
Beta Process Multiple Kernel Learning

Bingbing Ni
Advanced Digital Sciences Center

Singapore 138632
bingbing.ni@adsc.com.sg

Teng Li
Anhui University

Hefei 230039, P. R. China
tenglwy@gmail.com

Pierre Moulin
UIUC

IL 61820-5711 USA
moulin@ifp.uiuc.edu

Abstract

In kernel based learning, the kernel trick transforms the
original representation of a feature instance into a vector
of similarities with the training feature instances, known
as kernel representation. However, feature instances are
sometimes ambiguous and the kernel representation cal-
culated based on them do not possess any discriminative
information, which can eventually harm the trained clas-
sifier. To address this issue, we propose to automatically
select good feature instances when calculating the kernel
representation in multiple kernel learning. Specifically, for
the kernel representation calculated for each input feature
instance, we multiply it element-wise with a latent binary
vector named as instance selection variables, which tar-
gets at selecting good instances and attenuate the effect of
ambiguous ones in the resulting new kernel representation.
Beta process is employed for generating the prior distri-
bution for the latent instance selection variables. We then
propose a Bayesian graphical model which integrates both
MKL learning and inference for the distribution of the la-
tent instance selection variables. Variational inference is
derived for model learning under a max-margin principle.
Our method is called Beta process multiple kernel learning.
Extensive experiments demonstrate the effectiveness of our
method on instance selection and its high discriminative ca-
pability for various classification problems in vision.

1. Introduction
In kernel based learning, a data sample x? is mapped

from its original feature space onto a new space consist-
ing of its similarities with all training samples: k? =
[k(x1,x?), · · · , k(xN ,x?)]

T , where k(,) denotes the simi-
larity (kernel) function and we assume N training samples
{x1, · · · ,xN}. This new representation is used to predict
the target output f of an unseen testing sample as x? by
f(x?) = 〈a,k?〉 + b (〈, 〉 denotes dot product). We call
k? the kernel representation for sample x? and a is the N -
dimensional model coefficient vector to learn.

1
2

5 4

9
8

6 7

3
10

1
2

5 4

9
8

6 7

3
10

2
1

3
5

9
8

6 7
4

10

2
1

3
5

9
8

6 7
4

10

Feature Instance Selection
for Kernel Representation

Testing Sample

Training Samples

y1 = +1

y10 = -1 x10

x1

x y= +1

1 2 10

Feature Type 1 Feature Type 4
Kernel Representations

k1 ,.

k4 ,.

k1 ,.

k4 ,.

Figure 1. Motivation of the proposed Beta Process multiple kernel
learning framework (BPMKL). In this toy example, there are 10
data samples with 5 positive (blue circle) and 5 negative (yellow
triangle) samples. Each sample is described by 5 types of features
and we calculate 5 kernel matrices based on them. Due to some
ambiguous feature instances, i.e., sample 10 on feature type 1 and
sample 7 on feature type 4 (ambiguous visual feature with both
elephant and motorcycle), the resulting kernel representations (for
testing sample x?) have strong similarity scores on these instances,
which harms the trained classifier. In contrast, BPMKL can se-
lect good instances for calculating the kernel representations and
therefore improves the classification performance.

In most real applications, a single type of feature is too
weak to represent a data sample. Weakness can be attributed
to the fact that a large portion of features coming from dif-
ferent classes share similar values and are thus ambigu-
ous. To be more discriminative, we always use multiple
types of features, i.e., x = [x1, · · · ,xP]T , to represent a
data sample x. We assume P types of features and each
xm,m = 1, · · · , P is called a feature instance. For exam-
ple, we usually extract various types of features including
color, shape, and texture etc., to describe an image. Mul-
tiple kernel learning (MKL) [1, 9, 19, 28, 21, 29, 8, 5] is
proposed to combine different types of features to boost
the classification performance. In particular, for an input
data sample x = [x1

?, · · · ,xP?]T , its kernel representations
based on different feature types {k1

?, · · · ,kP? } (i.e., km? =

1

[k(xm1 ,x
m
?), · · · , k(xmN ,x

m
?)]T) are linearly combined to

predict the target value as: k? =
∑P
m=1 emkm? , f(x?) =

〈a,k?〉 + b, where e = [e1, · · · , eP]T is the kernel combi-
nation vector.

On top of multiple kernel combination, in this work we
explore the idea whether we can perform feature instance
selection in calculating kernel representation and how it
could help to improve the trained classifier. Our intuitions
are as follows. On the one hand, kernel representations
based on the similarities measured with the ambiguous fea-
ture instances do not possess discriminative information and
they can harm the trained classifier. If we can automat-
ically discover these ambiguous feature instances and at-
tenuate their effects during training, the obtained classifier
can be more discriminative. On the other hand, de-selecting
some feature instances in computing the kernel representa-
tion will not loose too much useful information and degrade
the representation power since multiple feature types com-
plement each other and the corresponding multiple kernel
representations convey rich descriptive information. Our
motivation is visualized in Figure 1. To the best of our
knowledge, there exist few works in MKL literature that
explores this idea.

