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Abstract
We propose a head pose invariant gaze estimation model

for distant RGB-D cameras. It relies on a geometric un-
derstanding of the 3D gaze action and generation of eye
images. By introducing a semantic segmentation of the eye
region within a generative process, the model (i) avoids the
critical feature tracking of geometrical approaches requir-
ing high resolution images; (ii) decouples the person de-
pendent geometry from the ambient conditions, allowing
adaptation to different conditions without retraining. Pri-
ors in the generative framework are adequate for training
from few samples. In addition, the model is capable of gaze
extrapolation allowing for less restrictive training schemes.
Comparisons with state of the art methods validate these
properties which make our method highly valuable for ad-
dressing many diverse tasks in sociology, HRI and HCI.

1. Introduction
As a display of attention and interest, gaze is a funda-

mental cue in understanding people activities, behaviors,
and state of mind, and plays an important role in many ap-
plications and research fields. In psychology and sociology,
gaze information helps to infer inner states of people or their
intention, and to better understand the interaction between
individuals. In particular, gaze plays a major role in the
communication process, like for showing attention to the
speaker or indicating who is addressed, which makes gaze
highly relevant for Human Robotics Interaction (HRI).

In another direction, in Human Computer Interfaces
(HCI) gaze information coordinated with other user inputs
can lead to the development of intuitive systems beneficial
for instance for people with limited body mobility.

For these reasons, computer vision based gaze estimation
has been studied for over 3 decades [6]. Many solutions
have been proposed. Some achieve very high accuracy but
require expensive and specialized hardware, like infrared
setups or wearable sensors. A solution based on consumer
hardware is needed.

To minimize intrusion and accommodate user’s move-
ment, remote cameras with wide field of view are preferred
but lead to the challenge of low resolution imaging.

pc

o

z

x

y

rc

re

u

v

sclera

cornea u

skin

v

kl kr

ue

le

Segmentation Color
distributions

Visual
target

Geometric parameters
Eyelids
openinglocation

Person-wise parameters

Image-wise parameters

Eye image

Prior distributions

Session-wise parameters

Figure 1: Method overview. The probabilistic generative
process links the gazing at a visual target and eyelids move-
ments with a semantic segmentation of the eye region and
the resulting eye image observation. This process also de-
pends on (and decouples) user specific parameters describ-
ing the eye and eyelid geometry, and ambient/session spe-
cific parameters (color distributions).

Appearance based methods, which learn a direct map-
ping between the eye image to the gaze parameters, avoid
local features tracking which is problematic under low reso-
lution conditions. However, they either require large sets of
training data to handle eye image variations due to person’s
specific appearance, head pose, scale, illumination and eye-
lids movements when learning a general mapping, or re-
quire (less) per session training data resulting in overfitting
to the person and conditions used during the training phase.

In this paper we propose a head-pose invariant gaze es-
timation method. It relies on an appearance generative pro-
cess that model head-pose rectified eye images recovered
thanks to the use of consumer RGB-D cameras.

The process is illustrated and briefly explained in Fig. 1,
and has several advantages. Thanks to the use of an ex-
plicit geometric gaze model, it handles head pose and gaze
direction in a unified framework, making it appropriate to
reason in the 3D space and extrapolating to gaze directions
not seen in the training data, which is useful for instance in
inferring attention towards objects or people in HRI rather
than only interpolating screen positions. The use of seman-
tic regions (eyelids, cornea, sclera) allows to decouple the
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gazing process and user geometry from the ambient condi-
tions (color appearance), while avoiding the critical feature
(iris/pupil) tracking problem of standard geometric meth-
ods. Overall, the method is able to span a large variety of
people and conditions, allowing to easily adapt the model
(to the user, viewing conditions) from a few training sam-
ples and use it to estimate gaze on unseen data.

Paper structure: Section 2 discuss related works. The
RGB-D approach for head-free gaze estimation is described
in Section 3. Our gaze model is detailed in Section 4, fol-
lowed by the inference scheme in Section 5. Section 6
presents experiments and Section 7 concludes this paper.

2. Related Work
The recent survey by Hansen [6] provides a comprehen-

sive overview on computer vision methods for gaze estima-
tion. The most accurate techniques rely on eye geometry
and on pupil center-corneal reflections detection under IR
illumination [4]. They can accommodate head pose varia-
tion when using multiple light sources, but need specialized
and usually costly IR hardware.

