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Abstract

An action is typically composed of different parts of the
object moving in particular sequences. The presence of dif-
ferent motions (represented as a 1D histogram) has been
used in the traditional bag-of-words (BoW) approach for
recognizing actions. However the interactions among the
motions also form a crucial part of an action. Different
object-parts have varying degrees of interactions with the
other parts during an action cycle. It is these interactions
we want to quantify in order to bring in additional informa-
tion about the actions. In this paper we propose a causality
based approach for quantifying the interactions to aid ac-
tion classification. Granger causality is used to compute
the cause and effect relationships for pairs of motion tra-
jectories of a video. A 2D histogram descriptor for the
video is constructed using these pairwise measures. Our
proposed method of obtaining pairwise measures for videos
is also applicable for large datasets. We have conducted ex-
periments on challenging action recognition databases such
as HMDB51 and UCF50 and shown that our causality de-
scriptor helps in encoding additional information regarding
the actions and performs on par with the state-of-the art ap-
proaches. Due to the complementary nature, a further in-
crease in performance can be observed by combining our
approach with state-of-the-art approaches.

1. Introduction
Action recognition has been an important topic of re-

search in the vision community for a long time. Human
actions consist of space-time trajectories. Different actions
have different trajectory patterns. Johansson [12] showed
that humans can recognize actions by observing only few
tracked joints. The motion trajectories belonging to an ac-
tion are closely related to each other in terms of causality.
Hence the trajectory patterns and their causal interdepen-
dencies vary from action to action. In this paper we exploit
not just the occurrence of trajectory patterns but also the
causal interactions among them. These interactions are di-
rectional. The interactions among different parts involved
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Figure 1. Illustration of the action classification approach: Object
trajectories are obtained and clustered. The causal relations be-
tween the trajectories belonging to different clusters are computed
and represented as a 2D histogram. These causality descriptors
are compared against those in training and classified using a non-
linear SVM classifier.

in an action are analogous to the interactions among differ-
ent objects involved in a group-activity. The interactions
give a richer description for the action classes. While the
occurrence of features has been predominantly studied and
analyzed in the present literature, the same cannot be said
regarding the interaction among features. In this work, we
focus on the interactions between trajectory pairs occurring
in an action and model them using Granger causality mea-
sures.

1.1. Related Work

There have been many methods to classify actions based
on space-time interest points (STIP) features using various
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detectors based on Harris3D [14], separable Gabor filters
[4], etc. Often local features for the interest points are based
on gradient information, optical flow [4, 15, 22, 27], local
trinary patterns [31], 3D-SIFT [23]. Other approaches for
action recognition include space-time shape representations
[7], template-based methods [2, 5, 20, 21].

Similar to the proposed work, few of the trajectory-based
methods to perform action classification are presented in
[1, 17, 29, 25, 18, 11]. Ali et al. [1] manually obtained the
trajectories and used chaotic invariants as features to rec-
ognize actions. Matikainen et al. [17] used sparse trajecto-
ries from KLT tracker with elements of affine matrices in
bag-of-words context as features. Messing et al. [18] track
Harris3D interest points and use temporal velocity histo-
ries of trajectories as features. However, the performance
of dense trajectories is seen to be better than sparse trajec-
tories [29, 25].

Wu et al. [29] used chaotic invariants on dense trajec-
tories to classify actions after segmenting motion through
Robust PCA (RPCA) subspace learning technique [16].

Wang et al. [25] use local 3D volume descriptors based
on motion boundary histograms (MBH) [3], histogram of
oriented gradients (HOG) and histogram of optical flow
(HOF) around dense trajectories to encode action. The
MBH descriptors are known to be robust to camera motion.
Recently in [26], Wang et al. estimate the camera motion
and compensate for it and thereby improving the trajecto-
ries and the associated descriptors.

Recently, Jain et al. [10] decomposed the visual motion
into dominant and residual motions for extracting trajecto-
ries and computing descriptors.