This motivates us to propose a probabilistic MKL frame-
work which can simultaneously perform good feature in-
stance selection in kernel representation and classifier learn-
ing. Specifically, for the kernel representation calculated
for each input feature instance, we multiply it element-wise
with a latent binary vector named as instance selection vari-
ables, which targets at selecting good instances and attenu-
ate the effect of ambiguous ones in the resulting new kernel
representation. The objective is then to capture the distribu-
tion of these latent indicator variables during MKL training.
To this end, Beta process is employed for generating the
prior distribution for the introduced latent instance selec-
tion variables. We then integrates both MKL learning and
inference for the distribution of the latent instance selection
variables, within a Bayesian graphical model framework.
Variational inference is derived for model learning under a
max-margin principle. Our method is called Beta process
multiple kernel learning (BPMKL). Qualitative and quan-
titative evaluations on a synthetic data, UCL toy datasets,
two image classification benchmarks and an action recogni-
tion video benchmark demonstrate that 1) the inferred dis-
tribution of latent instance selection variables well select
unambiguous feature instances in kernel representation by
the proposed method, and 2) it possesses high discrimina-
tive capability for various classification problems in vision
applications.

2. Related Works
Bach et al. [1] formulated the multiple kernel learn-

ing problem as a second-order cone programming (SCOP)

problem. Lanckriet et al. [9] formulated it as a semi-definite
programming (SDP) problem, and Gehler and Nowozin [4]
proposed a boosting-type MKL algorithm. To cope with
medium and large-scale problem, MKL is re-formulated
into different types of optimization problems including
semi-infinite linear programming (SILP) by Sonnenburg et
al. [19], sub-gradient descent (SD) by Rakotomamonjy et
al. [17], extension of the level method by Xu et al. [28]. In-
stead of sparse kernel selection, Varma and Babu [21] pro-
posed a generalized MKL algorithm that can use any differ-
entiable and continuous regularization term on the kernel
weights. Xu et al. [29], Kloft et al. [8] and Vishwanathan
et al. [22] presented efficient MKL algorithms with the `p-
norm on the kernel weights. Gönen [5] recently formu-
lated a very efficient MKL method based on fully factor-
ized variational approximation. However, none of these
previous works on MKL have explored the idea of fea-
ture instance selection for a more discriminative kernel rep-
resentation. Wang et al. demonstrated that multiple fea-
tures can be integrated by embedding sample relationships
in graphs [26] [27]. Wang et al. [23] proposed to learn-
ing image similarities using fast kernel machines with few
training samples.

Beta process prior [7] has been successfully applied in
the problem of factor analysis [15]. Beta process was also
employed as a prior for learning the dictionary in sparse im-
age representation, which was applied in denoising, inpaint-
ing and compressive sensing (CS) [31]. Recently, Mittel-
man et al. [14] developed a extension restricted Boltzmann
machine (RBM) by incorporating a Beta-Bernoulli process
prior for image mid-level feature learning. However, Beta
process has not been explored in the context of multiple ker-
nel learning. There exist a large number of works on feature
selection. However, instead of selecting good features, the
proposed work selects good instances for calculating kernel
representation.

3. Methodology
We introduce the notations used throughout the pa-

per as follows. Assume we have N training samples
{x1, · · · ,xN} and each sample j is described by P types
of features, i.e., xj = [x1

j , · · · ,xPj]T (each xmj is called
a feature instance). The N × N kernel matrix based on
the m-th feature type is denoted as Km = [kmj,i]j,i=1,··· ,N ,
where kmj,i = k(xmj ,x

m
i) and K = {K1, · · · ,KP }. Note

that we use j, i, and m to index training sample (column in
kernel matrix), reference training sample (same as training
sample, row in kernel matrix) and feature type. The kernel
representation for the m-th feature instance of the j-th sam-
ple corresponds to the j-th column of Km, which is denoted
as kmj,.. The associated class labels for all training samples
are represented as a N -dimensional vector y, where each
element yj ∈ {−1,+1}, j = 1, · · · , N .

3.1. Generative Process and Max-Margin Learning

As shown in Figure 1, the kernel representation for the
feature instance x? consists of its similarities with respect to
all training instances. However, we can note that some train-
ing instances from positive and negative classes are ambigu-
ous, namely, 1) some instances from both classes are very
close in feature space (ambiguity, e.g., the image with both
elephant and motorcycle is visually similar to both classes);
and 2) some instances locate within the cluster of instances
from the other class (outlier). It directly follows that the ker-
nel representation based on these bad feature instances will
harm the trained classifier. Our idea is thus to select good
feature instances for enhance the discriminative power of
the kernel representation.

To this end, for each kernel representation kmj,., j =
1, · · · , N ;m = 1, · · · , P , we introduce a N -dimensional
vector of binary multiplier zmj,. = [zmj,1, · · · , zmj,N]T . For
calculating the kernel representation for the m-th instance
of data sample j, element-wise product between kmj,. and
zmj,. (i.e., kmj,. ◦ zmj,., where ◦ denotes element-wise multipli-
cation) can select (if zmj,i = 1 for some i) or de-select (if
zmj,i = 0 for some i) the corresponding reference instance.
We denote Z = {Z1, · · · ,ZP }, Zm = [zm1,., · · · , zmN,.] the
set of instance selection variables. We note that Z are la-
tent variables and we assume that the prior distribution of
binary vectors zmj,., j = 1, · · · , N is sampled from a Beta
process (BP) [7, 31]. The BP with parameters aπ0, bπ0, and
base measureH0, is represented asH ∼ BP(aπ0,bπ0,H0).
Using BP, for each feature type m, we can draw the vec-
tor of prior probabilities πm = [πm1 , · · · , πmi , · · · , πmN]T

