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Abstract

State-of-the-art patch-based image representations in-
volve a pooling operation that aggregates statistics com-
puted from local descriptors. Standard pooling operations
include sum- and max-pooling. Sum-pooling lacks discrim-
inability because the resulting representation is strongly in-
fluenced by frequent yet often uninformative descriptors,
but only weakly influenced by rare yet potentially highly-
informative ones. Max-pooling equalizes the influence of
frequent and rare descriptors but is only applicable to rep-
resentations that rely on count statistics, such as the bag-of-
visual-words (BOV) and its soft- and sparse-coding exten-
sions. We propose a novel pooling mechanism that achieves
the same effect as max-pooling but is applicable beyond
the BOV and especially to the state-of-the-art Fisher Vector
– hence the name Generalized Max Pooling (GMP). It in-
volves equalizing the similarity between each patch and the
pooled representation, which is shown to be equivalent to
re-weighting the per-patch statistics. We show on five pub-
lic image classification benchmarks that the proposed GMP
can lead to significant performance gains with respect to
heuristic alternatives.

1. Introduction

This work is concerned with image classification. A
state-of-the-art approach to representing an image from
a collection of local descriptors consists of (i) encod-
ing the descriptors using an embedding function ϕ that
maps the descriptors in a non-linear fashion into a higher-
dimensional space; and (ii) aggregating the codes into a
fixed-length vector using a pooling function. Successful
representations that fall within this framework include the
Bag-Of-Visual-words (BOV) [37, 11], the Fisher Vector
(FV) [27], the VLAD [18], the Super Vector (SV) [42] and
the Efficient Match Kernel (EMK) [4]. In this work, we
focus on step (ii): the pooling step.

By far the most popular pooling mechanism involves
summing (or averaging) the descriptor encodings [11, 27,
18, 42, 4]. An advantage of sum-pooling is its general-
ity: it can be applied to any encoding. A major disadvan-
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(a) Sum-pooling
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(b) Our GMP approach

Figure 1. We show the effect of pooling a single descriptor encod-
ing ( or ) with a set of tightly-clustered descriptor encodings
( ). Two pooled representations are shown: + = and

+ = . With sum-pooling (a), the cluster of descriptors
dominates the pooled representations and , and as a re-

sult they are very similar to each other. With our GMP approach
(b), both descriptors contribute meaningfully, resulting in highly
distinguishable pooled representations.

tage however is that frequently-occurring descriptors will
be more influential in the final representation than rarely-
occurring ones (see Figure 1(a)). By “frequently-occurring
descriptors” we mean descriptors which, though not neces-
sarily identical, together form a mode in descriptor space.
However, such frequent descriptors are not necessarily the
most informative ones. Let us take the example of a fine-
grained classification task where the goal is to distinguish
bird species. In a typical bird image, most patches might
correspond to background foliage or sky and therefore carry
little information about the bird class. On the other hand,
the most discriminative information might be highly local-
ized and therefore correspond to only a handful of patches.
Hence, it is crucial to ensure that even those rare patches
contribute significantly to the final representation.

Many approaches have been proposed in the computer
vision literature to address the problem of frequent descrip-
tors (see section 2). However, all of these solutions are
heuristic in nature and/or limited to certain types of en-
codings. For instance, max-pooling [7] only makes sense
in the context of the BOV or its soft-coding and sparse-
coding extensions. However, it is not directly applicable to
the FV, the VLAD, the SV or the EMK. This is because the

1



max-pooling operation treats each dimension independently
while for such representations the encoding dimensions are
strongly correlated and should be treated jointly.

In this work we propose a novel pooling mechanism that
involves equalizing the similarity between each patch and
the pooled representation. This can be viewed as a general-
ization of max-pooling to any encoding ϕ – hence the name,
Generalized Max Pooling (GMP). For instance, GMP is ap-
plicable to codebook-free representations such as the EMK
and to higher-order representations such as the FV.

Our main contributions are the following ones. We first
propose a matching criterion to compute the GMP repre-
sentation (section 3). It is referred to as the primal for-
mulation because it involves explicitly computing the final
pooled representation. We then show that this criterion is
equivalent to re-weighting the per-patch encodings before
sum-pooling (section 4). We refer to this formulation as
dual because the weights can be computed from the ker-
nel of patch-to-patch similarities without the need to access
the patch encodings. We show experimentally on five pub-
lic benchmarks that the proposed GMP can provide signifi-
cant performance gains with respect to heuristic alternatives
such as power normalization (section 5).

