the compatibility measure is motivated by the
observations that 1) if two object parts are interacting, the
displacement between them follows some prior distribution
(e.g., the distance between two parts of the same object is
fixed) and 2) the relative movement between them should
be small (e.g., when the hand is holding an object, they are
moving with the same velocity).

The weighting parameter wI(m,n, vt) is defined as

wI(m,n, vt) =

 wL
I , if C1(m,n, vt) = 1

wH
I , elseif C2(m,n, vt) = 1

0, else,
(10)

where the corresponding indicator functions C1(.) and
C2(.) are defined as:

C1(m,n, vt) = I{π(m) = π(n) ∧ π(n) = vt ∧ n ∈ I}
∨ I{π(m) = π(n) ∧ π(m) = vt ∧m ∈ I}
∨ I{m = 1 ∧ π(n) = vt ∧ n ∈ I}. (11)

C2(m,n, vt) = I{π(m) = π(n) ∧ π(n) ̸= vt}
∨ I{π(m) = π(n) ∧ π(n) = vt ∧ (n,m) ̸∈ I}
∨ I{m = 1 ∧ π(n) = vt ∧ n ̸∈ I}. (12)

Three cases are considered for the interaction between two
object parts (or hand and object part). The interaction sta-
tus variable vt again serves as a switch variable which ad-
justs the importance weighting of the geometrical relation
between two parts depending on different situations.

1. Case I: There are two sub cases. In the first sub case,
two object parts belong to the same object and are not
being manipulated by hand. In the second sub case,
two parts belong to the hand and the visible part of
the object which is being manipulated by hand. In
both sub cases, both parts are most probably visible
and their fixed geometric relation should be enforced,
i.e., the weighting coefficient wH

I should be large.

2. Case II: There are two sub cases. In the first sub case,
two parts correspond to the same object which is cur-
rently being manipulated, with one part hold by hand.
In the second sub case, two parts belong to the hand
and the possibly occluded part of the object which
is currently being manipulated by hand. In both sub
cases, the part which is hold by hand is most proba-
bly occluded, therefore we apply a small value coef-
ficient wL

I to softly enforce the geometric relationship
between these two parts.

3. Case III: Those parts which are not belonging to the
same object or the interacting hand-object pair are con-
sidered to be irrelevant parts, and no geometric rela-
tionship should be imposed on them.

We denote wI = {wH
I , wL

I } and we impose wH
I ≥ wL

I .

3.3. Hand and Object Tracking Cost

The hand and object tracking cost includes two parts.
The first part considers the object movement and the sec-
ond part considers the transition property between two in-
teraction status (i.e., how probable is the interaction status
changed from object a to b). The tracking cost is defined as

QM (P,v) =
T−1∑
t=1

M∑
m=1

E1
M (ptm, pt+1

m )+
T−1∑
t=1

E2
M (vt, vt+1).

(13)
The motion tracking cost for object part m from frame t to
t+ 1 is defined as

E1
M (ptm, pt+1

m ) = wM (m, vt)× s(ptm, pt+1
m ). (14)

We assume a constant velocity motion model and therefore
the motion compatibility function s(ptm, pt+1

m ) is defined as

s(ptm, pt+1
m ) =

1

σ̂v
||xt+1

m − xt
m − v̂m||2, (15)

where v̂m is empirical mean speed of object part m esti-
mated from the annotated training data.



The weighting parameter wM (m, vt) is defined as

wM (m, vt) =

{
wL

M , if m ∈ I ∧ vt = π(m)
wH

M , else.
(16)

Again, the interaction variable vt adjusts the importance
of tracking individual object part under different situations.
When the object part is being interacted with, it is mostly
likely we cannot reliably track its movement due to occlu-
sion, and therefore we should apply a median value weight-
ing coefficient wL

M . When the object is not being interacted
with, tracking is easier and we therefore apply a large value
weighting coefficient wH

M .
The second part of the cost involves interaction status

transition, i.e., from interacting with one object to another
and the cost is defined as

E2
M (vt = h, vt+1 = l) = wV

M × (−ln(π̂hl)) (17)

where {π̂hl}, h, l ∈ {0, · · · , H} are the transition probabil-
ities. Each transition probability π̂hl is estimated from the
annotated training data. The parameter set is denoted by
wM = {wH

M , wL
M , wV

M} and we impose wH
M ≥ wL

M .