(and we denote Π = {π1, · · · ,πP }) for selecting instance
i (i = 1, · · · , N) in the kernel representation as:

H(xm) =

N∑
1

πiδxm(xmi),

πmi ∼ Beta(aπ0/N,bπ0(N− 1)/N), (1)

where δx() is a Dirac-Delta function with non-zero value
at point x. Note that H is a valid measure as N → ∞.
For our problem, this value is truncated to the number of
training samples. We assume that training feature instances
{xm1 , · · · ,xmN} are generated from the base distributionH0.
Each zmj,i, j = 1, · · · , N is then sampled from the Bernoulli
distribution Bernoulli(πm

i). We then use the new kernel
representation vector after instance selection (i.e., kmj,.◦zmj,.)
as input to the MKL learning framework. The class predic-
tion function can therefore be expressed as:

fj = aT (
P∑

m=1

emkmj,. ◦ zmj,.) + b,∀j = 1, · · · , N. (2)

The generative process of the proposed probabilistic model
for integrating MKL parameters and latent feature instance

selection variables is as follows:

λi ∼ G(λi;αλ0, βλ0), ai ∼ N (ai; 0, λ−1i), ∀i,
ωm ∼ G(ωm;αω0, βω0), em ∼ N (em; 0, ω−1m) ∀m,
πmi ∼ Beta(πm

i ;απ0, βπ0), ∀i ∀m,
zmj,i ∼ Bernoulli(zmj,i;π

m
i), ∀j, i ∀m. (3)

Here G(.), N (), Beta(), and Bernoulli() denote Gamma,
Gaussian, Beta and Bernoulli distributions, respec-
tively. απ0 = aπ0/N and βπ0 = bπ0(N − 1)/N .
(αλ0, βλ0, απ0, βπ0, αω0, βω0) are the hyper-parameters.

The rationale underlying our model learning is: by min-
imizing an integrated objective function, we aim to find the
underlying distributions for both latent instance selection
variables Z and the multiple kernel parameters a and e. On
the one hand, we can predict accurately on unseen data with
a sufficient margin, and on the other hand, we can explain
the data well (i.e., capable of automatically discovering
good and bad feature instances). To this end, we propose a
fully factorized variational distribution q(λ,ω,Π, e,a,Z)
to approximate the joint distribution of proposed graphical
model, i.e., p(λ,ω,Π, e,a,Z|K,y, b). (We omit hyper-
parameters for notational simplicity). We further assume
the approximate distribution q can be fully factorized as:

q(λ,ω,Π, e,a,Z) = q(λ)q(ω)q(Π)q(e)q(a)q(Z), (4)

with the factors given by:

q(λ) =

N∏
i=1

q(λi) =

N∏
i=1

G(λi;αλ,i, βλ,i),

q(a) = N (a;µa,σa) =

N∏
i=1

N (ai;µa,i, σa,i),

q(ω) =

P∏
m=1

q(ωm) =

P∏
m=1

G(ωm;αω,m, βω,m),

q(e) = N (e;µe,σe) =

P∏
m=1

N (em;µe,m, σe,m),

q(Π) =
∏
i,m

q(πmi) =
∏
i,m

Beta(πm
i ;αm

π,i, β
m
π,i),

q(Z) =
∏
j,i,m

q(zmj,i) =
∏
j,i,m

Bernoulli(zmj,i;φ
m
j,i). (5)

The objective of variational approximation is to minimize
the KL-divergence KL(q ‖ p), which is equivalent to maxi-
mize an upper bound L(q) = Eq(log p)−Eq(log q). Thus,
similar as in [32], the integrated learning problem using the

max-margin principle be can expressed as:

min
q,ξ,b

− Eq(log p) + Eq(log q) + C
∑
j

ξj

s.t. yjEq(fj) ≥ 1− ξj , ξj ≥ 0, ∀j,

fj = aT (

P∑
m=1

emkmj,. ◦ zmj,.) + b, (6)

where C is the penalty factor and we set C = 1000
in this work. Note that like in [32], the constraints of
Eqn. (6) are in the forms of expectation under the vari-
ational distribution q. The optimization task it to esti-
mate the variational parameters αλ = (αλ,1, · · · , αλ,N)T ,
βλ = (βλ,1, · · · , βλ,N)T , µa = (µa,1, · · · , µa,N)T ,
σa = (σa,1, · · · , σa,N)T , αω = (αω,1, · · · , αω,P)T ,
βω = (βω,1, · · · , βω,P)T , µe = (µe,1, · · · , µe,P)T ,
σe = (σe,1, · · · , σe,P)T , απ = [αmπ,i]

m=1,··· ,P
i=1,··· ,N , βπ =

[βmπ,i]
m=1,··· ,P
i=1,··· ,N , Φ = [φmj,i]

m=1,··· ,P
j,i=1,··· ,N . To estimate these

variational parameters, we develop an EM-like algorithm,
which iterates the following two steps. In E-step, we in-
fer the posterior distributions of the latent instance selection
variables (q(Z) and q(Π)); In M-step, we infer the poste-
rior distributions of the MKL model parameters (q(λ), q(a),
q(ω), and q(e)).

