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Abstract

This paper describes a method of gait recognition from
image sequences wherein a subject is accelerating or decel-
erating. As a speed change occurs due to a change of pitch
(the first-order derivative of a phase, namely, a gait stance)
and/or stride, we model this speed change using a cylindri-
cal manifold whose azimuth and height corresponds to the
phase and the stride, respectively. A radial basis function
(RBF) interpolation framework is used to learn subject spe-
cific mapping matrices for mapping from manifold to image
space. Given an input image sequence of speed transited
gait of a test subject, we estimate the mapping matrix of
the test subject as well as the phase and stride sequence
using an energy minimization framework considering the
following three points: (1) fitness of the synthesized images
to the input image sequence as well as to an eigenspace
constructed by exemplars of training subjects; (2) smooth-
ness of the phase and the stride sequence; and (3) pitch and
stride fitness to the pitch-stride preference model. Using the
estimated mapping matrix, we synthesize a constant-speed
gait image sequence, and extract a conventional period-
based gait feature from it for matching. We conducted ex-
periments using real speed transited gait image sequences
with 179 subjects and demonstrated the effectiveness of the
proposed method.

1. Introduction
Human gait has been recently recognized as one of sev-

eral biometric modalities for verifying people’s identity. It
has several unique advantages over other biometric modali-
ties (e.g., DNA, fingerprint, finger and palm veins, iris, ear,
and face) because it can be recognized even if a subject is
located far from the camera (or the image resolution is low)
and is also uncooperative (e.g., a perpetrator captured by a
CCTV camera). Gait recognition was used to provide ev-
idence against a burglar in the United Kingdom court [5],
and the development of a gait-based identity verification
system for criminal investigation was reported in [13].

In spite of considerable progress in gait recognition re-
search, invariance to large intra-class variations of gait fea-
tures is still a challenging problem (e.g., walking speed [33,
35, 2], viewpoint [23, 15, 27], clothing [12], and elapsed
time [31, 29]). Among these features, speed invariance is
one of the most important issues because walking speed of-
ten varies depending on situation.

Gait recognition from a speed-transited gait image se-
quence is an important problem because a speed-transited
gait image sequence is commonly observed in many situa-
tions where people occasionally decelerate and accelerate.
For example, people decelerate in front of a red pedestrian
crossing signal and accelerate after the signal turns green.
In addition, people decelerate when approaching the door
of a room, shop, or building, and accelerate after passing
through the doorway. Walking speed change is consid-
ered from two aspects: (1) walking speed change between
a matching pair of gait image sequences and (2) walking
speed change within a gait image sequence. While most
studies of speed-invariant gait recognition [33, 35, 2] con-
sider the first aspect as cross-speed gait recognition, so far
very limited attention has been paid to the second aspect.

Walking speed change is essentially derived from two
factors: (1) the change in pitch (the first-order derivative
of phase, namely, gait stance) and (2) the change in stride.
If the speed transition is only derived from the first fac-
tor, the problem can be solved by non-linear time warping
techniques [6, 37, 2]. However, both factors simultaneously
change under a real speed transition, and hence rate adjust-
ment alone does not work for the speed-transited gait image
sequence.

Therefore, in this paper, we tackle this challenging prob-
lem: gait recognition from a speed-transited gait image se-
quence. The contributions of this paper are summarized as
follows.
Cylindrical manifold to simultaneously model phase and
stride: We employ a cylindrical manifold whose azimuth
and height corresponds to the phase and the stride, respec-
tively, and define a subject-dependent mapping function to
map an arbitrary point on the manifold to image space.
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Unified framework of reconstruction-based and
exemplar-based methods of estimating subject-
dependent mapping function: Because it is difficult
to estimate the subject-dependent mapping function from
only a limited observation of a speed-transited gait image
sequence, we construct an eigenspace of mapping functions
comprising an auxiliary set of the phase-synchronized
multi-stride, multi-subject exemplar gait image sequences.
Using an energy minimization framework, we then estimate
the subject-dependent mapping function based on the fit-
ness to both the input speed-transited gait image sequence
and the eigenspace.
Pitch-stride preference model to robustly estimate the
phase and the stride: Robust estimation of phase and stride
is essential for accurate estimation of the subject-dependent
mapping function, and hence we introduce a pitch-stride
preference model that defines a subject-dependent relation-
ship between pitch and stride under speed variation. Pa-
rameters of the pitch-stride preference models are also esti-
mated in the above energy minimization framework.

2. Related work
Gait features: Gait features used for recognition can be
mainly divided into two types: period-based features and
frame-based features.

Period-based features are typically computed from one
gait period consisting of several frames. Among these
period-based features, averaged silhouette [20] (also known
as gait energy image (GEI) [11]) is one of the most fre-
quently used features for gait recognition. Other types
of period-based gait features include masked GEI [4],
frequency-domain features [23], gait entropy images [3],
gait flow images [16], chrono-gait images [38], Fourier de-
scriptors [39], and Gabor features [34]. Although these gait
features are basically normalized by the gait period, i.e. they
are invariant to the change of the gait period, they are not in-
variant to the pitch change within the gait period.

Frame-based features are computed from individual
frames or few consecutive frames. The simplest one is
the raw silhouette itself [31, 21, 6] or its projection into
principal component (PCA) space [30]. Other types in-
clude, but are not limited to, width vector [8] and frieze
pattern [19]. Although the frame-based features can handle
the pitch change within the gait period in conjunction with
non-linear time warping, they are sensitive to silhouette seg-
mentation errors.

