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Abstract

In this paper, we propose a new methodology for seg-
menting non-rigid visual objects, where the search pro-
cedure is conducted directly on a sparse low-dimensional
manifold, guided by the classification results computed from
a deep belief network. Our main contribution is the fact
that we do not rely on the typical sub-division of segmen-
tation tasks into rigid detection and non-rigid delineation.
Instead, the non-rigid segmentation is performed directly,
where points in the sparse low-dimensional can be mapped
to an explicit contour representation in image space. Our
proposal shows significantly smaller search and training
complexities given that the dimensionality of the mani-
fold is much smaller than the dimensionality of the search
spaces for rigid detection and non-rigid delineation afore-
mentioned, and that we no longer require a two-stage seg-
mentation process. We focus on the problem of left ventricle
endocardial segmentation from ultrasound images, and lip
segmentation from frontal facial images using the extended
Cohn-Kanade (CK+) database. Our experiments show that
the use of sparse low dimensional manifolds reduces the
search and training complexities of current segmentation
approaches without a significant impact on the segmenta-
tion accuracy shown by state-of-the-art approaches.

1. Introduction
Current methodologies for top-down segmentation of de-

formable objects using machine learning techniques usually
divide the problem into two stages [1, 2, 3, 4, 5]: (i) rigid
detection followed by (ii) non-rigid segmentation. The fun-
damental reason for having this first stage is to reduce the
complexity of the training and search mechanisms. For in-
stance, if we have a contour represented by S 2-D points,
a naive exhaustive search (e.g., by quantizing each of the
2× S dimensions into K samples) leads to a complexity of
O(K2S). The introduction of an intermediate rigid detec-
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a) proposed approach

b) typical non-rigid segmentation approach [1, 2, 3, 4, 5]
Figure 1. Proposed approach compared to the typical 2-step non-
rigid segmentation.

tion allows for a drastic reduction of the search and train-
ing complexities with the use of a low dimensional rigid
space t ∈ RR (with R << 2S) that estimates the trans-
lation, scale and rotation transformations of a mean con-
tour (note that R represents the dimensionality of the search
space). Furthermore, the resulting transformed mean con-
tour is used to initialize and constrain the non-rigid seg-
mentation, which decreases even more the search and train-
ing complexities of the methodology. The final search and
training complexities of such approaches are usually domi-
nated by the rigid detection, which is a function of the rigid
transformation space dimensionality R.

In this paper, we propose a new methodology for seg-
menting non-rigid visual objects, where the search pro-
cedure is conducted directly on a sparse low-dimensional
manifold, guided by the classification results computed
from a deep belief network. Our main contribution is the
fact that we do not rely on the typical sub-division of seg-

1



mentation tasks into rigid detection and non-rigid delin-
eation (Fig. 1 shows a comparison between our proposal
and the typical non-rigid segmentation approach found in
the literature). The objectives of this paper are the follow-
ing: 1) increase the efficiency of the search process given
the small dimensionality of the manifold (where the search
takes place) and the fact that we solve the segmentation
problem directly (without sub-dividing it into rigid and non-
rigid detection); and 2) decrease the training complexity by
constraining the shape distribution on the manifold (thus re-
ducing the complexity of the trained models). Notice that
this paper represents a significant extension of the segmen-
tation approaches proposed in [1, 2, 3, 4, 5], which are based
on the typical sub-division of the segmentation problem
into rigid detection and non-rigid delineation (Fig. 1-(b))1.
Moreover, the use of manifold in non-rigid segmentation
problems has been explored in a slightly different fashion
by Yang et al. [6], who use a manifold to learn a motion
model instead of a shape model. Finally, it can be argued
that this work lies in the realm of statistical shape model [7],
but note that the ideas presented here can in principle be ex-
tended to other shape models that reduce the dimensionality
of the shape representation (however, this extension is out
of the scope of this paper).

In order to test the efficacy of our approach, we apply it
to two non-rigid segmentation problems. The first problem
is the segmentation of the left ventricle (LV) of the heart
from ultrasound images and the second problem is the seg-
mentation of lip boundary from video sequences. We show
that our approach obtains a significant reduction in terms of
search and training complexities without affecting the seg-
mentation accuracy produced by state-of-the-art method-
ologies.