All the above approaches perform classification based
on the presence of features or descriptors. Recently an ac-
tion classification method using 2D histograms on trajec-
tory features was proposed by Jiang et al. [11]. The relative
position, motion direction and magnitude of relative motion
between trajectory pairs (clustered based on different fea-
tures viz. HOG, HOF and MBH) were used to construct
the histograms. This approach involves computing feature
interactions or dependencies at a coarse level since it uses
low-level information of the trajectories. Our work com-
putes the feature interactions based on causality between
pairs of trajectories which is a mid-level information.

Causality has been used in other fields of research such
as economics, biology [9, 6] to investigate directional rela-
tionships between signals. In computer vision it has been
used to find the dominant flow information in video by Ya-
mashita et al. [30], and for classifying different types of
pair-activities like chasing, meeting, moving together, etc.,
by Zhou et al. [33]. While causality has been used to rec-
ognize actions previously [32], it has been applicable only
in motion capture (MoCap) datasets. These methods had
only few time series signals to deal with and the signals

were known to be originating from specific joints in case
of action recognition and specific neuron channels while
investigating brain functions. Such a channel/body-joint
based acquisition of motion trajectories cannot be expected
in real-world videos. We propose an approach to incorpo-
rate the advantages of causality measures in applications
where such constraints cannot be fulfilled.

Constructing the huge 2D descriptors (order of 106 to
107 entries in the histogram) for each video is time consum-
ing and not viable from a practical standpoint. We provide
a solution for constructing such descriptors quickly without
sacrificing the relative structure among the descriptors.

Based on the above considerations, the contributions of
this paper are:

i. An approach for incorporating the interactions among
large number of signals (i.e., causal relations among mo-
tion trajectories in this work) in real-world videos has been
proposed.

ii. A fast method for constructing large 2D descriptors
providing a speed-up in computation time from O(n2) to
approximately constant time has been proposed.

Organization of the rest of the paper is as follows. Ap-
proach for action recognition using interactions among fea-
tures is explained in Section 2. The details of Experimental
setup are provided in Section 3. Results on various datasets
for action recognition and experiments related to different
parameter settings of the causality descriptor are given in
Section 4 and we conclude the paper in Section 5.

Figure 1 illustrates the proposed action recognition ap-
proach. The motion trajectories are acquired and their clus-
ter memberships are identified. The causal interactions, i.e.,
Granger causality features between pairs of trajectories are
computed resulting in a 2D histogram descriptor for the
video. The action in the video is classified using an SVM
classifier.

2. Interaction descriptors

Causal interactions occur inherently among motion pat-
terns in an action and capturing such dependencies will help
in modeling actions better. In this section we will formally
introduce causality and use it to construct descriptors which
will encode the dependencies. The computation of these
descriptors for each video is time consuming. Hence we
provide for an approach that will enable us to compute the
measures once for an entire dataset and use them to con-
struct individual descriptors for videos in the dataset.

2.1. What is Causality?

A signal is said to be “Granger causal” to another if the
ability to predict the second signal is improved by incorpo-
rating the information about the first. This was formalized
by Granger [8]. Given two time-varying signals pt and qt,
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if the error of predicting pt using only the past samples of
pt is greater than the prediction error using past samples of
pt and qt, then qt is said to Granger-cause pt. There are
no restrictions on the complexity of the predictor functions.
In this work we restrict the functions to be linear. Let pt,
qt ∈ Rn. Equation 1 and equation 2 are used to predict pt

using only the past samples of pt and using past samples of
both signals respectively.

pt = ATp
(m)
t−k + ε1 (1)

pt = BTp
(m)
t−k + CTq

(m)
t−k + ε2 (2)

where prediction coefficient matrices A,B,C ∈ Rmn×n

and p
(m)
t−k, q(m)

t−k are k-delayed signals of order m, i.e.,

p
(m)
t−k = (pT

t−k,p
T
t−k−1, . . . ,p

T
t−k−m+1)T

q
(m)
t−k = (qT

t−k,q
T
t−k−1, . . . ,q

T
t−k−m+1)T

ε1 and ε2 are prediction errors and are assumed to be zero
mean Gaussian noise with covariances Σ1 and Σ2 respec-
tively. The causality ratio measuring the relative strength of
causality from q to p is defined as