3.2. Inference for q(λ), q(a), q(ω) and q(e)

To infer q(λ), we expand the objective function of
Eqn. (6) by explicitly expressing {αλ,i} and {βλ,i} as:

Qλ : = (αλ,i − αλ,0)[ψ(αλ,i)− log (βλ,i)]

(βλ,i − βλ,0 −
1

2
ã2i)

αλ,i
βλ,i

+ Const., (7)

where ψ() denotes the digamma function. Note that the in-
ference for q(λ) does not involve the constraints of Eqn. (6).
By setting ∂Qλ

∂αλ,i
= 0 and ∂Qλ

∂βλ,i
= 0 and solving for optimal

{αλ,i} and {βλ,i}, we obtain the updating rules as:

αλ,i = αλ0 +
1

2
, βλ,i = βλ0 +

ã2i
2
, ∀i, (8)

where ã2i denotes the expected value of a2i with respect to
the variational distribution q(a), namely ã2i = Eq(a)(a

2
i) =

µ2
a,i + σ2

a,i.

To infer q(a), we expand Eqn. (6) by explicitly express-

ing {µa,i}, {σa,i} and derive the Lagrange of Eqn. (6) as:

La :=
1

2

N∑
i=1

λ̃i(µ
2
a,i + σ2

a,i)−
1

2

N∑
i=1

log(2πeσ2
a,i)

−
N∑
j=1

υ?j {yj [µTa (

P∑
m=1

µe,mkmj,. � z̃mj,.) + b]− 1 + ξj}

+ C
∑
j

ξj −
N∑
j=1

υjξj + Const., (9)

where we can calculate z̃mj,. = Eq(zmj,.)(z
m
j,.) = φmj,. and

λ̃i = Eq(λi)(λi) = αλ,i/βλ,i. Here υ? = [υ?1 , · · · , υ?N]T is
the vector of dual variables. By setting ∂La

∂σ2
a,i

= 0 we obtain

the updating rules for {σa,i} as:

σ2
a,i =

1

λ̃i
,∀i. (10)

By setting ∂La
∂µa,i

= 0 we can obtain the updating rules:

µa,i = (

N∑
j=1

υ?j yj

P∑
m=1

kmj,iz̃
m
j,iẽm)/λ̃i, ∀i. (11)

Here ẽm = Eq(em)(em) = µe,m. By setting ∂La
∂ξj

= 0 and
∂La
∂b = 0 and substitute µa,i with Eqn. (11), we can derive

the dual problem as:

Da : min
υ?

lTυ? − 1

2
υ?,TA1υ

?,

s.t. 0 ≤ υ?j ≤ C, ∀j,
N∑
j=1

yjυ
?
j = 0, (12)

where l is an all-one vector and A1 is defined as:

A1 = yyT ◦[
N∑
i=1

1

λ̃i
(

P∑
m=1

ẽmkm,i ◦z̃m.,i)(
P∑

m=1

ẽmkm,i ◦z̃m.,i)
T].

(13)
Note that the dual problem has the same form of the sup-
port vector machine (SVM), therefore we use the SMO al-
gorithm [16] to efficiently solve for the optimal values of
dual variables.

Inference for q(ω) is similar to the inference of q(λ) and
the updating rules for {αω,m} and {βω,m} are given by:

α̃ω,m = αω0 +
1

2
, β̃ω,m = βω0 +

ẽ2m
2
, ∀m, (14)

where ẽ2m = Eq(em)(em) = µ2
e,m+σ2

e,m. Similarly, to infer
q(e), we expand Eqn. (6) by explicitly expressing {µe,m}

and {σe,m} and derive the Lagrange as:

Le :=
1

2

P∑
m=1

ω̃m(µ2
e,m + σ2

e,m)− 1

2

P∑
m=1

log(2πeσ2
e,m)

−
N∑
j=1

υ?j {yj [ãT (

P∑
m=1

µe,mkmj,. ◦ z̃mj,.) + b]− 1 + ξj}

+ C
N∑
j=1

ξj −
N∑
j=1

υjξj + Const. (15)

By setting ∂Le
∂σ2

e,m
= 0 and ∂Le

∂µe,m
= 0 we can have the

updating rules for {µe,m} and {σe,m} as:

σ2
e,m =

1

ω̃m
,∀m, (16)

µe,m = [

N∑
j=1

υ?j yj ã
T (kmj,. ◦ z̃mj,.)]/ω̃m, ∀m, (17)

where ã = Eq(a)(a) = µa and ω̃m = Eq(ωm)(ωm) =

αω,m/βω,m. By setting ∂Le
∂ξj

= 0 and ∂Le
∂b = 0 and sub-

stitute µe,m with Eqn. (17) we can obtain the dual problem
as:

De : min
υ?

lTυ? − 1

2
υ?,TA2υ

?,

s.t. 0 ≤ υ?j ≤ C, ∀j, (18)
N∑
j=1

yjυ
?
j = 0, (19)

where A2 is defined as:

A2 = yyT ◦ [

P∑
m=1

1

ω̃m
(Km ◦Z̃m)

T
ããT (Km ◦Z̃m)], (20)

and we apply SMO algorithm to obtain the optimal values
for the dual variables.