2. State-of-the-art Non-rigid Segmentation
In this section, we briefly describe how the problem

of non-rigid segmentation using machine learning tech-
niques is addressed by current state-of-the-art methodolo-
gies. Consider that an grey-scale image Ij : Ω → [0, 255]
(Ω denotes the image space) has a region containing the vi-
sual object of interest, which is explicitly represented by a
list of S 2-D points (this is also known as the annotation),
forming a matrix S ∈ R2×S (see for example Fig. 5 that
shows several annotations of two different types of visual
objects - left ventricle and lips). Assume that a training set
containing several images and their respective annotations
is available and represented by D = {(I,S)j}|D|

j=1. The op-
timal segmentation is found using the following optimiza-
tion problem:

S∗ = argmax
S

p(S|I,D), (1)

1Note that [3] also uses a sparse low-dimensional manifold, but only
for the rigid detection and still sub-divides the problem into rigid detection
and non-rigid delineation.

where this function denotes the probability of finding a
non-rigid segmentation S in image I , assuming a model
is learned from the training set D. In general, the high
dimensionality of S makes the direct optimization of (1)
highly complex, and a common solution adopted to re-
duce this complexity is a divide-and-conquer type of al-
gorithm, where preliminary lower dimensional problems
are introduced and summed out. For instance, several ap-
proaches [1, 2, 3, 4, 5] introduce one preliminary problem
represented by a hidden variable t ∈ RR, with R <<
(2×S), leading to the following new problem formulation:

p(S|I,D) =

∫
t

p(t|I,D)p(S|t, I,D)dt. (2)

In general, the variable t in (2) represents a rigid trans-
form that is applied to the coordinates of a canonical con-
tour C ∈ R2×S in order to move them to the image
space Ω. Then, the search for the segmentation contour
S is performed around the points of this transformed con-
tour. The canonical contour C is usually represented by
the mean shape of the sought segmentation shape repre-
sented in a grid space GC ∈ R2×G, forming a rectangu-
lar 2-D region. The canonical contour is transformed to a
region of the image space via a linear transformation ma-
trix A ∈ R3×3, which is obtained from the variable t as
follows [1, 2, 3, 4, 5]: At = h(t) 2.

The rigid detection represented by the term p(t|I,D) in
(2) computes the probability that the visual object under-
went a transform represented by t in image I . In prac-
tice, the rigid classifier p(t|I,D) receives an image patch

I(g(t)), with g(t) =

[
1 0 0
0 1 0

]
At[G

⊤
C,1G]

⊤ and re-

turns the probability that the input sub-window contains the
structure of interest.

The non-rigid delineation represented by term
p(S|t, I,D) in (2) computes the probability of the
segmentation S in image I given the value of t (i.e., t
constrains and initializes the search for S to be around the
image patch I(g(t)).

It is important to notice that the rigid search space, repre-
sented by the variable t has dimension R. We shall demon-
strate later that the search complexity in these state-of-the-
art approaches is dominated by this rigid detection, which is
in turn a function of R. Moreover, as the dimensionality of
t increases, the training process for the classifier p(t|I,D)
in (2) becomes more complex, requiring larger amounts of
data to avoid over-fitting.

2Current methodologies use t = [x, y, ϑ, νx, νy ] that de-
notes a transformation comprising a translation x and y, rota-
tion ϑ, and non-uniform scaling νx and νy ; then h(t) = 1 0 x

0 1 y
0 0 1

 cos(ϑ) − sin(ϑ) 0
sin(ϑ) cos(ϑ) 0

0 0 1

 νx 0 0
0 νy 0
0 0 1

.



a) contour b) grid c) patch
Figure 2. Generation of samples I(g(m)) that is used as an input
for the proposed classifier p(m|I,D) in (3). The 1st row shows
a positive sample and the 2nd row shows a negative sample. The
first column displays the contour, the second column shows the
non-rigidly deformed grid G̃C, and the last column displays the
non-rigidly deformed input patch I(g(m)).