CRq→p = trace(Σ1)/trace(Σ2) (3)

Causality ratio is an asymmetric measure. A high mea-
sure from q to p need not necessarily result in a strong mea-
sure from p to q. Since the error of predicting pt can only
decrease when incorporating additional information from
the past samples of qt, the numerator of Equation 3 is al-
ways greater than the denominator. Hence the causality ra-
tio is always greater than 1. Figure 2 illustrates the con-
cept of Granger causality. The 1st signal is following the
2nd. The additional information from the 1st signal while
predicting 2nd signal does not improve the prediction to
the extent the additional information from the 2nd signal
while predicting 1st signal does. Hence, the ratioCR2→1 is
higher than CR1→2. With this reasoning, two coupled sig-
nals will have strong ratios in forward and feedback direc-
tion while two independent signals will have both causality
ratios tending to 1 (indicating no causation).

2.2. Causality in actions

Actions consist of many space-time signals/trajectories.
The trajectories are strongly inter-related and occur sequen-
tially with a dependence on other motions which are part
of the action. For walking action, the to and fro swing of
one arm follows the to and fro swing of the other arm and
thus, are dependent in terms of causality. This results in a
strong causal measure. For a jumping action, both the knees
move in the same way at the same time and incorporating
one knee’s motion does not improve the prediction of the
other knee’s motion. Hence the causal measures will not be

Signal 2 reconstruction

Signal 1 reconstruction

Figure 2. Illustration of Granger causality. Two 1D signals are
plotted on the left. The 1st signal (blue) is following the 2nd

(black). On the right, each plot shows the original signals, pre-
dicted signal (in red) using only its own previous samples and an-
other predicted signal (in green) using previous samples of both
signals. Prediction improves for both signals when information
from other signal is used. However, the improvement in predic-
tion for 1st signal when previous samples of 2nd signal are also
used is higher compared to the improvement for 2nd signal when
previous samples of 1st signal are used.

strong in this action. Figure 3 shows different actions hav-
ing different kinds of interactions. The strength of causal-
ity from one node (representing a body part) to another is
differentiated by thickness and color of the corresponding
edge. For “jack” action, the strength of causality is high be-
tween the two arms. For walking action, there is a moderate
Granger causation from legs to arms and a weak one from
arms to head. It should be noted that, Granger causality rep-
resents “predictive causality”. It may or may not represent
the “true causality”.

Causality ratios are between pairs of trajectories and
number of trajectories acquired from actions in real-world
videos vary from one video to another. Since causality ma-
trix will be of size of squared number of trajectories, a di-
rect comparison becomes difficult. Hence, the trajectories
are clustered in a feature space into K words. The cluster
centers are obtained initially by clustering a subset of tra-
jectories of the training videos. The causality ratios of pairs
of trajectories are used to obtain the ratios for pairs of clus-
ters. A causality matrix of K ×K is used to represent the
ratios between clusters. Element (i, j) of the matrix is the
average of causality ratios of trajectories of ith cluster that
are “Granger-caused” by the trajectories of jth cluster. The
matrix is normalized and represents a 2D normalized his-
togram which encodes the interactions between trajectory
clusters. Thus, each video is now represented by a causality
descriptor of size K ×K.
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Figure 3. Figure shows five different actions from Weizmann dataset [7] and their corresponding causal graph structures. From left, the
actions are Jack, Run, Side, Walk, and two hand Wave. Thick red lines represent strong causal relations. Medium thick blue lines represent
medium strength and thin green lines represent low causal relationships. Absence of line between 2 nodes indicates causation is absent.
Directed line indicates that the causality ratio is high in that direction compared to the opposite direction. Undirected line indicates that
ratios are similar in both directions. The graphs are represented with nodes of body parts Head, Arm1, Arm2, Leg1, and Leg2. This
illustrates that different actions have different causal graphs.