Natural light based methods have also been studied.
Many proposals extract geometric models of the eyes,
which can be an ellipse fitted to the pupil/iris [16], or
complex shapes incorporating the eyelids [18]. Moriyama
et al. [11] proposed a generative approach to segment an
eye image into many detailed semantic regions (more than
10), but the actual gaze estimation was not investigated.
Ishikawa et al. [7] built a geometric model of the eyeball
and optical axis from image data, but relied on facial fea-
ture tracking and iris ellipse fitting. Closer to our work, Ya-
mazoe et al. [17] proposed to fit such a model from ad-hoc
segmentations of the eye images obtained through simple
thresholding. However, at test time, they used the iris cen-
ter derived from a fitted ellipse to infer gaze. Thus, all these
methods require high contrast or high resolution images. In
addition, further techniques are needed to infer the actual
line of sight (LoS), specially for reasoning in 3D scenarios.

To avoid features tracking, there has been an increased
interest on appearance based methods [1, 3, 8, 10, 14] that
learn a direct mapping from the eye image to gaze param-
eters. Baluja and Pomerlau [1] trained a neural network
but required thousands of training samples, while Williams
et al. relied on semi-supervised Gaussian Process Regres-
sion (GPR) [15]. Sugano et al. [14] proposed taking user-
computer interaction as training data. More recently, Lu
et al. [8] proposed adaptive linear regression (ALR) which
is based on sparse image reconstruction. They report high
accuracy, even using low-resolution test images, but these
images were artificially created from the same experimen-
tal session. Also, the method required a fixed head pose.

To remove this last constraint, Lu et al. subsequently pro-
posed a GPR-based pose correcting scheme on top of their

fixed head pose model [10]. In another direction, Lu et al.
[9] proposed to synthesize eye images as seen from different
viewpoints given eye images from a single head pose and a
few images from different head poses. More conveniently,
Funes and Odobez [3] leveraged on RGB-D cameras to di-
rectly handle eye appearance variation by generating frontal
looking eye images used as input to ALR.

Altogether, however, appearance based methods suffer
from generalization problems. Either they require large
amounts of training data [1, 14, 15] to handle variations
due to eye shape, pose, illumination conditions, or they
are trained from session dependent samples [3, 8, 10] to be
used for interpolation. In both cases, the absence of an ex-
plicit geometric model make them rather inappropriate for
adaptation to users or ambient conditions, or extrapolation,
which is problematic when training from a few points on a
screen and estimating gaze for different head poses.

Our generative approach has several advantages with re-
spect to the aforementioned methods. Thanks to the use of a
color-based semantic segmentation approach, it is suitable
for low resolution imaging as compared to traditional ge-
ometric based methods, and decouples ambient conditions
from the user specific geometry.

The model’s geometric prior makes it appropriate for
training from a few samples and extrapolating to other con-
ditions. This is valuable for reasoning in a 3D environment,
a desired property in psychology, sociology and HRI while
still appropriate for HCI applications.

3. Gaze estimation from RGB-D cameras
This section summarizes the gaze estimation method

from RGB-D cameras. To acquire head-pose invariance we
followed a similar procedure to [3]. In an offline step a 3D
face mesh (template) is built for the user by fitting a 3D
Morphable model (3DMM) [13] to depth data. Then, in an
online stage, the following steps are executed:
• The 3D head pose pt is obtained by fitting, frame-by-

frame, the personalized 3D mesh template to depth data
using iterative closest points (ICP), resulting for frame t
in the 3D head rotation and translation pt = {Rt, tt}.

• Assuming a calibrated RGB-D setup, the RGB-D frame
is transformed to a textured 3D mesh. We then re-render
the texture, lying on the 3D data surface, using the in-
verse head pose parameters p−1t = {R>t ,−R>t tt}. This
results in facial images as if the head was static and in
front of the camera. The 3DMM defines a priori the eyes
location referred to the head coordinate system. This po-
sition is used to crop eye images from the frontal looking
facial texture, resulting in pose-rectified eye images.

• The gaze direction is estimated from the pose-rectified
eye images using our proposed method (cf. Section 4).

• The gaze direction is transformed back to the world co-
ordinate system, according to the head pose.



4. Geometric generative gaze model

Table 1: List of symbols related to our model
Symbol Description
I; (u, v) Image index and pixel coordinates
pc Eyeball rotation center

κ = (φκ, θκ) Visual axis deviation
d Nodal point distance from pc

a := (κ, d) Axial parameters
re, rc Eyeball and cornea radii

kl = (klu, klv) Left eye corner in image coordinates
kr = (kru, krv) Right eye corner in image coordinates
klr = (kl, kr) Left and right eye corners

s := (re, rc, kl, kr) Structure parameters
p Visual target 3D position

o = (φ, θ) Optical axis orientation
ue, le Upper and lower eyelid opening

m := (o, ue, le) Movement parameters
Λl Class l color distribution parameters
c Observed color at pixel u, v

λ ∈ {0, 1} Occlusion state for pixel u, v

4.1. Approach overview

The proposed approach is summarized as a block dia-
gram in Fig. 1. Before describing the method, notice that
all measures can be referred to a coordinate system fixed to
the head (with the z axis directed towards the head front)
due to the procedure described in Section 3. This makes
it possible to deal with head fixed quantities. In addition,
there is no scale ambiguity in the pose-rectified eye images
as depth information provides the pixel size in meters.