3.3. Inference for q(Z) and q(Π)

We note that the inference of q(Π) does not involve the
constraints, and we expand the objective in Eqn. (6) by ex-
plicitly expressing {αmπ,i} and {βmπ,i} as:

Qπ := (αmπ,i − απ0 −
N∑
j=1

z̃mj,i)(ψ(αmπ,i)− ψ(αmπ,i + βmπ,i)),

+(βmπ,i − βπ0 −
N∑
j=1

(1− z̃mj,i))(ψ(βmπ,i)− ψ(αmπ,i + βmπ,i)).

(21)

By setting ∂Qπ
∂αmπ,i

= 0 and ∂Qπ
∂βmπ,i

= 0 we can obtain the
updating rules as:

αmπ,i = απ,0+

N∑
j=1

z̃mj,i, βmπ,i = βπ,0+

N∑
j=1

(1−z̃mj,i), (22)

where z̃mj,i = Eq(zmj,i)(z
m
j,i) = φmj,i,∀j, i,m.

For the inference of q(Z), we expand Eqn. (6) by explic-
itly expressing {φmj,i} and derive the Lagrange as:

Lz := −φmj,i ˜log(πmi)− (1− φmj,i) ˜log(1− πmi)

+ φmj,ilog(φmj,i) + (1− φmj,i)log(1− φmj,i)

− υ?j {yj [aT (

P∑
m=1

ẽmkm,j ◦ φ
m
,j) + b]− 1 + ξj}

+ Cξj − υ?j ξj + Const. (23)

In theory, we can do the optimization to get the optimal
solution of {φmj,i} and the corresponding optimal Lagrange
multipliers {υ?j }. But the full optimization would be ex-
pensive. Therefore we follow the optimization strategy pro-
posed in [32], which is to perform a single step update of
φmj,i, rather than a full optimization. Note that this one-
step approximation could lead to a slight increase of the
objective function during the iterations. Our empirical stud-
ies show that this increase is usually within an acceptable
range. More specifically, we fix ξ and the lagrange mul-
tipliers υ? at the optimum solution of the previous step.
Then, by setting ∂Lz

∂φmj,i
= 0 together with the constraint

0 ≤ φmj,i ≤ 1, we obtain the updating rules for φmj,i as:

φmj,i =
exp (˜log(πmi)− ˜log(1− πmi) + ∆m

j,i)

exp (˜log(πmi)− ˜log(1− πmi) + ∆m
j,i) + 1

,

∆m
j,i = υ?j yj ãiẽmk

m
j,i, ∀i, j,m. (24)

Here ˜log(πmi) = ψ(αmπ,i) − ψ(αmπ,i + βmπ,i) and
˜log(1− πmi) = ψ(βmπ,i)− ψ(αmπ,i + βmπ,i). The derived up-

dating rules for q(Z) have intuitive explanations: 1) υ?j = 0
means the corresponding samples (instances) are far from
the decision boundary and are easily classified, therefore
the derived updating rule can solely depend on the prior
q(πmi) and we don’t need to change the value of φmj,i ac-
cording to the observed data zmj,i, i.e., ∆m

j,i = 0; 2) υj > 0
means the corresponding samples are around the decision
boundary and are more likely to be ambiguous. We assume
ẽm > 0. If ãiyjkmj,i < 0, it means that kmj,i can contribute
in the correct direction (sign) to the prediction value fj . It
is therefore less ambiguous if we use the i-th reference in-
stance xmi in calculating the kernel representation for fea-
ture instance xmj . In this case we should rely more on the
similarity kmj,i and thus φmj,i should be increased, which fol-
lows that ∆m

j,i > 0. And vice versa.

3.4. Convergence, Complexity and Prediction

The stopping criterion is set that change of parameter
values between consecutive iterations do not exceed 10−4.
The SMO algorithm in both E and M steps decreases the ob-
jective function value. Despite of the slight increase of the
cost function during inference of q(Z), our empirical stud-
ies show that this increase is usually within an acceptable
range and does not influence the trend of the optimization
procedure. Our experiments also show convergence can
usually be attained within 20 iterations. Besides the com-
putational cost for SMO, the complexity of the computation
steps for µa, A1, µe, A2, Π and Φ are just O(N2P) (we
ignore other less computational steps). In the meantime,
as our algorithm does not involve inversion of the kernel
matrix (which is costly), it can scale well with large scale
problem (i.e., large N).

We can use the obtained posterior estimation of the vari-
ational distribution q to derive the predictive function for an
unseen sample (out-of-sample) x? = [x1

?, · · · ,xP?]T . This
can be done by calculating the expectation the predictive
function over q as:

fj = Eq{aT (

P∑
m=1

emkm?,. ◦ zm?,.)}+ b,

.
= uTa [

P∑
m=1

µe,mkm?,. ◦ (αmπ ./β
m
π)] + b, (25)

where we use the fact Eq(z?,.) = Eq(φm?,.)φ
m
?,.

.
=

(αmπ ./β
m
π) and ./ denotes element-wise division. For

multi-class learning, we use the one-versus-all scheme to
directly extend the proposed model.