2. Related Work
The problem of reducing the influence of frequent de-

scriptors has received a great deal of attention in computer
vision. This issue can be addressed at the pooling stage or a
posteriori by performing some normalization on the image-
level pooled descriptor. We therefore review related works
on local descriptor pooling and image-level descriptor nor-
malization.

Local descriptor pooling. Pooling is the operation
which involves aggregating several local descriptor encod-
ings into a single representation. On the one hand, pooling
achieves some invariance to perturbations of the descriptors.
On the other hand, it may lead to a loss of information. To
reduce as much as possible this loss, only close descriptors
should be pooled together [7, 5], where the notion of close-
ness can be understood in the geometric and/or descriptor
domains. To enforce the pooling of close descriptors in the
geometric space, it is possible to use spatial pyramids [21].
In the descriptor space, the closeness constraint is achieved
through the choice of an appropriate embedding ϕ. Note
that our focus in this work is not on the choice of ϕ but on
the pooling operation, which we now discuss.

Pooling is typically achieved by either sum-
ming/averaging or by taking the maximum response.
Sum-pooling has been used in many biologically-inspired
visual recognition systems to approximate the operation
of receptive fields in early stages of the visual cortex
[15, 31, 20]. It is also a standard component in convo-
lutional neural networks [22]. A major disadvantage of

sum-pooling is that it is based on the incorrect assumption
that the descriptors in an image are independent and that
their contributions can be summed [7, 9, 35].

Max-pooling was advocated by Riesenhuber and Pog-
gio as a more appropriate pooling mechanism for higher-
level visual processing such as object recognition [33]. It
has subsequently been used in computer vision models of
object recognition [36] and especially in neural networks
[32, 23]. It has also recently found success in image classi-
fication tasks when used in conjunction with sparse coding
techniques [41, 6, 7]. A major disadvantage of max-pooling
is that it only makes sense when applied to embedding func-
tions ϕ which encode a strength of association between a
descriptor and a codeword, as is the case of the BOV and
its soft- and sparse-coding extensions. However, it is not
directly applicable to those representations which compute
higher-order statistics such as the FV, which has been shown
to yield state-of-the-art results in classification [8] and re-
trieval [18].

Several extensions to the standard sum- and max-pooling
frameworks have been proposed. For instance, one can
transition smoothly from sum- to max-pooling using `p- or
softmax-pooling [7]. It is also possible to add weights to
obtain a weighted pooling [12]. While our GMP can be
viewed as an instance of weighted pooling (see section 4),
a major difference with [12] is that their weights are com-
puted using external information to cancel-out the influence
of irrelevant descriptors while our weights are computed
from the descriptors themselves and equalize the influence
of frequent and rare descriptors.

Image-level descriptor normalization. Many works
make use of sum-pooling and correct a posteriori for the in-
correct independence assumption through normalization of
the pooled representation. Jégou et al. proposed several re-
weighting strategies for addressing visual burstiness in the
context of image retrieval by matching [17]. These include
penalizing multiple matches between a query descriptor and
a database image and penalizing the matches of descriptors
which are matched to multiple database images (i.e. IDF
weighting applied at the descriptor level rather than the vi-
sual word level). Torii et al. proposed another re-weighting
scheme for BOV-based representations, which soft-assigns
to fewer visual words those descriptors which are extracted
from a repetitive image structure [38]. Arandjelović et al.
showed that, for the VLAD representation [18], applying
`2-normalization to the aggregated representation of each
pooling region mitigates the burstiness effect [2]. Del-
humeau et al. found that, for VLAD, `2-normalizing the
descriptor residuals and then applying PCA before pool-
ing was beneficial [13]. Power normalization has also been
shown to be an effective heuristic for treating frequent de-
scriptors in BOV, FV or VLAD representations [29, 30, 18].
The main drawback of the previous works is that they are



heuristic and/or restricted to image representations based on
a finite vocabulary. In the latter case, they are not applicable
to codebook-free representations such as the EMK.