The model is characterized by user specific parameters
U = {pc, re, rc, κ, d, klr}, which define the fixed eye geom-
etry (all notations are defined in Table 1), and image specific
parameters m = {o, ue, le} related to the actual gaze activ-
ity: what is the person’s eye orientation (characterized by
the optical axis o) and how are the eyelids open (ue, le).

As shown in Fig. 1, given these parameters, an eye and
eyelid configuration can be specified, from which a se-
mantic segmentation of the eye region can be generated.
The generative process then further combines this segmen-
tation with session dependent color model distributions,
parametrized by {Λl}l=1..3, to produce eye color-images.

Our probabilistic model is thus able to compute the like-
lihood of such eye images, which constitute our observa-
tions. Hence, during a training phase, user parameters can
be learned by maximizing the likelihood of gaze annotated
training samples, while at test time, the image optimization
leads to the actual estimation of m, and thus the LoS.

In the following, we describe more precisely the differ-
ent elements of our model: the eye geometric model, the
parametric segmentation function, the definition of the like-
lihood, and our generative model.
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Figure 2: a) Eye geometry with optical (o) and visual (v)
axis definition. b) spherical parametrization of an axis “τ”.

4.2. Eye geometric model

Fig. 2a illustrates the geometric eye model we use [6].
The process of gazing a visual target p ∈ R3 consists of
rotating the eyeball around the point pc ∈ R3 such that the
visual axis (v) intersects p. The visual axis is the line con-
necting the fovea (the point of highest visual acuity in the
retina) and the nodal point N. It differs from the optical
axis (o), which is the line connecting the center of rotation
pc and the pupil center. We parametrize these axis by two
angles (as in Fig. 2b). As the eye is a rigid body, the angu-
lar difference between these axis is fixed and can be repre-
sented by the person dependent angles κ = (φκ, θκ) 1:

v = o + κ (1)
Thus, implicitly, if the “axial” parameters a := (κ, d) are
known, then the eye rotation (o) can be defined as a function
of the position of p. We denote this process as:

o(p) = (fφ(p;κ, d, pc), fθ(p;κ, d, pc)) (2)

4.3. Parametric segmentation function
An eye image is segmented into three regions: the

cornea2, sclera and skin. The central rectangle in Fig. 1
shows our parametric segmentation: assuming that the user
eye geometric parameters U are known, then a given eye
orientation o define a cornea-sclera segmentation, obtained
as the orthogonal projection of the 3D cornea contour into
the xy plane, followed by a transformation to image coordi-
nates uv. This is possible due to the eye image rectification
procedure described in Sec. 3 which provides a mapping of
the 3D data into the rectified eye image coordinates.

To define the segmentation of the skin region, we rely on
a set of parameters characterizing the eyelids structure (eye
corners kl and kr) and another set controlling the eyelids
opening. We take a simple approach, shown in the right part
of Fig. 1 where the upper and lower eyelids are quadratic
bezier curves sharing the eyelids corners kl and kr.

The vertical position of the inner control points are de-
noted as ue and le. They define the eyelids opening, and
thus, the skin segmentation. The skin class overrides the
sclera and cornea regions in the overall segmentation.

1This representation ignores eye torsion. Even though it is known that
the eyes rotate according to Listing’s and Donder’s laws, this simplification
was shown to have little impact on gaze estimation [5].

2We define here “cornea” as the region composed of the pupil and iris.
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Figure 3: Graphical representation of the geometric gener-
ative gaze model. The symbols are described in Table 1.

Given this procedure, we define the segmentation func-
tion given in Eq. 3. Notice this is also a function of the
parameters which define the structure of the eyes and the
current movement of the eye and eyelids.

Su,v(l;m, s, pc) =

{
0 if pixel (u, v) /∈ class l
1 if pixel (u, v) ∈ class l

(3)

4.4. Image likelihood and outlier modeling

So far we used 3 classes to define the eye image segmen-
tation regions. Here we introduce a fourth class for pixel
outliers, denoted by the variable λ = {0, 1} where 1 indi-
cates that the pixel is an outlier. This is intended to address
missing data, occlusions and specular reflections.