2.3. Overcoming computational bottleneck

The causality descriptor is constructed from causality ra-
tios between pairs of trajectories. Since the ratios in the
forward and feedback directions are asymmetrical, N tra-
jectories will require nearly N2 computations of causality
ratio resulting in three prediction matrices to be learnt for
every single ratio separately. Given that a video can typi-
cally have thousands of trajectories, it becomes practically
infeasible to compute the causality descriptor.

One way to overcome this would be to generate the mea-
sures between pairs of clusters. We find the mean of the
trajectories of every cluster and compute the pairwise ratios
between the mean trajectories and consider them as pair-
wise cluster measures. Here, we compute ratios between
the mean trajectory of one cluster and the mean trajectory of
another cluster, unlike previously (Section 2.2) where it was
the average of ratios from all pairs of trajectories belonging
to two different clusters. This can be computed once for
the entire dataset, when the clustering is done in the feature
space. This results in a reference matrix, denoted by R, of
causal measures of sizeK×K and requiresK2 causal ratio
computations.

We use the reference matrix generated to obtain causal
descriptors for individual videos. The number of trajecto-
ries belonging to each cluster is used as a scaling factor to
compute the causal interactions between the clusters. The
video causal descriptor, denoted by CD, is of same size
K×K. The (i, j) entry of the descriptor is the correspond-
ing entry of the reference matrix scaled by the number of
trajectories in ith and jth cluster.

CD(i, j) = NiNjR(i, j) (4)

where Ni and Ni are the number of trajectories belonging
to the ith and jth cluster respectively and i, j ∈ [1,K].
Since we are using the precomputed reference causality ma-
trix values, computing causality ratios for trajectory pairs in
each video is avoided by this approach and this saves a lot
of computational time. The 2D descriptor is l1-normalized
resulting in a 2D histogram.

3. Experimental setup
In this section, the details of the experimental setup with

various parameter settings are provided. We present a base-
line descriptor for comparing the performances of action
classification on different datasets. The details of construct-
ing the baseline descriptor are given in section 3.3. The
datasets that are used are for evaluating the approach are
also presented in section 3.4.

3.1. Trajectory Acquisition

Using the “particle” concept [29, 28], a pixel in a video
frame corresponds to a particle and the motions in the scene
are represented quantitatively by the motions of the particles
using dense optical flow. A particle pt = (xt, yt) at frame
t ∈ [1, L− 1] moves to

pt+1 = (xt+1, yt+1) = pt + (ut(pt), vt(pt)) (5)

at frame t+ 1. Here (ut, vt) represent the optical flow field
at frame t. By advecting the particles in consecutive frames,
a trajectory is obtained and represented as (p1,p2, . . . ,pL).
We use the code 1 provided by [25] with default settings
to acquire the trajectories. The length of the trajectories is
15 samples. We obtain the actual trajectories of the video

1 http://lear.inrialpes.fr/people/wang/improved trajectories
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(a) Wave (b) Run (c) Walk

(h) Horse Ride (i) Swing Bench (j) Kick Ball

(d) Lunge (e) Rope Climbing (f) Salsa Spin (g) Volleyball Spike

(k) Cartwheel (l) Hug (m) Shoot Bow (n) Sword Fight

Figure 4. A few sample actions from the datasets are shown. (a)-(c) are actions from KTH, (d)-(g) are from UCF50, (h)-(j) depict actions
from UCF Sports and (k)-(n) are from HMDB51.

from the code in addition to the default TrajShape feature as
output by the code. The trajectories thus obtained are zero-
mean normalized. Other features of trajectories, viz., HOG,
HOF and MBH are also obtained.

3.2. Causality Descriptor

The trajectories are clustered in 4 feature spaces, viz.,
TrajShape, HOG, HOF, and MBH. The dictionary size is
chosen to be 4000 words. 100, 000 feature samples are ran-
domly selected from the dataset for k-means clustering. The
clustering in MBH feature space is done separately for x
and y spatial dimensions. We choose a 3rd order model and
a 3 sample delay (Equation 1) for computing causality mea-
sures. Standard regression function is used to estimate the
predictor coefficients of equations 1 and 2. We experiment
with different values for order and delay and report the re-
sults in Section 4.3.