3. Proposed Non-rigid Segmentation using
Sparse Low Dimensional Manifolds

We propose a re-formulation of the optimization prob-
lem in (1) as follows:

m∗ = argmax
m

p(m|I,D), (3)

where m ∈ RM is a point in a low dimensional mani-
fold, which is used to produce S∗, as described below in
Sec. 3.2. Notice that in our proposal, we no longer require
an intermediate rigid detection because we estimate directly
a non-rigid contour segmentation via m, with dimension
M < R << S. In order to use the same types of classi-
fiers as the ones described in Sec. 2, which require an input
consisting of a rectangular window, we resort to the use of
thin-plate splines (TPS) deformation. With the TPS defor-
mation, we can represent a non-rigid deformation from the
test image to a rectangular image patch to be used as an
input to the classifier.

3.1. ThinPlate Splines

The thin-plate splines TPS is a tool for modeling coordi-
nate mappings [8]. In our case, the TPS allows the mapping
from the grid GC, used to represent the canonical contour
C, to the non-rigidly deformed grid G̃C, as follows:

[G̃⊤
C,1G] =

[
G⊤

C,1G

]
Ã+

[
KG

⊤wx,KG
⊤wy,0G

]
(4)

where G̃C ∈ R2×G, wx,wy ∈ RS×1, 1G,0G ∈ RG×1

and KG ∈ RS×G, with KG(i, q) = U((
∑3

j=1(cij −
gqj)

2)1/2), U(r) = r2 log(r), cij being the (i, j)-th ele-
ment of [C⊤,1S ] ∈ RS×3, and gqj the (q, j)-th element
of [GC

⊤,1G] ∈ RG×3. The affine transformation matrix

Ã ∈ R3×3 and wi (for i ∈ {x, y}) are found from the lin-
ear system for the TPS coefficients[

wx wy

ã1 ã2

]
=

[
KC [1S ,C

⊤]
[1S ,C

⊤]⊤ 03×3

]−1 [
S⊤

03×2

]
(5)

where ã1, ã2 ∈ R3×1 represent the vectors that are used to
build the matrix Ã, wx, wy are S × 1 vectors with the con-
straint that [π1Swx, π2Swy]

⊤ is a 2 × 1 null vector (with
π1 = [1, 0], π2 = [0, 1]), and KC ∈ RS×S whose (i, q)-
th entries are computed as KC(i, q) = U((

∑3
j=1(cij −

cqj)
2)1/2) with cij , cqj the (i, j)-th and (q, j)-th elements

of [C⊤,1S ] ∈ RS×3, respectively.
As we did for g(t), we can now write g(m) =[

1 0 0
0 1 0

]
[G̃⊤

C,1G]
⊤. The difference of using I(g(m))

instead of I(g(t)) is that it allows to obtain a patch that un-
derwent a non-rigid deformation (see Fig. 2).

3.2. Sparse Low Dimensional Manifold
This section describes how to map contours S to and

from a manifold M using a lower dimensional variable
m, which is used in the optimization (3). We follow the
manifold learning of [9] that is based on the tangent bun-
dle concept of an M -dimensional manifold M and works
by building and assembling multiple local models in an ag-
glomerative fashion. More specifically, given a set of con-
tours S, it finds the intrinsic dimension M , builds a parti-
tion into |P| patches, and estimates the forward-backward
mappings between contours S and respective lower repre-
sentations m ∈ RM , that is, the charts m = ζi(S) and the
parameterizations S = ξi(m), respectively.

The search process for the optimization in (3) takes
place in each of the low dimensional patches Pi with ini-
tial guesses denoted by the patch member points mi,j =
ζi(Si,j), for i = 1, ..., |P| (i.e., index of patches), and
j = 1, ..., |Pi| (index of patch member points). Since the
manifold learning may provide a large number of patch
members, this may result in an inefficient search process.
Thus, we resort to a patch member point selection proce-
dure, where the goal is to pick a subset of representatives
in each patch that preserves enough information about the
chart ζi. This subset is referred to as the landmarks.

The selection of the landmarks is based on the solution
of a regression problem that minimizes a regularized cost
function [10]. For instance, if we have the patch member
points represented by the set Qi = {m1, ...,m|Pi|}, af-
ter the landmark selection we are able to obtain a subset
Li ⊆ Qi of size |Li|, which corresponds to the number of
landmarks in the patch i. These landmarks will be the points
used for the initial guesses in the segmentation procedure,
where in general, |Li| ̸= |Lj | for i ̸= j.