Our observation data is an eye image I . Its likelihood
given the parameters is defined as p(I|.) =

∏
u,v pu,v(c|.)

which assume that all pixels are independent observations
given the parameters. To model the likelihood of individual
pixels, we define the color distribution associated to a class
l as p(c|Λl), a 2 component GMM in the RGB space.

For outliers we assume an equal probability of observing
any color, such that p(c|λ = 1) = ε. The likelihood of a
color pixel is then simply defined as the likelihood given its
class (either an outlier, or one of the 3 eye region classes),
which can be written in condensed form as:

pu,v(c|λ,m, s, pc, {Λl}l) = ελ

[∏
l

p(c|Λl)Su,v(l;m,s,pc)

]1−λ
4.5. Generative model

The graphical model of our geometric generative gaze
estimation (G3E) approach is shown in Fig. 3. It is a
stochastic extension of the full process of gazing up to the
generation of eye images, under which every geometric pa-
rameter is defined as a random variable.

Let us denote by x ∼ N (µx, σx) a random variable
x being drawn from a Gaussian distribution with mean
µx and standard deviation σx, and the “hat” (̂.) notation
to represent the hyperparameters of a prior distribution,
e.g. d̂ := (µ̂d, σ̂d). The generative process shown in Fig. 3
can be described as follows:

• Draw the eyeball rotation center pc:
– pc ∼

(
N (µ̂pcx , σ̂pcx),N (µ̂pcy , σ̂pcy ),N (µ̂pcz , σ̂pcz )

)
• Draw axial parameters a := (κ, d):

– κ ∼ (N (µ̂φκ , σ̂φκ),N (µ̂θκ , σ̂θκ))
– d ∼ N (µ̂d, σ̂d)

• Draw “structure” parameters s := (re, rc, kl, kr):
– re ∼ N (µ̂re , σ̂re)
– rc ∼ N (µ̂rc , σ̂rc)
– kl ∼ (N (µ̂klu , σ̂klu),N (µ̂klv , σ̂klv ))
– kr ∼ (N (µ̂kru , σ̂kru),N (µ̂krv , σ̂krv ))

• For each image I = 1, . . . , N :
– Draw the visual target p ∼ uniform
– Draw movement parameters m := (o, ue, le):
∗ o ∼ (N (fφ(p;a, pc), σ̂o),N (fθ(p;a, pc), σ̂o))
∗ ue ∼ N (auθ + bu, σ̂ue)
∗ le ∼ N (µ̂le , σ̂le)

– For each (u, v) = [1, . . . , width], [1, . . . , height]:
∗ Draw outlier or not indicator λ ∼ Bernoulli(λ̂)
∗ Draw pixel color c ∼ pu,v(c|λ,m, s, pc, {Λl}l)

It is important to make a few remarks about this model:
• Upper eyelid opening. The upper eyelid is correlated with

the elevation angle of the eye by means of a linear Gaus-
sian model. This encodes the effect of the upper eyelid
following the vertical orientation of the eye.

• Eye rotation. A stochastic extension of Eq. 2 was defined
to allow uncertainty in the target position or eye fixation.

• Stochastic segmentation. Under this model the segmen-
tation becomes a stochastic process. Drawing a sample
from the geometric parameters or the movement parame-
ters m is equivalent to “drawing a segmentation”.

• Prior distributions and hyperparameters. Prior distribu-
tions have a semantic and/or anatomical interpretation.
Therefore the hyperparameters are fixed to values that
can be found in the literature (e.g. re ≈ 12mm) or are
a consequence of the pose-rectification processing de-
scribed in Section 3 (e.g. it is known where the eye cor-
ners are expected to be from the eye image cropping).

• Color distributions. In this paper, the color model pa-
rameters {Λl} are defined as observed. In practice, we
acquire color samples from a single image to estimate
them. Automatic color model learning is left for future
work. Notice that decoupled color modeling is an im-
portant advantage of G3E. It allows for adaptation to dif-
ferent illumination and contrast conditions, without re-
estimating the geometric parameters.

5. Model inference
There are two inference goals for our model. i) Training

phase: from a set of pairs of image samples and visual target
locations we aim to infer the person dependent geometry. ii)
Test phase: given an input image we infer the eye rotation
o and eyelids opening leveraging on the previous training.



The inferred o is used to estimate the direction of the vi-
sual axis (cf. Eq. 1). We resorted to Variational Bayes (VB)
as an approximate inference method to address the com-
plexity of our model. We summarize the main points below
and details are provided in the supplementary material.