Since causal measure from one motion to another is
meaningful only within a time-frame for actions (e.g. within
action cycles), it is required to restrict the process of popu-
lating the pairwise measures within a segment of the video.
We consider non-overlapping 40-frame segments to com-
pute the local descriptors of causality. The global causality
descriptor is obtained by summing the local descriptors. In
order to preserve the relative strength of causality among
the pairs in the local descriptors, the local descriptors are
l1-normalized. The single global descriptor for the video
is also l1-normalized. The causality descriptor is of size
4000× 4000 and it is vectorized to a 1.6× 107-d vector for
the purpose of implementation.

The similarity between two descriptors is computed us-
ing histogram intersection kernel. We use a one-vs-all ap-
proach while training the multi-class classifier. Different
descriptor types are combined by soft-fusion method of av-
eraging the corresponding kernel scores.

3.3. Baseline descriptor

To evaluate our 2D descriptor, we make a baseline com-
parison and show the effectiveness of our causality descrip-
tor. The baseline descriptor is also a 2D descriptor and is
computed using correlation coefficients between pairs of
trajectories. Correlation coefficient, to an extent, can mea-
sure the interaction between trajectories pairs. However the
direction of causation cannot be known through correlation
measures.

The descriptor is constructed using the same steps the
causality descriptor is constructed with and under the same
settings such as cluster trajectories, dictionary size. How-
ever the values of correlation coefficients lie in the range
[−1, 1]. This may result in an erroneous global descriptor
when the local causality descriptors are summed. Hence the
coefficients are transformed to the range [0, 1] in the refer-
ence matrix before populating the local descriptors. Since
correlation coefficient is symmetric, the global correlation
descriptor is also symmetric matrix of 4000 × 4000. But
there are only 4000C2 independent entries in the descriptor.
We compute the coefficients separately for x and y dimen-
sions of the trajectories. Hence 4000C2 independent entries
of both descriptors are concatenated to form a single his-
togram of nearly 1.6 × 107 dimension. A non-linear SVM
with histogram intersection kernel is used for the classifica-
tion stage. We use a one-vs-all approach while training the
multi-class classifier.

3.4. Datasets

We perform the experiments on four action recogni-
tion datasets and report the results. The datasets used for
evaluating our work on interaction descriptors are KTH,
UCF Sports, UCF50 and HMDB51. The UCF50 and
HMDB51 datasets are large-scale databases containing over
6600 videos each. The datasets are from uncontrolled set-
tings (except for KTH), with changes in viewpoints, il-
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lumination, camera motion, background clutter and hence
are very challenging. A few sample actions from the four
datasets have been shown in Figure 4.

The KTH dataset [22] has close to 600 videos for 6 ac-
tions performed several times by 25 subjects with different
settings. The action classes are walking, jogging, running,
boxing, waving and clapping. The background is homoge-
neous and static in most sequences. There are 2391 video
samples in the dataset. The dataset is split into training set
(16 subjects) and testing set (remaining 9 subjects) as in the
original setup [22].

The UCF sports dataset [20] contains 10 human ac-
tion classes, viz., diving, golf swinging, kicking a ball,
weight lifting, horse riding, running, skateboarding, swing-
ing (bench), swinging (high bar) and walking. There are
150 videos in the dataset and a large intra-class variability is
present in the videos. The samples are increased by adding
a horizontally flipped version of the videos to the dataset.
We use leave-one-out cross validation as in Wang et al. [27]
where the flipped version of the test video is removed from
the training set. Since the video clips are shot at 10 fps, only
for this dataset, we consider the non-overlapping segments
of 10 frames to compute the local causality and correlation
descriptors.