One of the rare works which considered the indepen-
dence problem in a principled manner is that of Cinbis et
al. which proposes a latent model to take into account inter-
descriptor dependencies [9]. However, this work is spe-
cific to representations based on Gaussian Mixture Mod-
els. In contrast, our GMP is generic and applicable to all
aggregation-based representations.

3. GMP as equalization of similarities

Let X = {x1, . . . , xN} be a set of N patches ex-
tracted from an image and let ϕn = ϕ(xn) denote the D-
dimensional encoding of the n-th patch.

Our goal is to propose a pooling mechanism that mim-
ics the desirable properties of max-pooling in the BOV case
and is extensible beyond the BOV. One such property is the
fact that the dot-product similarity between the max-pooled
representation ϕmax and a single patch encoding ϕn is a
constant value1. To see this, let C denote the codebook car-
dinality (C = D in the BOV case) and let in be the index of
the closest codeword to patch xn. ϕn is a binary vector with
a single non-zero entry at index in. ϕmax is a binary repre-
sentation where a 1 is indicative of the presence of the code-
word in the image. Consequently, we have ϕTnϕ

max = 1
for all ϕn and ϕmax is equally similar to frequent and rare
patches. This occurs because frequent and rare patches con-
tribute equally to the aggregated representation,

In contrast, the sum-pooled representation is overly in-
fluenced by frequent descriptors. Indeed, in the case of the
unnormalized sum-pooled representation, we have ϕsum =
[π1, . . . , πC ]T where πk is the number of occurrences of
codeword k and therefore ϕTnϕ

sum = πin . Consequently,
more frequent patches make a greater contribution to the ag-
gregated representation. As a result, ϕsum is more similar
to frequent descriptors than to rare ones.

Figure 1 illustrates this property for our GMP approach:
ϕsum is more similar to the more frequent descriptor (Fig-
ure 1(a)) whereas ϕgmp is equally similar to both the fre-
quent and rare descriptor (Figure 1(b)), although the de-
scriptors are not single-entry binary vectors as in the BOV
case. We now describe how GMP generalizes this property
to arbitrary descriptors (section 3.1). We also explain how
to compute efficiently the GMP representation in practice
(section 3.2).

1As mentioned in the introduction, we consider in this work the image
classification problem. For efficiency purposes, we focus on the case where
the pooled representations are classified using linear kernel machines, for
instance linear SVMs. Therefore, the implicit metric which is used to mea-
sure the similarity between patch encodings is the dot-product.

3.1. Primal Formulation

Let ϕgmp denote the GMP representation. We generalize
the previous matching property and enforce the dot-product
similarity between each patch encoding ϕn and the GMP
representation ϕgmp to be a constant c:

ϕTnϕ
gmp = c, for n = 1, . . . , N. (1)

Note that the value of the constant has no influence as
we typically `2-normalize the final representation. There-
fore, we arbitrarily set this constant to c = 1. Let Φ de-
note the D × N matrix that contains the patch encodings:
Φ = [ϕ1, ..., ϕN ]. In matrix form, (1) can be rewritten as:

ΦTϕgmp = 1N , (2)

where 1N denotes the N -dimensional vector of all ones.
This is a linear system of N equations with D unknowns.
In general, this system might not have a solution (e.g. when
D < N ) or might have an infinite number of solutions (e.g.
when D > N ). Therefore, we turn (2) into a least-squares
regression problem and seek

ϕgmp = arg min
ϕ
||ΦTϕ− 1N ||2, (3)

with the additional constraint that ϕgmp has minimal norm
in the case of an infinite number of solutions. The previous
problem admits a simple closed-form solution:

ϕgmp = (ΦT )+1N = (ΦΦT )+Φ1N , (4)

where + denotes the pseudo-inverse and the second equality
stems from the property A+ = (ATA)+AT . We note that
Φ1N =

∑N
n=1 ϕ(xn) = ϕsum is the sum-pooled represen-

tation. Hence, the proposed GMP involves projecting the
ϕsum on (ΦΦT )+. Note that this is different from recent
works in computer vision advocating for the decorrelation
of the data [16] since in our case the uncentered correlation
matrix ΦΦT is computed from patches of the same image.