Fig. 3 illustrates the input and output of the manifold
learning algorithm run on the experimental setup of the LV
segmentation problem that will be described in Sec. 6.
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(a) Annotations and landmarks (b) Patches learned
Figure 3. The graph in (a) shows the input to the sparse low di-
mensional manifold learning (Sec. 3.2) for the LV segmentation
problem, with 496 annotations after a PCA reduction in blue cir-
cles (the first three components are shown). The manifold learn-
ing algorithm estimates 1270 patch member points distributed in
13 patches. In red it is shown the 47 landmarks estimated [11].
The graph in (b) shows the 13 patches found using the training al-
gorithm, where each separate patch is represented with a different
color.

(a) Training

(b) Segmentation

Figure 4. Training (top) and segmentation (bottom) procedures
(please see text for details).

4. Training and Segmentation using the Sparse
Low Dimensional Manifold

Usually, the training set available for the most common
segmentation problems does not provide enough informa-
tion for a robust training process, so the usual remedy con-
sists of generating artificial positive and negative training
samples by randomly perturbing the deformation parame-
ters of the annotated data [12]. These perturbations usu-

ally follow simple noise distributions (e.g., Gaussian) in the
deformation parameter space, which form artificial train-
ing samples that might never happen in practice. In addi-
tion, the large dimensionality of this parameter space means
that a robust training can only be achieved with a reason-
ably large training set. We also augment our training sets
by perturbing the training set annotations, but differently
from current approaches, the artificial training samples are
re-projected onto the learned manifold. There are two ad-
vantages associated with our approach: 1) given the small
dimensionality of the manifold, it is no longer necessary to
generate a large artificial training set in order to produce a
robust classifier; and 2) because of the re-projection onto
the manifold, the generated artificial samples may be more
likely to happen in practice.

The generation of positive and negative samples from
training data is obtained with the following two simple
steps: 1) estimate the contour in the original image space
from the landmark, Ŝi,j = ζ−1

i (mi,j); and 2) apply (5) to
obtain the grid with the non-rigid deformation G̃C (Fig.2).
In order to generate these positive and negative samples we
use the following distribution based on the patch members
mi,j ∈ Qi of each patch Pi:

Dist(Pi) = U(range(Qi)), (6)

where U(range(Qi)) denotes the uniform distribution over
the set Qi of patch member points. The positive and nega-
tive sets are produced by:

T+(i, j) =
{
m|m ∼ Dist(Pi), |m−mi,j | ≺ ri

}
T−(i) =

{
m|m ∼ Dist(Pi), |m−mi,j | ≻ 2× ri

for all j ∈ {1, ..., |Pi|}
} , (7)

where the margin between positive and negative samples is
represented by ri = range(Qi) × κ (with κ ∈ (0, 1)), ≺
and ≻ denote the element-wise operators “less than” and
“greater than” between vectors. Fig.4(a) shows how the ar-
tificial training samples are generated, where the positive
samples are drawn from the blue region, and the negative
samples are extracted from the orange region. These sam-
ples are then used to train the parameters of our discrimina-
tive classifiers, as follows [13]:

γMAP = argmax
γ

|P|∏
i=1

|Pi|∏
j=1

 ∏
m∈T+(i,j)

p(m|I, γ)


×

 ∏
m∈T−(i)

(1− p(m|I, γ))

 ,

(8)

where γ represents the model parameters of p(m|I, γ),
which denotes the classifier p(m|I,D) in (3).



Figure 5. Examples of training samples for the LV (1st row) and
lip (2nd row) sequences.

The segmentation procedure takes an input test image I
and performs a gradient ascent procedure [14] on the out-
put of p(m|I, γMAP) that is computed in the sparse low di-
mensional manifold described in Sec. 3.2. This process will
generate the final contour S⋆ (3). Similar gradient-based
search methods on manifolds have been recently studied by
Helmke et al. [15], who propose a new optimization ap-
proach for the essential matrix computation with the use of
Gauss-Newton iterations on a manifold in order to reduce
the computational effort. Another similar example is the
use of Newton’s method on a manifold structure[16, 17, 18].
Our approach represents an application of such gradient-
based search methods in the problem of top-down non-rigid
segmentation. The contour S∗ is found by:

S∗ = ξi(m
∗
i,j), (9)

where

m∗
i,j = arg max

m∈Li,i∈{1,...,|P|}
p(m|I, γMAP). (10)

More specifically, each landmark point mi,j ∈ Li (for
i ∈ {1, ..., |P|}) is used as an initial guess for a gradient
ascent (GA) procedure [14] on the output of the classifier
p(m|I, γMAP) over the search parameter space on the mani-
fold M. Fig. 4(b) displays the segmentation process, where
the level sets denote the results of the classifier p(m|I, γ)
that is used in the GA process. Note that the search is per-
formed on the low dimensional space of m, and each patch
has its own local maximum.