Variational Bayes. Let X denote the observed data and
Z to be the latent variables to infer. In VB the posterior
p(Z|X), which might not be possible to estimate analyti-
cally, is approximated by some proposal distribution q(Z).

This leads to the definition of the variational lower
bound L(q), a functional whose maximization with respect
to q is equivalent to a minimization of the Kullback-Leibler
divergence between q(Z) and p(Z|X) [2]. The optimal
q∗(Z) is then used as a substitute of the posterior.

Proposal distribution. We define q(Z) with the following
parametric form:

q(Z) = N (µd, σd)N (µφκ , σφκ)N (µθκ , σθκ)N (µre , σre)

N (µrc , σrc)N (µpcx , σpcx)N (µpcy , σpcy )N (µpcz , σpcz )

N (µklu , σklu)N (µklv , σklv )N (µkru , σkru)N (µkrv , σkrv )∏
I

[
N (µφ, σφ)N (µθ, σθ)N (µue , σue)N (µle , σle)

∏
u,v

q(λ)
]
,

where we omit the image and pixel indices to avoid clutter.
Every continuous random variable has been defined as a

univariate Gaussian. The motivation for this q(Z) is that it
is possible to compute the derivatives of L(q) with respect
to the Gaussian parameters. Following [12] we compute the
derivatives using Monte Carlo expectations3 to address the
complex relations in our model (cf. Eq. 2 and Eq. 3).

A factorized q(Z) also allows to optimize L(q) in an it-
erative fashion, where one factor is optimized at the time,
leading to an increase of L(q) until global convergence.

The only non continuous variable is λ. It can be shown
that the optimal q(λ) is a Bernoulli distribution with
P (λ = 1) = ω, where ω is given by

ω =
λ̂

(1− λ̂) 1
ε

∏
l p(c|Λl)Em,s,pc [Su,v(l;m,s,pc)] + λ̂

(4)

Notice that Em,s,pc [Su,v(l;m, s, pc)] can be interpreted as
the expected segmentation of an image. According to Eq. 4
an outlier is considered as a color observation which is ei-
ther unlikely for any class, or that is likely for a given class
but is spatially incoherent w.r.t. the geometric model.

Efficient group factor optimization. We can optimize L
efficiently by defining Jacobians over groups of variables
(e.g. Ja = [ ∂L

∂µφκ
, ∂L
∂σφκ

, ∂L
∂µθκ

, ∂L
∂σθκ

, ∂L∂µd ,
∂L
∂σd

]>). This is
efficient in terms of derivatives computation, as we found
that their Monte Carlo expectations require group sampling
rather than univariate sampling, due to complex dependen-
cies in Eq. 2 and Eq. 3.

3All expectations are defined with respect to q(Z)

Gradient ascent is then used to find the optimal Gaussian
parameters of the corresponding factor of q(Z) (e.g. q(a)).

Inference algorithms.
Training. Our overall inference method is given in Algo-
rithm 1. This method finds the person-specific geometry
from a set of eye images and their corresponding p.
Test phase (Gaze inference). At test time, the geometry is
fixed and we only optimize w.r.t. the test image’s q(m) and
outliers in an iterative fashion. In this case the visual target
location p is unknown; as we assume a uniform prior over p,
its influence on p(o|.) becomes uninformative. The inferred
mode of q∗(Z) can then be used to derive the MAP visual
axis, leading to the 3D line of sight for the given image.

Algorithm 1 Geometric generative gaze model inference.
Set initial q(Z) from the prior distribution parameters.
repeat
• Optimize L w.r.t. eye corners and all eyelids opening:

q(klu)q(klv)q(kru)q(krv)
∏
I q(u

I
e)q(l

I
e)

• Optimize L w.r.t. eyeball geometry and orientation:
q(re)q(ri)q(pcx)q(pcy)

∏
I q(o

I)
• Optimize L w.r.t. axial parameters and eyeball depth:

q(a)q(pcz)
• Update outliers q(λIu,v) for all pixels using Eq. 4

until Convergence
Return q∗(Z)

6. Experiments
To validate our model, we first studied its behavior using

synthetic data. We then compared it against representative
geometric and appearance approaches on real data to vali-
date its advantages and added properties.

6.1. Experiments on synthetic data

To validate our method we created synthetic data using
the generative process described in Section 4.5. Examples
are shown in Fig. 4; their resolution in pixel is 55× 40.

Synthetic data allows us to study the inference scheme
and the observability of the gaze model parameters by com-
paring the parameters inferred by G3E to their true values.