It can be easily shown that, in the BOV case (hard cod-
ing), the GMP representation is strictly equivalent to the
max-pooling representation. This is not a surprise given that
GMP was designed to mimic the good properties of max-
pooling. We show in the appendix a more general property.

3.2. Computing the GMP in practice

Since the pseudo-inverse is not a continuous operation it
is beneficial to add a regularization term to obtain a stable
solution. We introduce ϕgmpλ , the regularized GMP:

ϕgmpλ = arg min
ϕ
||ΦTϕ− 1N ||2 + λ||ϕ||2. (5)

This is a ridge regression problem whose solution is

ϕgmpλ = (ΦΦT + λI)−1Φ1N . (6)



The regularization parameter λ should be cross-validated.
For λ very large, we have ϕgmpλ ≈ Φ1N/λ and we are
back to sum pooling. Therefore, λ does not only play a
regularization role. It also enables one to smoothly transi-
tion between the solution to (4) (λ = 0) and sum pooling
(λ→∞).

We now turn to the problem of computing ϕgmpλ . We
can compute (6) using Conjugate Gradient Descent (CGD)
which is designed for PSD matrices. This might be com-
putationally intensive if the encoding dimensionality D is
large and the matrix Φ is full (cost in O(D2)).

However, we can exploit the structure of certain patch
encodings. Especially, the computation can be sped-up if
the individual patch encodings ϕn are block-sparse. By
block-sparse we mean that the indices of the encoding can
be partitioned into a set of groups where the activation of
one entry in a group means the activation of all entries in the
group. This is the case for instance of the VLAD and the SV
where each group of indices corresponds to a given cluster
centroid. This is also the case of the FV if we assume a hard
assignment model where each group corresponds to the gra-
dients with respect to the parameters of a given Gaussian.
In such a case, the matrix ΦΦT is block-diagonal. Conse-
quently ΦΦT + λI is block diagonal and (6) can be solved
block-by-block, which is significantly less demanding than
solving the full problem directly (cost in O(D2/C)).

4. GMP as weighted pooling
In what follows, we first provide a dual interpretation of

GMP as a weighted pooling (section 4.1). We then visualize
the computed weights (section 4.2).

4.1. Dual Formulation

We note that the regularized GMP ϕgmpλ is the solution
to (5) and that, consequently, according to the representer
theorem, ϕgmpλ can be written as a linear combination of
the encodings:

ϕgmpλ = Φαλ (7)

where αλ is the vector of weights. Therefore GMP can be
viewed as an instance of weighted pooling [12]. By intro-
ducing ϕ = Φα in the GMP objective (5), we obtain:

αλ = arg min
α
||ΦTΦα− 1N ||2 + λ||Φα||2. (8)

If we denote by K = ΦTΦ the N × N kernel matrix of
patch-to-patch similarities, we finally obtain:

αλ = arg min
α
||Kα− 1N ||2 + λαTKα (9)

which admits the following simple solution:

αλ = (K + λIN )−11N (10)

which only depends on the patch-to-patch similarity kernel,
not on the encodings.

We note that, in the general case, computing the ker-
nel matrix K and solving (9) have a cost in O(N2D) and
O(N2) respectively. This might be prohibitive for large val-
ues of N and D. However, as was the case for the primal
formulation, we can exploit the structure of certain encod-
ings. This is the case of the VLAD or the FV (with hard as-
signment): since the encoding is block-sparse, the matrixK
is block-diagonal. Using an inverted file type of structure,
one can reduce the cost of computingK toO(N2D/C2) by
matching only the encodings ϕn that correspond to patches
assigned to the same codeword2. Also, one can solve for αλ
block-by-block which reduces the cost to O(N2/C).

Once weights have been computed, the GMP represen-
tation is obtained by linearly re-weighting the per-patch en-
codings – see equation (7). Note that in all our experiments
we use the primal formulation to compute ϕgmpλ , which is
more efficient than first computing the weights and then re-
weighting the encodings. However, we will see in the fol-
lowing section that the dual formulation is useful because it
enables visualizing the effect of the GMP.