3.4. Model Learning and Inference

The learning task is to estimate the optimal values for
the parameter set w = {wT

D,wT
I ,w

T
M}, given N train-

ing videos (j = 1, · · · , N) with the corresponding an-
notations. We also denote wH = (wH

D , wH
I , wH

M )T and
wL = (wL

D, wL
I , w

L
M )T . Full annotation (i.e., bounding box

for each object and the interaction status for each frame) for
the whole training sequence is very time consuming. In-
stead, we use sparsely annotated data, i.e., object bounding
boxes and interaction status labels are only given for some
discontinued frames and the majority of video frames are
unlabeled. For training video j, we denote by (PO,j ,vO,j)

the labeled data (with annotated value (P̃O,j , ṽO,j)) and
(PH,j ,vH,j) the unlabeled data, respectively. We have
Pj = PO,j ∪ PH,j and vj = vO,j ∪ vH,j , respectively.
Formally, the objective of learning is casted as

min
N∑
j=1

Qj(P̃O,j ,PH,j , ṽO,j ,vH,j |w) + λ
N∑
j=1

ξj ,

w.r.t. w, {PH,j}, {vH,j},
s.t. lTw = 1, w ≽ 0,

wH −wL ≽ 0,

min
Pj ,vj

Qj(Pj ,vj)− min
PH,j ,vH,j

Qj(PH,j ,vH,j , P̃O,j , ṽO,j)

≥ δ(PO,j ,vO,j |P̃O,j , ṽO,j)− ξj , ξj ≥ 0, ∀j. (18)

Here δ(x|x′) = 0 if x = x′, otherwise δ(x|x′) = 1.
To simplify notation, note that Q(P,v|w) can be equiva-
lently written as wTΨ(P,v) by simple rearrangements of

the variables. Therefore the optimization problem is a con-
strained linear program. While the number of constraints
is exponential in the number of options for the configu-
rations {Pj ,vj}, we solve it efficiently using the cutting-
plane algorithm [10]. The key step in optimization is to effi-
ciently compute the minimal values for Qj(PH,j ,vH,j) and
Qj(Pj ,vj) Since the graphical model is not a tree structure
(it has cycles), there exists no efficient method to compute
the exact solution. We therefore solve the problem approx-
imately using loopy belief propagation method [19]. Given
the learned w, for a new video sample with detected ob-
ject and hand candidates, we jointly infer P and v by loopy
belief propagation [19].

4. Fine Granularity: Activity Detection
In this section, we will introduce a novel activity detec-

tion framework, which takes great advantage of the inferred
interaction status and object/hand tracking results, to per-
form 1) efficient feature pooling and 2) accurate action de-
tection by integrating interaction status information (prior)
and motion features (likelihood) into a graphical model.
The goal of activity detection is to label each video seg-
ment with appropriate action labels, e.g., cutting, seasoning,
etc. For detecting activities, we first temporally segment
the video sequence into overlapping small clips. We adopt
over-segmentation so that we end up with more segments
and avoid merging two activities into one segment. Multi-
ple temporal segmentation windows with sizes of 30, 60, 90
frames and 10, 20, 30 overlapped frames are utilized. Note
that interaction status change boundaries are preserved.

Interaction Centered Feature Pooling: Given a spatio-
temporal video volume, the common way to compute a
feature representation is to compute the histogram (bag-of-
words) of all local motion features extracted inside the vol-
ume, known as global pooling. However, this scheme is in-
capable of removing noisy and redundant background mo-
tion features, resulting in noisy video level representation.

Based on the inferred interaction status and the positions
of the interacting hands/objects, we propose an Interaction
Centered Feature Pooling scheme to perform feature ex-
traction and representation (pooling) efficiently and com-
pactly. Specifically, within each video segment local feature
extraction and pooling is ONLY performed within a sub
volume centered on the position where interaction occurs
(with the size of the object-in-use), i.e., the spatio-temporal
sub volume of the objects-in-use and hands obtained from
the proposed interaction tracking module (as illustrated in
Figure 1). Large number of irrelevant background and hu-
man body motion features that could harm the action rep-
resentation are thus removed. The local features we ex-
tract are dense motion trajectories [26]. For each trajec-
tory, we extract histogram of oriented gradient (HoG), mo-
tion boundary histogram (MBH), histogram of optical flow



(HoF) and trajectory shape (TS) as in [26]. These features
are encoded using a dictionary pre-trained on the training
data using K-means algorithm (K = 2000 ). Each video
segment i is then represented by a bag-of-words vector xi

(we abuse the notation here).
Granularity Fusion for Action Inference: Due to the

strong correlation between action label and the type of
object-in-use, the inferred interaction status serves as very
important prior information on what action is being per-
formed. We therefore develop a CRF-graph based method
to integrate this prior information with local motion feature
histogram pooled from the positions of object-of-interest
for more robust action detection. We assume a video is
pre-segmented into L segments. Each video segment i =
1, 2, · · · , L is represented by a node in the graph. We denote
by xi the histogram representation of local motion features
for the video segment i, and by yi its corresponding action
label. The interaction status label for segment i is denoted
by vi. We denote v = {v1, · · · , vL}, X = {x1, · · · ,xL}
and y = {y1, · · · , yL}. The energy function for the condi-
tional model is defined as

E(y|v,X) =
L∑

i=1

φi(xi, yi|vi) +
∑
i ̸=j

φij(xi,xj , yi, yj).