The left plot of Fig. 5 shows the parameter estimation er-
rors as a function of the number of training samples, where
each parameter is inferred separately while the other param-
eters are set to their true values. We can conclude the fol-
lowing: i) almost all parameters can be well estimated, and

a) b)
Figure 4: a) Synthetic data samples (drawn segmentation
and the generated image from color sampling). b) Sample
(left) smoothed by a gaussian filter of σ = 3.0mm (right).



Figure 5: Left. Parameter estimation error vs. number of
eye training samples. The y axis scale is given in the leg-
end of each parameter. Right. Mean and standard devia-
tion (derived from the infered q(o)) of the gaze estimates
o := (φ, θ), vs. the standard deviation of the Gaussian blur-
ring filter (1mm = 1.68pixels). For the gaze means, the
deviation from their true values is plotted. For each experi-
ments, averages over 500 runs are reported.

this requires only a few samples; ii) d and the eyeball depth
pcz are difficult to infer, due to their small impact on o.
Nevertheless, this means that their impact on gaze estima-
tion is small. iii) The visual axis κ angle parameters, which
are important for accurate gaze estimation but are often ne-
glected, are well constrained by the image likelihood and
the known object position p, and can thus be inferred.

The right plot of Fig. 5 shows a similar experiment: we
evaluate the gaze estimation accuracy (given true geomet-
ric parameters) as a function of image resolution simulated
through blurring (see Fig. 4). Notice the high robustness
w.r.t. resolution due to the optimization of a global image
likelihood measure. We also show the estimated variances,
which correctly reflect the uncertainty of the gaze estimates.

These results suggest that given proper training data, our
approach can potentially have highly accurate gaze estima-
tion (< 2◦ error) under poor sensing conditions.

6.2. Real data collection
We collected RGB-D data using a Kinect sensor. To

collect ground-truth, we asked participants to gaze at a vi-
sual target while either keeping their head fixed, or in sec-
ond phase, asking them to rotate the head (observing ±30◦

pose ranges for head yaw and elevation) while gazing. Each
phase lasted a few minutes. As target, we used either a point
displayed on a 24′′ flat screen or a moving floating target lo-
cated between the participant and camera. The screen was
calibrated with the camera so that 2D screen coordinates are
interpreted as a 3D point. The floating target was automati-
cally tracked to find its 3D position.

The distance of the participant to the screen and sensor
was ≈ 85cm. In the experiments using the floating target,
people distance to the sensor ranged between 1m and 1.5m,
resulting in eye image sizes between 20× 14 and 13× 9. In
our experiment, the pose-corrected image were upsampled
to a fix resolution of 55 × 40 pixels with known pixel size
(0.595mm/pixel). As performance measure, we used the

Figure 6: Left: Geometric fitting given by G3E. Right: El-
lipse fitting given by the Starburst algorithm on training data
collected using the floating target.

angular gaze error, defined as the angle between the esti-
mated line of sight (LoS) and the vector pointing from the
LoS’s origin to the (known) visual target’s 3D position (p).

6.3. G3E inference and geometric methods
We illustrate the inference process output for the training

samples shown in Fig. 6. The result of the training can be
visualized using the mode of q∗(Z) (MAP estimate) and by
overlaying the contours of the associated segmentation and
eyeball structure, as shown in Fig. 6 (left).

Our method follows properly the position of the eyelids
and eye orientation despite the low resolution and the some-
times unclear boundaries between eye regions.

As a qualitative comparison, we tested the Starburst al-
gorithm [16] on the same data. This approach is represen-
tative of the geometric paradigm, which relies on fitting an
ellipse to the cornea from the voting of thresholded gradi-
ents, estimated along rays from an initial estimation of the
cornea region center. As initialization we set the true cen-
ter value. Despite this, and parameters tuning, we obtained
the results shown in Fig. 6. The low recall and unaccurate
estimation demonstrate the important difficulties of ellipse
fitting, which is a critical step for many geometric gaze esti-
mation methods, e.g. [7]. Notice that our approach does not
have this limitation as it avoids local feature computations.

6.4. Appearance based methods

We compared our approach to Funes and Odobez’s
method [3]. To our knowledge, this is the only method using
RGB-D data, for which the eye images pose-rectification
was proposed. This method in turn uses Adaptive Lin-
ear Regression (ALR) for gaze estimation from the low-
resolution pose-rectified images. ALR is a state-of-the-art
appearance based method proposed by Lu et al. [8].

By comparing to [3] we indirectly compare to [8] within
the pose-rectified eye images context. In the following,
when referring to ALR, we implicitly refer to [3]. Our
intention is to contrast to the appearance based paradigm.
We now describe the result of experiments designed to raise
awareness of the limitations of appearance based methods.
Number of training samples. As concluded in Section 6.1
our model is adequate for training from few data. We vali-
dated this on real data, and contrasted to ALR, as shown in
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Figure 7: Average gaze error as a function of the number of
training samples. Computed on test data from a participant
gazing at a floating target with a fixed frontal pose.