4. Experiments
4.1. Synthetic Data

We have 100 positive data samples and 100 negative data
samples. Each sample is composed of 50 types of features
and each type of feature is two-dimensional. For each fea-
ture type (i.e., two-dimensional vector), positive and neg-
ative instances are distributed as two Gaussians. We ran-
domly select 20% instances and add Gaussian noises in
order to make the positive instances confuse with nega-
tive ones (i.e., distributed together and not easily separa-
ble. See the diamond shaped instances in Figure 2). We
then generate 50 Gaussian kernels (each kernel corresponds
to a feature type) and run BPMKL training. The feature
instances and the corresponding inferred confidence values
{φkji = Eq(z

k
ji)} from two feature types are visualized in

Figure 2. We rearrange {φkji} and the ones corresponding
to the 20% corrupted instances are on top. We note that
BPMKL can automatically select good feature instances
(brighter regions on the map) for kernel representation.

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2 -1 0 1 2 3
-2

-1

0

1

2

3

4

Feature Instance Scattering Learned Map of φji
k

Feature Type 1 (k=1) Feature Type 2 (k=2)

Feature Instance Scattering Learned Map of φji
k

Positive Good Instances Positive Ambiguous Instances Negative Good Instances Negative Ambiguous Instances

i

j

i

j

Figure 2. Synthetic experiment result. Left column: 2D feature
instance scattering plot. Right column: the corresponding φk

ji map
learned by BPMKL. Brighter pixels represent high φk

ji values. For
better view, please zoom in the original pdf.

4.2. UCL Machine Learning Benchmarks

Classification accuracies and running times of BPMKL
and state-of-the-art MKL algorithms are evaluated on five
data sets from the UCI repository: bupaliver, heart, iono-
sphere, pima, and sonar. Following the experimental set-
tings in [5], we randomly select 70% samples for training
and the rest for testing. We construct Gaussian and polyno-
mial kernels with the same bandwidth and degree parameter
settings as in [5]. BPMKL is compared to three state-of-
the-art MKL algorithms including: 1) SILP [19], 2) Sim-
pleMKL [17] and 3) BEMKL [5]. The comparison results
are given in Table 1 in terms of mean value (e.g., accuracy,
running time) and standard deviation out of 20 runs. Ta-
ble 1 shows: 1) BPMKL algorithm outperforms all com-
paring MKL algorithms in terms of classification accuracy.
The reason is that BPMKL selects good reference instances
to compute kernel representation while others do not pos-
sess this capability and the learned classifier is degraded by
noisy feature instances; 2) the time complexity of BPMKL
is similar with that of SimpleMKL since both algorithms
are based on iterative SMO steps. Method based on ker-
nel matrix inversion (e.g., SILP) becomes inefficient when
the kernel size (N2) is large (e.g., pima) and the number of
kernels (P) to inverse is large (e.g., sonar).

To evaluate the algorithmic robustness, for bupaliver and
ionosphere, we randomly corrupt some features of the train-
ing data. We randomly select 10%, 20%, 30% feature in-
stances (e.g., elements of feature vectors) from the training
samples and contaminate them by adding zero mean and
unit variance noises. We then train MKL classifiers and vi-
sualize the classification accuracies on the testing data in
Figure 3. We note that BPMKL is robust to noisy features
since it can select good feature instances for kernel repre-
sentation. In contrast, other MKL methods degrade signifi-
cantly with the increasing of noise level.

4.3. Image Classification Benchmarks

We perform image classification experiments using the
proposed BPMKL algorithm on the Caltech101 [11] and
Caltech256 [6] image benchmarks. For both datasets, we
randomly select 30 images for training and report the classi-

Dataset bupaliver N=241 P=91 heart N=189 P=377 ionosphere N=245 P=442 pima N=537 P=117 sonar N=144 P=793
Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

SILP 65.9± 2.6 21.6± 4.6 78.3± 2.1 53.9± 2.8 91.7± 2.5 108± 21.2 76.5± 2.3 118± 19.9 80.5± 5.1 1201± 385
SimpleMKL 65.9± 2.3 9.7± 2.5 78.6± 3.2 25.8± 3.9 91.5± 2.5 62.4± 10.9 76.5± 2.6 41.5± 5.6 80.6± 5.1 85± 46.2
BEMKL 68.4± 4.8 4.5± 0.5 80.8± 4.5 15.7± 1.6 92.0± 1.7 24.1± 3.1 75.0± 2.3 22.5± 2.4 76.9± 4.1 55.8± 1.6
BPMKL 71.1± 3.9 6.3± 1.4 83.1± 2.8 22.6± 2.2 96.2± 2.2 30.3± 5.9 77.3± 2.7 38.9± 4.1 84.2± 3.7 32.8± 4.7

Table 1. Accuracy and running time comparisons on UCL machine learning benchmarks. The computing platform is Intel Xeon(R) duo-
core@2.8GHz CPU with 6 GB memory. We denote by N and P the number of samples and kernels, respectively.

0% 10% 20% 30%
58

60

62

64

66

68

70

72

Percentage of Corrupted Features

T
es

t A
cc

ur
ac

y
(%

)

SILP
SimpleMKL
BEMKL
BPMKL

0% 10% 20% 30%
78

80

82

84

86

88

90

92

94

96

98

Percentage of Corrupted Features

T
es

t A
cc

ur
ac

y
(%

)

SILP
SimpleMKL
BEMKL
BPMKL

Figure 3. Test accuracies under different noise levels on bupaliver
(left) and ionosphere (right).

fication accuracies averaged over all categories. We extract
SIFT [12] features from densely located patches centered at
every 4 pixels on the images and the size of the patches is
fixed as 16 × 16 pixels. We construct a visual word dic-
tionary containing K words (K = 4096) from the training
samples via K-means clustering. Each SIFT feature vector
is encoded into a K-dimensional code vector by locality-
constrained linear coding (LLC) [25].