4.2. Visualizing weights

We use weights computed via the dual formulation to
generate a topographic map whose value at pixel location l
is computed as

sl =
∑
xi∈Pl

αi, (11)

where Pl is the set of patches xi which contain location l
and αi is the weight of patch xi. These maps give us a quan-
titative measure of the rarity, and potential discriminative-
ness, of the different regions in the image. Figure 2 shows
several such maps for bird images. Clearly, they are rem-
iniscent of saliency maps computed to predict fixations of
the human gaze. One sees that the highly-weighted regions
contain rare image patches, such as the breast of the bird in
the third row. When the background is quite simple, as is
the case of the first row, the learned weights tend to segment
the foreground from the background. Note however that our
maps are computed in a fully unsupervised manner and that
there is no foreground/background segmentation guarantee
in the general case.

5. Experimental Evaluation

We first describe the image classification datasets and
image descriptors we use. We then report results.

2The O(N2D/C2) complexity is based on the optimistic assumption
that the same number of patches N/C is assigned to each codeword.



Figure 2. Maps generated using weights computed from color de-
scriptors using the EMK encoding, for a sample of images from the
CUB-2011 dataset. Left: original images. Middle: weight maps.
Right: weighted images. See sections 5.1 and 5.2 for details of the
dataset and descriptors.

5.1. Datasets

As mentioned earlier, we expect the proposed GMP to
be particularly beneficial on fine-grained tasks where the
most discriminative information might be associated with a
handful of patches. Therefore, we validated the proposed
approach on four fine-grained image classification datasets:
CUB-2010, CUB-2011, Oxford Pets and Oxford Flowers.
We also include the PASCAL VOC 2007 dataset in our ex-
periments since it is one of the most widely used bench-
marks in the image classification literature. On all datasets,
we use the standard training/validation/test protocols.

The Pascal VOC 2007 (VOC-2007) dataset [14] contains
9,963 images of 20 classes. Performance on this dataset
is measured with mean average precision (mAP). A recent
benchmark of encoding methods [8] reported 61.7% using
the FV descriptor with spatial pyramids [30].

The CalTech UCSD birds 2010 (CUB-2010) dataset [40]
contains 6,033 images of 200 bird categories. Performance
is measured with top-1 accuracy. The best reported perfor-
mance we are aware of for CUB-2010 is 17.5% [1]. This
method uses sparse coding in combination with object de-
tection and segmentation prior to classification. Without de-
tection and segmentation, performance drops to 14.4% [1].

The CalTech UCSD birds 2011 (CUB-2011) dataset [39]
is an extension of CUB-2010 that contains 11,788 images of
the same 200 bird categories. Performance is measured with
top-1 accuracy. The best reported performance for CUB-
2011 is, to our knowledge, 56.8%. This was obtained using
ground-truth bounding boxes and part detection [3]. The
best reported performance we are aware of that does not
use ground-truth annotations or localization is 28.2% [34].

The Oxford-IIIT-Pet (Pets) dataset [26] contains 7,349 im-
ages of 37 categories of cats and dogs. Performance is mea-
sured with top-1 accuracy. The best reported performance
for Pets is 54.3%, which was also obtained using the method
of [1]. Without detection and segmentation, performance
drops to 50.8% [1].

The Oxford 102 Flowers (Flowers) dataset [25] contains
8,189 images of 102 flower categories. Performance is
measured with top-1 accuracy. The best reported perfor-
mance for Flowers is 80.7%, and was also obtained using
the method of [1]. Again, without detection and segmenta-
tion performance drops to 76.7% [1].

5.2. Descriptors

In our experiments, patches are extracted densely at mul-
tiple scales resulting in approximately 10K descriptors per
image. We experimented with two types of low-level de-
scriptors: 128-dim SIFT descriptors [24] and 96-dim color
descriptors [10]. In both cases, we reduced their dimen-
sionality to 64 dimensions with PCA. Late fusion results
were obtained by evaluating an unweighted summation of
the scores given by the SIFT and color-based classifiers.

As mentioned earlier, the proposed GMP is general and
can be applied to any aggregated representation. Having
shown in the appendix, and verified experimentally, the for-
mal equivalence between GMP and standard max-pooling
in the BOV hard-coding case, we do not report any result
for the BOV. In our experiments, we focus on two aggre-
gated representations: the EMK [4] and the FV [27].