The UCF50 dataset [19] is an action recognition data
set with 50 action categories, consisting of realistic videos
taken from YouTube. The actions categories vary widely
from general sports to playing musical instruments to daily
life exercises. For all 50 classes, the videos are split into
25 groups. For each group, there are at least 4 action clips.
In total, there are 6, 618 video clips. The video clips in
the same group may share some common features, such as
the same person, similar background or similar viewpoint.
We apply the Leave-One-Group-Out Cross-Validation (25
cross-validations) as suggested by the authors [19].

The HMDB51 action dataset [13] is collected from vari-
ous sources, mostly from movies, and from public databases
such as YouTube and Google videos. The dataset contains
6766 clips categorized into 51 action classes, each contain-
ing a minimum of 101 clips. The action categories can
be grouped into general facial actions, general body move-
ments with and without object interactions and human inter-
actions. We use the original 3 train-test splits provided by
the authors for evaluation. Each split contains 70 videos and
30 videos from every class for training for testing respec-
tively. The average classification accuracy over the three
splits is reported.

4. Experimental results
In this section, we present the results of our approach

evaluated on the two datasets. We first discuss the perfor-
mance of our approach in comparison with the baseline ap-
proach in section 4.1. In section 4.2, we compare the per-

formance of causality descriptors with the state-of-the art
techniques and in section 4.3, we investigate the effects of
varying the order and delay parameters of causality.

WithK set to 4000 words, it took approximately 10 min-
utes in MATLAB on an i7 (3.5GHz) machine without par-
allelization for computing the reference causality matrix R
in equation 4. The computation time for the causality de-
scriptor (including the 1D bag-of-words descriptor) for in-
dividual videos was 1.3 to 1.4 times the computation time
required for the 1D descriptor alone.

4.1. Comparison with Baseline

In this section, we compare the performance of our
causality descriptor with that of the baseline descriptor de-
scribed in section 3.3 on the four datasets discussed in sec-
tion 3.4. Both the descriptors encode interactions among
the motions of the action being performed. The causal-
ity descriptor models the causation among the interactions
while the baseline descriptor based on correlation does not.
Correlation does not differentiate whether one motion tra-
jectory is causing the motion of another trajectory or not.
In both situations, it results in the same quantified measure.
We observe from the experiments that the causality descrip-
tor always performs better than the baseline descriptor. The
reason for this is that the property of cause and effect is ex-
ploited in the causality descriptor. The asymmetrical nature
of the causality measure helps in encoding the interactions
among the motions better than the baseline correlation de-
scriptor.

We have reported the performance of both descriptors
in Table 1 for the four datasets. The causality descriptor
outperforms the baseline on all of them. The correlation
and causality descriptors are computed in 4 feature spaces.
The performance of the descriptors in each feature space are
reported. The combined performance of the descriptors in
different feature spaces are also reported.

4.2. Comparison to state-of-the-art results

In this section, we compare the performance of our com-
bined descriptor with the state-of-the-art results till date.

On KTH dataset, we perform on par with the other re-
sults in literature as shown in Table 2. A classification ac-
curacy of 96.5% was achieved. The error was mainly due
to misclassifying some samples of running as jogging. The
samples were those which were difficult even for humans to
always correctly classify.

Table 2 also gives the comparison on UCF Sports dataset.
Our approach achieves an average accuracy of 92.8%. We
perform better than the other trajectory based action recog-
nition approaches. Only Sadanand and Corso [21] do bet-
ter than our approach. However, they achieve 26.9% on
HMDB51 and 76.4% (using a different cross-validation) on
UCF50. We do better on these large datasets as seen below.
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Approach Feature Space KTH UCF Sports UCF50 HMDB51

Baseline

TrajShape 90.1% 76.3% 71.4% 30.9%
HOG 87.8% 84.5% 75.5% 36.1%
HOF 93.3% 77.2% 82.8% 46.6%
MBH 94.3% 84.1% 85.2% 49.0%
Combined 95.3% 89.5% 87.5% 51.1%

Causality

TrajShape 90.6% 77.1% 73.8% 31.3%
HOG 88.2% 85.9% 80.4% 38.2%
HOF 94.1% 78.5% 85.3% 47.1%
MBH 95.4% 88.7% 87.5% 50.8%
Combined 96.5% 92.8% 89.4% 53.4%

Table 1. Performance comparison on different datasets using baseline descriptor and causality descriptor. The descriptors are computed in
4 feature spaces and performance for each is reported. The performance of the combination of descriptors is also tabulated for the baseline
and causality approaches.