(19)
The unary potential is given by

φi(yi = c,xi|vi = s) = d(xi, c)× e(c, s), ∀c, s. (20)

The detection score (i.e., likelihood) given motion feature
xi is defined as (we assume C action categories)

d(xi, c) =
exp(f(c|xi))∑C

c′=1 exp(f(c
′|xi))

, ∀c, (21)

where f(c|xi)) denotes the detection (SVM classifier out-
put) score for action label c, given motion feature represen-
tation xi. The empirical compatibility score between the
action type c and the object-of-interest type s (i.e., prior) is
estimated from the annotated training data as

e(c, s) =
#{y(xi) = c, vi = s}

#{vi = s}
, ∀c, s. (22)

Edges link spatio-temporal nearby nodes i and j, i.e., i ∈
N (j). The corresponding pair-wise potential is defined as

φij(yi = ci, yj = cj ,xi,xj) =

{
a(ci, cj), i ∈ N (j)

0, else.
(23)

The neighboring node compatibility score a(ci, cj) can be
empirically estimated from the training data as

a(ci, cj) =
#{yi = ci, yj = cj}

#{yi = ci}+#{yj = cj}
, ∀ci, cj , i ∈ N (j).

(24)

The optimal action labels y is obtained by maximizing
the energy function E(y|v, X) using loopy belief propa-
gation [19].

5. Experiments
Our evaluations are two-fold. First, we show the advan-

tage of the proposed joint interaction status and multiple
objects’ tracking framework over various state-of-the-art
trackers that do not employ interactional contextual infor-
mation. Second, we show how the inferred interaction sta-
tus (coarse granularity) facilitates fine-grained action recog-
nition. Experiments are performed on two challenging fine-
grained action benchmarks with complicated human and
object interactions. 1) ICPR 2012 Kitchen Scene Con-
text based Gesture Recognition dataset (KSCGR) [1].
There are five candidate cooking menus cooked by five dif-
ferent actors. Each of the videos are from 5 to 10 minutes
long containing 9, 000 to 18, 000 frames. The task is to
recognize eight types of cooking motions such as baking,
boiling, breaking, etc. The objects of interest (which we
track) are fry pan, oil bottle, salt bottle, bowl, knife, spoon,
chopstick, spatula, chopping board, egg and ham. 2) MPII
Fine-grained Kitchen Activity Dataset (MPII) [23]. It
contains 65 different cooking activities, such as cut slices,
pour spice, etc., recorded from 12 participants. In total there
are 44 videos with a total length of more than 8 hours or
881, 755 frames. The dataset contains a total of 5, 609 an-
notations of 65 activity categories. It has high variations
because participants are just asked to prepare one to six of a
total of 14 dishes without any guide on how to perform indi-
vidual steps. For this dataset, the objects that we detect and
track are bottle, bowl, bread, charger, electric range, cup,
cupboard, chopping board, dough, drawer, egg, lid, food
wrapper, knife, pan, slicer, plate, pot, blender, seasoning
bottle, bottle rack, juicers, tin, tin opener and towel. For
both datasets, training and testing set are pre-partitioned.
For each object part, we annotate 1000 positive samples and
10000 randomly cropped negative samples from the training
data to train the detector for our method. These annotated
samples are also used to train the initial tracker for other
tracking methods being compared.

5.1. Interaction Tracking Results

We select eight manipulation sequences with average
frame number about 2000 from the testing set of KSCGR
to evaluate the interaction tracking performance. These se-
quences are manually annotated with object positions and
interaction status labels. It is intractable to provide annota-
tions for all testing sequences for both datasets. Neverthe-
less, the manipulation sequences we select are representa-
tive sequences which contain all kinds of human object in-
teractions with frequent occlusions and we believe they are
sufficient for qualitatively evaluating the tracking perfor-



Sequence
OAB TLD Ours

Err. Prec. Err. Prec. Err. Prec.
baking (3786) 42.9 0.27 36.2 0.34 28.9 0.56
boiling (3320) 40.7 0.30 35.2 0.38 25.5 0.59
breaking (299) 36.7 0.32 34.5 0.35 20.4 0.64
cutting (1373) 38.9 0.31 40.5 0.29 24.8 0.66
mixing (705) 36.6 0.40 32.8 0.52 17.9 0.68

peeling (3241) 45.3 0.21 40.7 0.24 30.1 0.62
seasoning (303) 37.8 0.35 34.2 0.33 12.3 0.69
turning (3402) 39.1 0.29 33.8 0.37 15.4 0.71