Fig. 7, which presents a typical error curve obtained for a
participant in functions of the number of training samples.

As shown in Fig. 7, ALR need to cover densely the gaze
space with the training samples in order to achieve lower
errors. This is a limitation of appearance based methods.
Gaze extrapolation. As our method is based on a explicit
eye model, we argue it can extrapolate to gaze directions
outside the training set. To illustrate this, we conducted an
experiment where we used the same 49 samples restricted to
gaze yaw and elevation angles within the range [−15◦, 15◦]
to train the ALR and G3E models.

Fig. 8 shows the gaze tracking results on a test sequence,
where our claim is validated. ALR, as any interpolation
based method, is not able to estimate gaze outside the range
of directions used for training, thus causing the saturations
observed in Fig. 8. This is not a limitation of our method.
Gaze estimation across different sessions. In this experi-
ment we collected data with the floating target in two differ-
ent sessions (A and B) performed 6 months apart, each for
two participants. Across sessions there is a drastic change
in the illumination and distance to the camera (see Fig. 9).

We then learned an ALR and a G3E model using the data
from session A. For the G3E approach, applying directly the
learned model -including the color distributions from ses-
sion A- on session B results in large errors ( 40.2◦ and 38.2◦

for the respective participants). This is due to the obvious
color mismatch between the two conditions. However, we
can easily leverage on the important property of our model
which is the decoupling of the ambient conditions from the
person-specific geometry. By learning the color distribu-
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Figure 8: Estimated eye rotation (◦) on a test sequence, with
training samples restricted to the [−15◦, 15◦] range.

Figure 9: Eye image samples across different sessions. Par-
ticipant 1 in session A (left) and session B (right).

Table 2: Mean angular error (◦) when training the model on
session A and estimating gaze on session B. See text.

Method Participant 1 Participant 2
ALR 21.7 25.0
G3E 8.0 5.5

tions of session B using color samples picked from a single
eye image in session B, we quickly obtain an adapted model
that result in very good performance, as shown in Table 2.

On the other hand, given the lack of geometrical model,
ALR does not offer much flexibility for adaptation. Even
if it relies on normalized features that should be robust to
global illumination variation within the eye image [8], re-
sults in Table 2 shows that the Session A model is not ap-
propriate for Session B, demonstrating that session changes
go beyond simple illumination and contrast corrections.

The automatic learning of color distributions for G3E is
left for our future work, but this experiment already vali-
dates its potential for cross-session adaptation.
6.5. Screen gazing evaluation

We evaluated the performance of our method for the
screen target estimation task, where we considered both the
fixed and moving head pose case for the five participants.

Notice that, due to the proximity to the depth sensor,
there is regularly missing depth data, which affects the pose-
rectified eye image, as it is visible in Fig. 10.

In our method, we address this problem by forcing the
pixels to be outliers (i.e. setting ω ∼ 1 for missing pixels).
However, as ALR does not provide a straightforward way
to handle missing data, we do not report ALR results here.

Results are summarized in Table 3. Given the quality
of the input data and that head pose variation was within a
range of ±30◦ for yaw and elevation, the performance are
highly promising. To illustrate this, we provide in Fig. 10 an
example of the setup together with qualitative segmentation
results for the 5 participants.

They show that our method has a good behavior at test
time, although we observe on the bottom right a problematic
situation for our approach which is extreme gazing down,
where the cornea region gets heavily occluded by the eyelid.

Table 3: Gaze angular median error (◦) for people looking
at screen targets.

Participant
Head pose 1 2 3 4 5 Avg

Fixed 2.9 2.7 3.1 2.5 5.9 3.4
Moving 9.3 5.5 3.6 4.6 8.6 6.3



(a) (b)
Figure 10: Screen gaze estimation task. a) RGB-D frame. The user’s facial 3D template is rendered with the estimated head
pose. The blue lines and green dot on the screen are the ground truth. The red lines correspond to the estimated lines of sight
and the red dot is the screen intersection (for the left eye). Video results are provided in the supplementary material. b) Test
left eye images (≈ 20 pixels eye width prior to pose rectification). Each column is for a different participant. White pixels
are missing data. Contours represent the mode of q∗(Z).

7. Conclusions
We have proposed a novel method for head pose invari-

ant gaze estimation from RGB-D cameras. We call it ge-
ometric generative gaze estimation (G3E). It is based on a
geometric understanding of the 3D gaze action and genera-
tion of eye images, formalized as a generative process.