5.3. Results with the EMK

To compute the EMK representations we follow [4]: we
project the descriptors on random Gaussian directions, ap-
ply a cosine non-linearity and aggregate the responses. The
EMK is a vocabulary-free approach which does not per-
form any quantization and as a result preserves minute and
highly-localized image details. The EMK is thus especially
relevant for fine-grained problems. However, since all em-
beddings are pooled together rather than within Voronoi
regions as with vocabulary-based approaches, the EMK is
particularly susceptible to the effect of frequent descriptors.
Therefore we expect GMP to have a significant positive im-
pact on the EMK performance. To the best of our knowl-
edge, there is no previous transformation that may be ap-
plied to the EMK to counteract frequent descriptors. In par-
ticular, power normalization heuristics which are used for
vocabulary-based approaches such as the BOV [29] or the
FV [30] are not suitable.

The EMK representation has two parameters: the num-
ber of output dimensionsD (i.e. the number of random pro-
jections) and the bandwidth σ of the Gaussian kernel from
which the random directions are drawn. The dimension D
was set to 2,048 for all experiments as there was negligible



improvement in performance for larger values. σ was cho-
sen through cross-validation. The choice of λ (the regular-
ization parameter of the GMP) has a significant impact on
the final performance and was chosen by cross-validation
from the set {101, 102, 103, 104, 105}. We do not use spa-
tial pyramids.

Results with the EMK are shown in Table 1. We report
results for the baseline EMK (sum-pooling i.e. no mitiga-
tion of frequent descriptors) and the EMK with the pro-
posed GMP. A significant improvement in performance, be-
tween 3% and 20%, is achieved for all datasets when us-
ing GMP. This indicates that suppressing frequent descrip-
tors is indeed beneficial when using EMKs. On the fine-
grained datasets, the improvements are particularly impres-
sive – 16% on average.

5.4. Results with the FV

We now turn to the state-of-the-art FV representa-
tion [27, 30]. To construct the FV we compute for each
descriptor the gradient of the log-likelihood with respect to
the parameters of a Gaussian Mixture Model (GMM) and
pool the gradients. For the FV, increasing the number of
GaussiansG counteracts the negative effects of frequent de-
scriptors as fewer and fewer descriptors are assigned to the
same Gaussian. Therefore we expect GMP to have a smaller
impact than for the EMK, particularly as G increases. By
default we do not use spatial pyramids, but have included a
discussion on its effect for the VOC-2007 dataset.

Experiments were conducted for FVs with G set to ei-
ther 16 or 256, leading to 2,048-dim and 32,768-dim vec-
tors respectively. Values of G of 16 and 256 were chosen
in order to have a comparable dimensionality to that of the
EMK representation in the former case, and to have a state-
of-the-art FV representation in the latter case. The value of
the GMP regularization parameter λ was once again chosen
by cross-validation from the set {101, 102, 103, 104, 105}.

Power normalization baseline. Our baseline method uses
power normalization, the state-of-the-art and post-hoc ap-
proach for improving the pooled FV representation [30]. In
the literature, the power is usually set to 0.5 [30, 8, 18, 35].
Indeed, we found this value to be optimal for VOC-2007 for
SIFT descriptors. However it has been shown, in the con-
text of image retrieval, that a lower value often can achieve
significant performance gains [28]. We observed the same
effect for classification. Therefore, we cross-validated the
value of the power parameter. We tested the following set
of 8 values: {1.0, 0.7, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0}. Note that
for a value of 0, we follow [28] and apply the power nor-
malization only to non-zero entries. Results with the best-
performing power (i.e. the value that led to the best results
on the validation set) are denoted by sum+p in Table 2. The
optimal power was determined on a per-descriptor and per-
dataset basis. Hence, our power baseline is a very strong

Descriptor VOC-2007 CUB-2010 CUB-2011 Pets Flowers
sum GMP sum GMP sum GMP sum GMP sum GMP

SIFT 40.0 46.0 2.9 6.5 5.0 10.6 21.7 35.6 41.3 52.2
Color 30.1 34.6 3.0 11.8 4.0 22.0 13.2 28.5 41.8 60.2
Fusion 43.1 49.5 3.7 13.5 6.0 24.8 22.8 42.9 55.8 69.5

Table 1. EMK results for SIFT descriptors, color descriptors, and
late fusion of SIFT + color. Results are shown for D = 2, 048-dim
features for sum-pooling (sum) and for our GMP approach.

one. For instance, for CUB-2011, performance with late fu-
sion and G = 256 increases from 25.4% with the default
0.5 value to 29.7% with the cross-validated power normal-
ization.