Method KTH UCF Sports
Sadanand & Corso [21] 98.2% 95.0%
Proposed 96.5% 92.8%
Wu et al. [29] 95.7% 89.7%
Wang et al. [25] 95.3% 89.1%

Table 2. Performance comparison on KTH and UCF Sports
datasets

The performance of our causality descriptor on the large
datasets has been tabulated in Table 3. On UCF50, we
achieve an accuracy of 89.4%. Improved trajectories ap-
proach by Wang et al. [26] achieves 87.2% with bag-of-
features encoding and 91.2 with Fisher vector encoding.
On HMDB51, the method achieved an accuracy of 53.4%
while Wang et al. achieves 52.1% and 57.2% with bag-
of-features and Fisher vector encodings respectively. Our
method performs better than the bag-of-words encoding
method of Wang et al. but slightly below par when com-
pared to the Fisher vector encoding approach. Since our
method is based on clustering feature spaces using bag-of-
features, its performance is lesser than that of the Fisher
encoding approach. However, due to complimentary nature
of our descriptor, when combined with the Fisher encod-
ing approach of Wang et al. [26], we observe an increase
in the classification accuracy. The methods are combined
by averaging the kernel similarity measures. The combina-
tion achieved 92.5% and 58.7% on UCF50 and HMDB51
respectively. Thus, our descriptor can be combined with
other methods to improve the performance.

4.3. Varying the order and delay parameters

In this section, we investigate how the performance of
our causality descriptor varies as the order and delay param-
eters (equation 1) are changed. Keeping the delay constant
at 3, we vary the order of the model from 1 to 5 and plot the

UCF50 HMDB51

Wang∗ et al. [26] 91.2% Wang∗ et al. [26] 57.2%
Wang+ et al. [26] 87.2% Wang+ et al. [26] 52.1%
Shi et al. [24] 83.3% Jain et al. [10] 52.1%
Reddy et al. [19] 76.9% Jiang et al. [11] 40.7%
Proposed 89.4% Proposed 53.4%
Combined 92.5% Combined 58.7%

Table 3. Performance comparison on UCF50 and HMDB51
datasets. The ∗ and + for Wang et al. represent Fisher and bag-
of-words encodings respectively. ’Combined’ represents the per-
formance when we combine the Fisher encoding of [26] and our
method. This illustrates the complementary nature of our descrip-
tor.

accuracy of classification as a function of model order for
UCF50 and HMDB51 datasets. From figure 5, we observe
that as model order increases, the accuracy also increases
initially but decreases with further increase of the order pa-
rameter. Smaller values of order will not be very effective
in capturing the dynamics of the trajectories. For large or-
der values, the number of equations available for comput-
ing the prediction matrices decrease resulting in noisy val-
ues for causality ratio. Changing the delay parameter for
smaller model orders did not affect the performance while
for larger order values the performance degraded with in-
crease in delay due to the decrease in number of equations
for computing prediction matrices.

5. Conclusion

We have proposed novel descriptors, for action recog-
nition, which are based on the causal interactions among
the motion trajectories. These interactions play a vital role
in the dynamics of actions. This work highlights the im-
portance of obtaining pair-wise causal informations for ac-
tion classification along with the individual occurrences of
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Figure 5. Plot showing the classification accuracy for UCF50 and
HMDB51 for varying model orxder parameter

motion information. We have evaluated our proposed ap-
proach on challenging action recognition datasets and have
shown that capturing interactions will help in modeling ac-
tions better and in providing additional information about
the actions.
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