We developed an inference technique, based on Varia-
tional Bayes, to find the person specific geometric parame-
ters from training data (i.e. gaze annotated eye images).

We have shown that our method has many advantages
with respect to previous approaches. Due to priors on the
geometric parameters it is adequate for training from a few
samples. Our model is able to extrapolate outside the train-
ing data, unlike previous approaches based on appearance.
It has also proven adequate for low resolution imaging. Fi-
nally, our model correctly decouples the person specific ge-
ometry from the observed pixel values, which are dependent
on the ambient conditions. This is adequate for adaptation
and estimating gaze in different situations. These advan-
tages were validated using both synthetic and real data.

We believe our method has an important potential for
gaze estimation in many different scenarios, making it rele-
vant for HCI, HRI, sociology and psychology.

Acknowledgments The authors gratefully acknowledge the finan-
cial support from the Swiss National Science Foundation (Project:
200021 130152, TRACOME) www.snf.ch.

References
[1] S. Baluja and D. Pomerleau. Non-Intrusive Gaze Tracking

Using Artificial Neural Networks. Technical report, CMU,
1994. 2

[2] C. M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer, Oct. 2007. 5

[3] K. A. Funes Mora and J.-M. Odobez. Gaze estimation from
multimodal Kinect data. In Computer Vision and Pattern
Recognition Workshops, pages 25–30, June 2012. 2, 6

[4] E. D. Guestrin and M. Eizenman. General theory of remote
gaze estimation using the pupil center and corneal reflec-
tions. Trans. on bio-medical engineering, June 2006. 2

[5] E. D. Guestrin and M. Eizenman. Listing’s and Donders’
laws and the estimation of the point-of-gaze. In Symp. on
Eye Tracking Research & Applications, Austin, TX, 2010. 3

[6] D. W. Hansen and Q. Ji. In the eye of the beholder: a survey
of models for eyes and gaze. IEEE trans. on pattern analysis
and machine intelligence, 32(3):478–500, Mar. 2010. 1, 2, 3

[7] T. Ishikawa, S. Baker, I. Matthews, and T. Kanade. Passive
Driver Gaze Tracking with Active Appearance Models. In
Proc. World Congress on Intelligent Transportation Systems,
pages 1–12, Oct. 2004. 2, 6

[8] F. Lu, Y. Sugano, T. Okabe, and Y. Sato. Inferring human
gaze from appearance via adaptive linear regression. In Int.
Conf. on Computer Vision, Barcelona, Nov. 2011. 2, 6, 7

[9] F. Lu, Y. Sugano, T. Okabe, and Y. Sato. Head pose-free
appearance-based gaze sensing via eye image synthesis. In
Int. Conf. on Pattern Recognition, Nov. 2012. 2

[10] F. Lu, O. Takahiro, Y. Sugano, and Y. Sato. A Head Pose-free
Approach for Appearance-based Gaze Estimation. In Proc.
of the British Machine Vision Conference, 2011. 2

[11] T. Moriyama and J. Cohn. Meticulously detailed eye model
and its application to analysis of facial image. Int. Conf. on
Systems, Man and Cybernetics, 1:629–634, 2004. 2

[12] M. Opper and C. Archambeau. The variational gaussian ap-
proximation revisited. Neural Comput., Mar. 2009. 5

[13] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vet-
ter. A 3D Face Model for Pose and Illumination Invariant
Face Recognition. In Proceedings of Advanced Video and
Signal based Surveillance, Genova, Italy, 2009. IEEE. 2

[14] Y. Sugano, Y. Matsushita, Y. Sato, and H. Koike. An incre-
mental learning method for unconstrained gaze estimation.
In ECCV, pages 656–667. Springer, 2008. 2

[15] O. Williams, A. Blake, and R. Cipolla. Sparse and semi-
supervised visual mapping with the S3GP. In Computer Vi-
sion and Pattern Recognition, pages 230–237, 2006. 2

[16] D. Winfield and D. Parkhurst. Starburst: A hybrid algorithm
for video-based eye tracking combining feature-based and
model-based approaches. Proc. of Computer Vision and Pat-
tern Recognition Workshops, 3:79–79. 2, 6

[17] H. Yamazoe, A. Utsumi, T. Yonezawa, and S. Abe. Remote
gaze estimation with a single camera based on facial-feature
tracking without special calibration actions. In Symp. on Eye
Tracking Research & Applications, New York, 2008. 2

[18] A. L. Yuille, P. W. Hallinan, and D. S. Cohen. Feature extrac-
tion from faces using deformable templates. International
Journal of Computer Vision, 8(2):99–111, Aug. 1992. 2

www.snf.ch