5. Running-time Complexity Comparisons
This section details the complexity reduction achieved

by the proposed method. The complexity of current non-
rigid segmentation methods is based on the number of exe-
cutions of the rigid and non-rigid classifiers in (2). The rigid
classifier runs in the intermediate space represented by the
variable t ∈ RR (Sec. 2), where in the current methodolo-
gies [1, 2, 3, 4, 5] R ∈ {4, 5} (accounting for two trans-
lation, one rotation and one or two scale parameters). The
non-rigid classifier runs in the space of S ∈ R2×S , and

we will assume it has linear complexity O(S). An exhaus-
tive search leads to a complexity of O(KR + S), with K
denoting the number of samples used in each of the dimen-
sions in the intermediate space (typically K = O(103)).
Notice that this naive approach leads to a highly complex
method. This complexity has been reduced in several ways,
such as with the branch and bound framework [19], which
allows a reduction to O(KR/2 + S) or the marginal space
learning (MSL) [4] which partitions the search space into
subspaces of increasing complexity, achieving a complex-
ity reduction of O(K + (R − 1) × ♯scales × Kfine + S),
where ♯scales accounts for the number of scales and Kfine

represents a reduced number of promising samples (note
that in [1, 3, 4, 20], ♯scales = 3 and Kfine = O(101)).
Coarse-to-fine based derivative search has also been pro-
posed in [1, 3, 20], which uses GA approach in the space
of R dimensions [1, 20] achieving a complexity of O(K +
♯scales × Kfine × R + S). The use of sparse manifolds
in the rigid detection has been implemented in [3] achiev-
ing a complexity of O((

∑
i |Li|)× ♯scales×M +S), with

M < R and
∑

i |Li| representing the total number of land-
marks. Finally, the complexity of the methodology pro-
posed in this paper is O((

∑
i |Li|)×♯scales×M), which is

in general smaller than the ones above because we are able
to reduce the dimensionality of the search space from R to
M < R, and because we run the non-rigid segmentation
directly (thus removing the term O(S)).

In practice, assuming the figures above, the branch and
bound approach [19] has complexity O(10005/2 + S),
MSL [4] has complexity O(1000 + 4 × 3 × 10 + S), the
coarse-to-fine derivative method of [1, 20] has complexity
O(1000 + 3× 10× 5 + S) (where we assume that R = 5),
and the sparse manifold in rigid detection of [3] has com-
plexity O(10 × 3 × 2 + S) (where we assume M = 2 and∑

i |Li| = O(101)). Our approach leads to a complexity
of O(10 × 3 × 2). Another important point to consider in
practice is that the running time complexity of the detectors
in the coarse space are smaller than in the fine space, which
means that the figures for the coarse classifier complexity
should be multiplied by a factor in (0, 1]. In the experi-
ments, we provide an estimate for this factor.

It is important to mention that our approach is orthogo-
nal to all methods presented above, in the sense that any of
these methods can use our approach to achieve even higher
efficiency gains.

6. Experimental Setup and Results

In the section we show empirical evidence that the use
of the proposed sparse low-dimensional manifold leads to
less complex classifiers and to segmentation methods that
are more efficient than the state of the art, without a nega-
tive impact on the segmentation accuracy. Additionally, we
show evidence that the gradient ascent described in Sec. 4
is convergent.



Table 1. Complexity of the trained DBN’s at all scales for CAR1 [1], CAR2 [20], and our proposal (for the classifier p(m|I,D) in (3)) in
the LV dataset. Note that σ = 4 denotes the finest scale and σ = 16 represents the coarsest scale.