Multiple kernels are constructed using the following
scheme. Images are hierarchically partitioned into 1 × 1,
2 × 2 and 4 × 4 blocks on as in SPM [10]. We also verti-
cally partition the images into 2 × 1 and 3 × 1. We there-
fore has 26 spatial blocks (feature channels). Within each
block, features are pooled to form a K-dimensional rep-
resentation vector. For each feature channel, we calculate
the kernel matrix using linear, Gaussian, χ2, and histogram
intersection kernels. These yields 26× 4 = 104 kernel ma-
trices. The bandwidth parameters for χ2 and Gaussian ker-
nels are set as the average of the squared distances (χ2 and
Euclidean, respectively) of the training sample pairs. In ad-
dition, following [4], we also include 8 PHOG shape based
kernels, 3 local binary pattern based kernels and one V 1S+
(thresholded Gabor filter responses) based kernel. The total
number of kernels is therefore 116.

In Table 2, mean accuracies and standard deviations out
of 20 runs (e.g., random split) are reported for various im-
age classification methods. The methods for comparison
include: 1) the spatial pyramid matching kernel method
(KSPM) in [10]; 2) the sparse coding + spatial pyramid
matching method (ScSPM) [30]; 3) the locally linear en-
coding method (LLC) in [25]; 4) the smooth sparse cod-
ing method (SSC) in [2]; 5) the Laplacian sparse coding
method (LScSPM) in [3]; 6) the multiple kernel object fea-
ture combination method (LP-β-MKL) in [4]; 7) the dense
feature pooling method (BSPR) in [18]. Note that we di-
rectly report the published results for these state-of-the-art
methods as all methods follow the same experimental set-

tings. We note that BPMKL achieves higher average test

Table 2. Classification accuracy (%) comparison on Caltech101
and Caltech256 datasets.

Algorithm Caltech101 Caltech256
KSPM [10] 64.6± 0.8 34.1
ScSPM [30] 73.2± 0.5 34.0± 0.4

LLC [25] 73.4 41.2
SSC [2] 81.0± 1.2 –

LScSPM [3] – 35.7± 0.1
LP-β-MKL [4] – 45.8

BSPR [18] – 46.8± 0.2

SILP 78.3± 0.9 43.8± 0.5
SimpleMKL 78.7± 1.2 44.1± 0.6

BEMKL 79.1± 1.3 43.4± 1.1
BPMKL 83.4± 0.8 48.8± 0.7

accuracy than state-of-the-art MKL algorithms. BPMKL
also outperforms state-of-the-art image classification meth-
ods. To further demonstrate the instance selection capability
of BPMKL, we illustrate in Figure 4 several image blocks
that correspond to top (left column) and bottom (right col-
umn) confidence values (i.e., φkji) trained by BPMKL. We
note that the image blocks which are selected for kernel rep-
resentation (top φkji values) present discriminative appear-
ances and vice versa.

Figure 4. Sample image blocks from Caltech101 dataset. Left:
with highest inferred φk

ji values. Right: with lowest inferred φk
ji

values. Each row corresponds to patches from one category.

4.4. Action Recognition Benchmark

We also apply the BPMKL algorithm for action recog-
nition on the challenging Hollywood2 action recognition
video benchmark [13]. We follow the same settings as
in [24] to extract dense trajectory features, i.e., length of

Table 3. Average precision per action class for the Hollywood2
dataset, using the dense trajectory method [24] and our BPMKL
method.

Method Dense Trajectory [24] BPMKL
AnswerPhone 32.6 35.8

DriveCar 88.0 87.5
Eat 65.2 68.8

FightPerson 81.4 84.5
GetOutCar 52.7 51.9
HandShake 29.6 35.7
HugPerson 54.2 55.5

Kiss 65.8 67.9
Run 82.1 85.6

SitDown 62.5 66.7
SitUp 20.0 24.4

StandUp 65.2 68.1
mAP 58.3 61.0

trajectory is set to be 15. For each motion trajectory, as
in [24], we extract trajectory shape descriptor (TSD), mo-
tion boundary histogram (MBH), histogram of oriented gra-
dient (HoG) and histogram of optical flow (HoF) descrip-
tors. We calculated bag-of-words (BOW) representations
for each of the three types of feature descriptors. Dictio-
naries are trained by K-means algorithm and the size is
set to be 2048. Multiple kernels are constructed as fol-
lows. We follow [20] and spatially and temporally partition
the video volume into 24 sub-volumes and for each sub-
volume we calculate BOW representation vectors for four
types of features. For each feature channel, we calculate
the χ2 kernel matrix. Therefore the total number of kernels
is 24 × 4 = 96. The bandwidth parameter for χ2 kernel
is set as the average of the squared distances of the train-
ing sample pairs. Per-class average precision (AP) compar-
isons with the state-of-the-art dense trajectory method [24]
are given in Table 3. BPMKL outperforms the state-of-the-
art on this challenging benchmark. The mAP values using
other MKL algorithms are 58.6, 58.9, 58.0 for SILP, Sim-
pleMKL and BEMKL, respectively.