GMP vs. no power normalization. Results are shown in
Table 2. Our GMP consistently performs significantly better
– 10% better on average for late fusion and G = 256 – than
when no power normalization is applied. The improvement
is particularly impressive for several fine-grained datasets.
For instance, for CUB-2011 GMP obtains a top-1 accuracy
of 30.8% compared to 13.2% with sum-pooling.

GMP vs. power normalization. GMP always outper-
forms power normalization for all datasets for G = 16.
The average improvement for late fusion is 2.8%. As ex-
pected, as G increases to 256 GMP has less of an impact,
but still outperforms power normalization by 0.4% on av-
erage, with late fusion. Note that, on the Flowers dataset
with late fusion and G = 256, we obtain 83.5% and 82.2%
respectively for the power normalization and GMP. These
outperform the previous state-of-the-art (80.7% [1]). Also,
on the Pets dataset with late fusion and G = 256, GMP
obtains top-1 accuracy of 56.1%, compared to 54.2% with
power normalization – an increase in performance of 1.9%.
This is to our knowledge the best-reported result for this
dataset, out-performing the previous state-of-the-art (54.3%
[1]). Therefore GMP achieves or exceeds the performance
of the ad-hoc power normalization technique, while being
more principled and more general. Note that GMP may
also be combined with power normalization (GMP+p in Ta-
ble 2). This combination results in average improvements
over power normalization of 3.8% for G = 16 and 2.5% for
G = 256, showing that GMP and power normalization are
somewhat complementary.

Effect of spatial pyramids. We ran additional experiments
on VOC-2007 to investigate the effect of our method when
using Spatial Pyramids (SPs). We used a coarse pyramid
and extracted 4 FVs per image: one FV for the whole image
and one FV each for three horizontal strips corresponding to
the top, middle and bottom regions of the image. With SPs,
GMP again afforded improvements with respect to power
normalization. For instance, with late fusion and G = 256,
GMP obtains 62.0% compared to 60.2% for the power base-
line – a 1.8% increase in performance.



Descriptor VOC-2007 CUB-2010 CUB-2011 Pets Flowers
sum sum+p GMP GMP+p sum sum+p GMP GMP+p sum sum+p GMP GMP+p sum sum+p GMP GMP+p sum sum+p GMP GMP+p

G
=1

6 SIFT 49.1 51.6 52.8 53.4 4.1 6.2 6.4 6.9 7.9 11.1 11.5 12.7 29.4 32.1 35.1 35.7 58.3 62.8 63.8 65.3
Color 40.2 43.8 45.3 45.8 4.9 8.7 12.5 13.1 7.2 16.8 21.6 22.8 22.5 28.6 32.5 33.5 55.3 65.6 65.9 67.2
Fusion 52.2 55.1 57.0 57.1 5.6 10.1 13.0 13.9 10.0 18.0 23.4 25.6 33.5 40.5 42.9 44.4 69.9 77.6 79.0 79.3

G
=2

56 SIFT 52.6 57.8 58.1 58.9 5.3 8.1 7.7 9.6 10.2 16.3 16.4 17.0 38.1 47.1 47.9 49.2 67.7 73.0 72.8 73.3
Color 39.4 49.5 50.0 50.4 4.6 13.0 14.2 14.6 9.0 27.4 27.0 29.3 23.6 41.1 41.6 43.0 63.9 74.0 72.8 75.1
Fusion 54.7 60.6 61.8 61.7 7.1 14.2 13.3 17.2 13.2 29.7 30.8 33.3 40.5 54.2 56.1 56.8 77.2 83.5 82.2 84.6

Table 2. FV results for SIFT descriptors, color descriptors, and late fusion of SIFT + color. Results are shown for G = 16 and G =
256 Gaussians for sum-pooling (sum), sum-pooling + power normalization (sum+p), our GMP approach (GMP), and GMP + power
normalization (GMP+p).