Table 1. Comparisons of tracking performances of various meth-
ods. Numbers of frames are indicated in brackets.

mance. We compare our interaction tracking method with
two state-of-the-art trackers including the OAB tracker [8]
and the TLD tracker [11]. These two trackers are applied
to track each object and hand separately. The measuring
metrics we use are: 1) Average Distance Error (Err.): the
average distance between the center of the identified bound-
ing box and the center of the ground-truth bounding box;
and 2) Precision (Prec.): the average percentage of frames
for which the overlap between the identified bounding box
and the ground-truth bounding box is at least 50 percent. In
Table 1, measurements are averaged over all target objects
and over all frames in the video sequence. Figure 3 visu-
alizes the inferred interaction status with the correspond-
ing ground truth annotations for two manipulation video
sequences. We also show several example frames of the
tracking results given by both 1) TLD tracker (dashed line
rectangle) and 2) our tracker (solid line rectangle).

From Table 1 we observe that our proposed interaction
tracking method outperforms TLD and OAB trackers sig-
nificantly, which demonstrates that modeling the contextual
information between interaction status and mutual occlu-
sion for joint hand and object tracking leads to substantial
performance improvements over the methods that ignore
this important cue. From Figure 3 we note 1) the inferred in-
teraction status is quite precise; and 2) for TLD tracker, the
tracked target positions drift when occlusion occurs during
manipulation. For example, in frame 3374 and 3565 of sea-
soning, the interacting hand occludes the spoon, therefore
the TLD tracker fails. In frame 3530 and 3565, the TLD
tracker recognizes the oil bottle as salt bottle due to similar
appearance. In contrast, our method which explicitly mod-
els the contextual information between tracking status and
mutual occlusion alleviates these issues.

5.2. Fine­grained Action Detection Results
The inferred interaction status is then utilized to detect

fine-grained actions. To demonstrate the effectiveness of in-
tegrating interaction status (prior) and local motion features
(likelihood), we perform action detection using: 1) the pro-
posed granularity fusion based action detection framework
in Section 4; 2) the same action detection framework but
by utilizing interaction status information only (i.e., setting

Method Best@KSCGR Interaction
Status

Motion
Features

Ours

Mean F-score 0.74 0.56 0.69 0.79

Table 2. Detection performance (mean F-score for all classes)
comparisons for KSCGR dataset.

Approach Prec. Recall AP
Best@MPII 19.8 40.2 45.0

Interaction Status 15.8 30.3 38.6
Motion Features 22.3 44.7 49.6

Ours 28.6 48.2 54.3
Table 3. Detection performance comparisons for MPII dataset.

φi(yi = c,xi|vi = s) = e(c, s) in Eqn. (20)), denoted
as Interaction Status; 3) the same action detection frame-
work but by utilizing local motion feature information only
(i.e., setting φi(yi = c,xi|vi = s) = d(xi, c) in Eqn. (20)),
denoted as Motion Features. For KSCGR dataset, the eval-
uation metric is the mean recognition F -score over all ac-
tion categories. We also compare our method to the best
reported result in the contest by Doman and Kuai [1], de-
noted as Best@KSCGR. The comparison results are sum-
marized in Table 2. For MPII dataset, we follow experi-
mental configuration and evaluation metric defined by the
dataset developer [23]. In brief, leave-one-person-out cross
validation is used. We also compare our method to the best
reported result in [23], denoted as Best@MPII. Multi-class
precision (Pr) and recall (Rc), and the mean value of single
class average precision (AP) are reported in Table 3.

We note 1) using coarse interaction status information
only (i.e., which object is being manipulated) already yields
good detection performances. This shows that interaction
status conveys important prior information on the type of
action being performed; 2) combining interaction status
with motion features within the proposed action detection
framework significantly boosts the detection performances,
compared with using local motion features alone; 3) for
MPII dataset, the method Best@MPII uses global motion
feature pooling for action representation. Our interaction
centered pooling method (Motion Features) outperforms
the global pooling method. This demonstrates that inter-
action centered pooling significantly attenuates the back-
ground noisy motion features and therefore yields better
action representation; and 4) our multiple modality analy-
sis framework significantly outperforms the state-of-the-art
detection performances for both benchmarks.

6. Conclusions
We utilized interactional context information for track-

ing multiple interacting objects and hands under mutual oc-
clusions. Based on this tracking framework, we further pro-
posed a multiple granularity analysis framework for fine-
grained action detection, which outperforms the state-of-
the-art on two challenging fine-grained action benchmarks.
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Figure 3. Examples of the tracked interaction status together with sample frames with object tracking results. Top: action sequence baking.
Bottom: action sequence seasoning. The objects tracked by our method are annotated with solid line rectangle and those tracked by TLD
tracker are with dashed line rectangle. The annotation rectangles are only shown for objects under interaction.
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