Methodologies Number of Nodes
Input Layer Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Hidden Layer 4 Output Layer

CAR{1, 2} (rigid,σ = 4) 196 100 100 200 200 2
CAR{1, 2} (rigid,σ = 8) 49 50 100 - - 2

CAR{1, 2} (rigid,σ = 16) 16 100 50 - - 2
CAR{1, 2} (non-rigid,σ = 4) 41 50 50 - - 1

Proposal (σ = 4) 196 50 100 - - 2
Proposal (σ = 8) 49 100 50 - - 2

Proposal (σ = 16) 16 100 50 - - 2

Two different databases are used to demonstrate the ef-
fectiveness of the proposed approach. The first database
contains ultrasound (US) sequences of the LV of the
heart [21] (see Fig. 5), where the goal is to segment the
LV endocardial border. This LV database has a training set
with 496 manual annotations from 18 sequences, and a test
set containing 80 annotations from two sequences. These 20
sequences have been manually annotated by a cardiologist,
and 16 of them contain some abnormality while 4 of them
represent normal cases. The second database is a sub-set
of the Cohn-Kanade (CK+) database [22], where the objec-
tive is to segment the lips from video sequences of people
demonstrating different types of emotions. The manual an-
notation of the lips has been provided. In order to test our
proposed approach, we select the surprise emotion, which
contains large shape deformation. We use 4 sequences for
training (with 103 annotations) and 10 sequences for testing
(with 171 annotations). The dimensionality of the object
shape is S = 21 for the LV and S = 40 for the lips.

For the experiments below, we extend the method in
[1, 20] (referred to as CAR1 and CAR2, respectively),
where a coarse-to-fine approach based on deep belief net-
works (DBN) [13] is used for the segmentation procedure.
The automatically learned sparse manifold (Sec. 4) is differ-
ent depending on the dataset used. For the LV we obtain an
intrinsic dimensionality of M = 3, with |P| = 13 patches,
1270 patch member points and 47 landmark points, where
the majority of the patches contains only one landmark (see
Fig. 3). For the lip case, the obtained intrinsic dimension is
M = 2, with |P| = 1 with 103 patch members points (cor-
responding to frame used for training) and four landmark
points.

In the training stage of the DBN, we used |T+(i, j)| = 10
positive and |T−(i)| = 100 negative samples (for both
datasets), which represents the same number of training
samples used in [20]. We follow the same learning proce-
dure described in [20], which divides the initial training set
into training and validation sets containing 80% and 20% of
the original set, respectively. This validation set is used to
determine the following parameters: a) number of nodes per
hidden layer, and b) number of hidden layers. The number
of nodes per hidden layer varies from 50 to 500 in inter-
vals of 50, and the number of hidden layers varies from 1 to
4. The learned configurations of the DBN for our proposed

Table 2. Error measures in the test sequences for COM [2, 5],
CAR1 [1], CAR2 [20], NAS [3], and our approach. Each cell
shows the mean and standard deviation of each error measure and
the best value among the four methods is highlighted.

Test set A
measures COM [2, 5] CAR1 [1] CAR2 [20] NAS [3] Proposal

HDF 20.5(1.2) 19.2(2.3) 20.6(2.6) 19.9(1.6) 20.4(2.1)

MAD 11.4(3.2) 9.9(3.3) 9.4(2.1) 11.1(3.3) 12.3(3.3)

HMD .21(.04) .17(.05) .18(.06) .23(.06) .23(.04)

AV 3.9(0.6) 3.3(0.9) 3.3(0.8) 4.9(1.5) 4.6(0.9)

Test set B
HDF 17.2(1.4) 19.4(1.5) 19.9(1.9) 18.9(2.2) 18.3(1.5)

MAD 18.2(6.1) 15.7(5.7) 17.7(5.5) 15.5(6.2) 13.4(5.5)
HMD .19(.03) .16(.04) .17(.02) .20(.03) .18(.03)

AV 3.4(0.6) 2.9(0.5) 3.1(0.6) 3.8(0.6) 3.6(0.6)

Figure 6. Examples of the LV segmentation results produced by
our proposal (red) in comparison with the manual annotations
(green).

methodology, CAR1 [1], and CAR2 [20] are shown in Table
1. Notice that for the LV segmentation problem, compared
to CAR{1, 2}, our approach selects network models that
are of similar complexity for coarser scales (σ ∈ {8, 16}),
but of considerable smaller complexity for the finest scale
(σ = 4). Furthermore, we no longer require the learning of
a non-rigid classifier.