Effect of the number of Gaussians G. As expected, there
is a consistent and significant positive impact on perfor-
mance when G is increased from 16 to 256. Our GMP ap-
proach is complementary to increasing G, as performance
is generally improved when more Gaussians are used and
GMP is applied. Furthermore, GMP is particularly attrac-
tive when low-dimensional FVs must be used.

FV vs. EMK. The baseline EMK results are quite poor
in comparison with the baseline FV results. However, for
CUB-2010, CUB-2011, and Pets, GMP improves the EMK
performance to the point that EMK results with GMP are
comparable to FV results with GMP when G = 16 (with
G = 16, the FV and EMK representations are both 2,048-
dimensional). In fact, for CUB-2011, EMK with GMP is
superior to FV with GMP for G = 16 (24.8% vs. 23.4%).

6. Conclusions
We have proposed a principled and general method for

pooling patch-level descriptors which equalizes the influ-
ence of frequent and rare descriptors, preserving discrim-
inating information in the resulting aggregated representa-
tion. Our generalized max-pooling (GMP) is applicable to
any encoding technique and can thus be seen as an exten-
sion of max pooling, which can only be applied to count-
based representations such as BOV and its soft-coding and
hard-coding extensions. Extensive experiments on several
public datasets show that GMP performs on par with, and
sometimes significantly better than, heuristic alternatives.

We note that, in the same proceedings, Jégou and Zis-
serman [19] propose a democratic aggregation which bears
some similarity to our GMP. Especially, it involves re-
weighting the patch encodings to balance the influence of
descriptors. One potential benefit of the GMP is that it is
can be efficiently computed in the primal while the compu-
tation of the democratic aggregation can only be performed
in the dual. However, it remains to be seen how these two
aggregation mechanisms compare in practice.

A. GMP and Max-Pooling
In this appendix, we relate the GMP to max-pooling. We

denote by E = {ϕ1, . . . , ϕN} the set of descriptor encod-

ings of a given image. We assume that these encodings
are drawn from a finite codebook of possible encodings,
i.e. ϕ(xi) ∈ {q1, . . . , qC}. Note that the codewords qk
might be binary or real-valued. We denote by Q the D×C
codebook matrix of possible embeddings where we recall
that D is the output encoding dimensionality. We assume
Q = [q1, . . . , qC ] is orthonormal, i.e. QTQ = IC where IC
is the C×C identity matrix. For instance, in the case of the
BOV with hard-coding, D = C and the qk’s are binary with
only the k-th entry equal to 1, so that Q = IC . We finally
denote by πk the proportion of occurrences of qk in E .

Theorem. ϕgmp does not depend on the proportions πk,
but only on the presence or absence of the qk’s in E .

Proof. We denote by Π the C × C diagonal matrix
that contains the values π1, ..., πC on the diagonal. We
rewrite Φ1M = QΠ1C and ΦΦT = QΠQT . The lat-
ter quantity is the SVD decomposition of ΦΦT and there-
fore we have (ΦΦT )+ = QΠ+QT . Hence (4) becomes
ϕgmp = QΠ+QTQΠ1C = Q(Π+Π)1C . Since Π is di-
agonal, its pseudo-inverse is diagonal and the values on the
diagonal are equal to 1/πk if πk 6= 0 and 0 if πk = 0.
Therefore, Π+Π is a diagonal matrix with element k on the
diagonal equal to 1 if πk 6= 0 and 0 otherwise. Therefore
we have

ϕgmp =
∑

k:πk 6=0

qk, (12)

which does not depend on the proportions πk, just on the
presence or absence of the qk’s in E .

For the BOV hard-coding case, equation (12) shows that
ϕgmp is a binary representation where each dimension in-
forms on the presence/absence of each codeword in the im-
age. This is exactly the max-pooled representation. There-
fore, our pooling mechanism can be understood as a gener-
alization of max-pooling.

Note that there is no equivalence between the standard
max-pooling and the GMP in the soft- or sparse-coding
cases. One benefit of the GMP however is that it is in-
dependent of a rotation of the encodings. This is not the
case of the standard max-pooling which operates on a per-
dimension basis.
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