5. Conclusions
A Beta process multiple kernel learning (BPMKL)

method was proposed to perform instance selection for
more discriminative multiple kernel representation. It was
applied for various vision problems including image classi-
fication and action recognition with significant performance
gain over the state-of-the-art methods.

Acknowledgment
This study is supported by the research grant for the Hu-

man Sixth Sense Programme at the Advanced Digital Sci-
ences Center from Singapore’s Agency for Science, Tech-
nology and Research (A*STAR). This work is also par-
tially supported by the National Natural Science Foundation
(NSF) of China (No. 61300056).

References
[1] F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning,

conic duality, and the smo algorithm. In ICML, 2004.
[2] K. Balasubramanian, K. Yu, and G. Lebanon. Smooth sparse coding via

marginal regression for learning sparse representations. In ICML, 2013.
[3] S. Gao, I. W. Tsang, L.-T. Chia, and P. Zhao. Local features are not lonely -

laplacian sparse coding for image classification. In CVPR, 2010.
[4] P. Gehler and S. Nowozin. On feature combination for multiclass object classi-

fication. In ICCV, pages 221–228, 2009.
[5] M. Gönen. Bayesian efficient multiple kernel learning. In ICML, 2012.
[6] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Tech-

nical report, California Institute of Technology, 2007.
[7] N. L. Hjort. Nonparametric bayes estimators based on beta processes in models

for life history data. The Annals of Statistics.
[8] M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien. lp-norm multiple kernel

learning. JMLR, 12:953–997, 2011.
[9] G. Lanckriet, N. Cristianini, P. Bartlett, and L. E. Ghaoui. Learning the kernel

matrix with semi-definite programming. JMLR, 5:27–72, 2004.
[10] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyra-

mid matching for recognizing natural scene categories. In CVPR, 2006.
[11] F. Li, R. Fergus, and P. Perona. Learning generative visual models from few

training examples: an incremental bayesian approach tested on 101 object cat-
egories. In CVPR workshop, 2004.

[12] D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV,
60(2):91–110, 2004.

[13] M. Marszalek, I. Laptev, and C. Schmid. Actions in context. In CVPR, pages
2929–2936, June.

[14] R. Mittelman, H. Lee, B. Kuipers, and S. Savarese. Weakly supervised learn-
ing of mid-level features with beta-bernoulli process restricted boltzmann ma-
chines. In CVPR, 2013.

[15] J. Paisley and L. Carin. Nonparametric factor analysis with beta process priors.
In ICML, 2009.

[16] J. C. Platt. Sequential minimal optimization: A fast algorithm for training sup-
port vector machines. Technical report, ADVANCES IN KERNEL METHODS
- SUPPORT VECTOR LEARNING, 1998.

[17] A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet. Simplemkl. JMLR,
9:2491–2521, 2008.

[18] D. X. S. L. S. Yan, X. Xu and X. Li. Beyond spatial pyramids: a new feature
extraction framework with dense spatial sampling for image classification. In
ECCV, pages 473–487, 2012.

[19] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple
kernel learning. JMLR, 7:1531–1565, 2006.

[20] J. Sun, X. Wu, S. Yan, L.-F. Cheong, T.-S. Chua, and J. Li. Hierarchical spatio-
temporal context modeling for action recognition. In CVPR, pages 2004–2011,
2009.

[21] M. Varma and B. R. Babu. More generality in efficient multiple kernel learning.
In ICML, pages 1065–1072, 2009.

[22] S. V. N. Vishwanathan, Z. Sun, N. Theera-ampornpunt, and M. Varma. Multiple
kernel learning and the smo algorithm. In NIPS, 2010.

[23] G. Wang, D. Hoiem, and D. Forsyth. Learning image similarity from flickr
groups using fast kernel machines. TPAMI, 34(11):2177–2188, 2012.

[24] H. Wang, A. Kläser, C. Schmid, and L. Cheng-Lin. Action recognition by dense
trajectories. In CVPR, 2011.

[25] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained
linear coding for image classification. In CVPR, 2010.

[26] M. Wang, X.-S. Hua, R. Hong, J. Tang, G.-J. Qi, and Y. Song. Unified video
annotation via multi-graph learning. TCSVT, 19(5):733–746, 2009.

[27] M. Wang, H. Li, D. Tao, K. Lu, and X. Wu. Multimodal graph-based reranking
for web image search. TIP, 21(11):4649–4661, 2012.

[28] Z. Xu, R. Jin, I. King, and M. R. Lyu. An extended level method for efficient
multiple kernel learning. In NIPS, 2008.

[29] Z. Xu, R. Jin, H. Yang, I. King, and M. R. Lyu. Simple and efficient multiple
kernel learning by group lasso. In ICML, 2010.

[30] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using
sparse coding for image classification. In CVPR, 2009.

[31] M. Zhou, H. Chen, J. Paisley, L. Ren, G. Sapiro, and L. Carin. Non-parametric
bayesian dictionary learning for sparse image representations. In NIPS, 2009.

[32] J. Zhu, A. Ahmed, and E. P. Xing. Medlda: Maximum margin supervised topic
models for regression and classification. In ICML, 2009.