A quantitative performance is conducted using the fol-
lowing error measures proposed in the literature for con-
tour comparison: (i) Hausdorff (HDF) [23], (ii) mean ab-
solute distance (MAD) [5], (iii) Hammoude (HMD) [24],
and (iv) average (AV) [21]. A comparison with the follow-
ing state-of-the-art approaches for LV segmentation is pre-



sented: COM [2, 5], CAR1 [1], CAR2 [20], and NAS [3].
Table 2 shows this quantitative comparison in the test se-
quences. Notice that, despite the ambitious dimensionality
reduction achieved, we obtain competitive results. Fig. 6
illustrates the segmentations obtained with our proposal in
both test sequences.

For the lip segmentation, we also provide a quantitative
comparison between our approach and the state-of-the-art
methods in [1, 3] in Table 3 3. Notice that the results
presented in this table shows that the proposed approach is
comparable or better than the other approaches in terms of
segmentation accuracy.

We also present the running time figures of the proposed
method and that of CAR1 [1], CAR2 [20], and NAS [3]. For
the LV sequences, the methods CAR{1, 2} [1, 20] provide
the following running time: rigid detector on coarse scale
(2.48s) + rigid detector on finer scales (4.25s) + non-rigid
detector (0.67s) = 7.4s. NAS [3] achieves the following re-
sults: rigid detector on manifold (1.7s) + non-rigid detector
(0.67s) = 2.37s. Our proposal reaches the following run-
ning time: non-rigid detection on manifold (1.68s) + TPS
image warp (0.017s) = 1.7s. This means that the rigid clas-
sifier (used on CAR1,2) in the 5-dimensional space runs
in approximately 0.0025s for the coarse scale, and for the
finer scales it runs in 0.028s. Using the manifold and in our
method, the classifiers run in approximately 0.0036s in the
coarse scales and 0.0136 in the finer scales, where the time
added by the TPS image warp is negligible (<0.0001 s). As
a result, we note that the complexity figures in Sec. 5 can
have a factor of around (1/10) for the coarse classifiers.

For the lip sequences, the methods CAR1 [1] runs on av-
erage (mean) in 11.8 seconds for the 10 test lip sequences,
the method NAS [3] has mean of 2.62 seconds, while the
mean running time of our approach is 2.2 seconds. In all
methodologies the running times were obtained from unop-
timized Matlab implementations.

Finally, Fig. 8 illustrates that the gradient ascent (GA)
of Sec. 4 is convergent. Specifically, we show the evo-
lution of the gradient magnitude (recall that this magni-
tude is computed from the values produced by the classifier
p(m|I, γMAP) before and after the GA step) as a function of
the iteration index of the GA step (a maximum of 5 steps is
used) using one of the lip test sequences (results are similar
for other sequences). As expected, the magnitude is bigger
for the first iterations and reduces for the last iterations.

7. Discussion and Future Work
In this paper, we show that it is possible to have a ma-

chine learning based segmentation system that operates di-
rectly on the space of non-rigid deformations. We show ev-
idence that this space can be represented with manifolds of
low dimensionality and by associating points in this man-

3We have not provided the results of COM and CAR2 because they are
not available for this database

ifold to segmentation probability values (given a test im-
age), it is possible to run a gradient ascent algorithm that
quickly finds the correct segmentation. Moreover, the re-
duced dimensionality of this manifold also constrains the
complexity of the trained model, which further reduces the
search complexity. In our experiments, we show that our
approach is more efficient than other state-of-the-art ap-
proaches [1, 20, 3], while producing competitive results in
terms of accuracy. We also show that the models trained are
less complex than the ones used by other approaches [1, 20].

One of the difficulties of our approach that we plan to ad-
dress in the future is with respect to its generalization capa-
bility. More specifically, if a test sample presents rigid and
non-rigid transform parameters that are substantially differ-
ent from the ones in the training set, our approach may fail
to converge. We also plan to extend this approach to track-
ing problems (i.e., segmentation in space and time) with the
introduction of a motion model that works directly in this
manifold of low dimensionality [6].
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