In addition, both period-based and frame-based features
are significantly affected by change in stride, and hence they
require another speed-invariant framework.
Non-linear time warping for gait recognition: To cope
with the change of pitch within the gait period, many re-
searchers employ dynamic time warping for frame-based
raw silhouette sequence [6, 37] or width vector [8].

As a probabilistic representation of non-linear time
warping, a hidden Markov model (HMM) is also frequently
employed [32, 7]. For example, Aqmar et al. [2] proposed
a gait recognition method using a combination of cubic
higher-order local auto-correlation features and the HMM.
Liu et al. [21] presented a dynamics-normalized gait recog-
nition algorithm using a population HMM (pHMM). Using
the Viterbi decoding, a given sequence is mapped onto the
pHMM states and therefore normalized. The average of the
stances of each state provides a dynamics normalized gait
period of fixed length. Although these approaches can cope
with the change of pitch within the gait period, they cannot
handle the change in stride.
Adaptation to stride change for gait recognition: Com-
pared with adaptation to changes in pitch, there are few
studies on adaptation to changes in stride for gait recog-
nition. Tanawongsuwan et al. [33] proposed a method
of stride normalization of double-support gait silhouettes
based on statistical relationship between walking speed and
stride. They used only five silhouettes (two single-support
images and three double-support images) for recognition
and discarded the other informative images. Tsuji et al. [35]
proposed a method of gait silhouette transformation from
one speed to another to deal with walking speed variation in
gait recognition. Based on the assumption that dynamic fea-
tures are dependent on speed changes while static features
are independent of speed changes, the dynamic and static
features are extracted separately. Therefore, speed transfor-
mation is applied to the dynamic features only. Kusakunni-
ran et al. [14] deployed Procrustes shape analysis to adapt
to speed changes, and exploited the higher-order shape con-
figuration as a gait feature. These two methods assume
that walking speed is constant within the gait period, and
hence may fail to deal with the speed-transited gait image
sequence.
Use of auxiliary set for robust gait recognition: Another
line of research related to our work is gait recognition using
an auxiliary set to improve the robustness with respect to a
variety of covariates (e.g., viewpoints). Makihara et al. [23]
proposed a view transformation model (VTM) via factor-
ization of a matrix composed of an auxiliary set of non-
recognition targets. Kusakunniran et al. [15] re-formulated
the cross-view gait recognition as a regression problem, and
proposed a VTM using support vector regression. Martin-
Felez and Xiang [28] cast the gait recognition problem as a
bipartite ranking problem using an auxiliary set and demon-
strated the effectiveness for any covariate types. All of the
above methods adopt period-based gait features, and hence
they cannot cope with a speed-transition within a gait pe-
riod.
Manifold learning: For gait and human motion analysis,
low-dimensional manifold representation has been used by
several researchers. For example, for 3D person tracking,
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Figure 1. Phase-synchronized multi-stride exemplars and their lo-
cation on the cylindrical manifold.

Lee et al. [17] combined kinematics and visual manifolds
and Urtasun et al. [36] used a scaled Gaussian process la-
tent variable model to learn prior models. In [9], Elgammal
et al. used a nonlinear manifold to separate the style and
content of human gait; Lee et al. [18] used cylindrical man-
ifold embedding for hand rotation and grasp tracking from
a single IR camera; and in a person identification task [7],
a Gaussian process latent variable model was used for low-
dimensional embedding and an HMM was used for mod-
eling the temporal dynamics. Most of these works mainly
deal with the tracking problem, where subject individual-
ity is ignored. However, in our work, instead of tracking,
we synthesize the human silhouette sequence at different
speeds. This problem formulation requires that the synthe-
sized silhouettes are very close to the observation. In a re-
cent work on view invariant gait recognition [27], a torus-
based manifold was used to reconstruct a gait sequence at
any desired view. However, in this work, reconstruction was
based on the exemplars only, and therefore required a large
amount of training data with rich variation of gait styles and
shapes. In another work [1], the problem of gait recogni-
tion from low frame-rate video is handled. Although both
exemplar-based and reconstruction-based cues were used to
synthesize a high frame-rate gait sequence, it was assumed
that the person was walking at a constant speed.

3. Modeling speed transition
3.1. Cylindrical manifold representation

To represent gait with speed variation, a cylindrical man-
ifold (see Fig. 1) is introduced to associate an image with
an arbitrary pair of phases and strides (representing speed)
where the azimuth angle indicates the phase and the vertical
position indicates the stride. A point x ∈ R3 on the mani-
fold whose phase and stride is s and v 1 is then represented
by the following mapping function.

x = f(s, v) = [cos(2πs), sin(2πs), v]T (1)

Next, RBF centers on the cylindrical manifold are intro-
duced as {zj}(j = 0, . . . , NC − 1), which are uniformly
1 Strictly speaking, as we use height-normalized gait features for recogni-
tion in the same way as the previous work, we also use height-normalized
stride for this model. For simplicity, we mean height-normalized stride by
just stride later.

distributed along azimuth and vertical directions. An arbi-
trary point x on the cylindrical manifold is mapped into the
image space as the vector y ∈ RNI 2 by using a radial basis
function k(·, ·) between the point and all the RBF centers as

y = Dψ(x) (2)
ψ(x) = [k(x, z0), . . . , k(x, zNC−1)]

T (3)

k(x,zj) = exp

(
−∥x− zj∥2

2σ2

)
∀j, (4)

where D ∈ RNI×NC

is a mapping matrix from a RBF co-
efficient vector ψ(x) ∈ RNC

to the image vector y and σ
is the bandwidth of RBF.

3.2. Reconstructionbased mapping matrix estima
tion

The simplest way to estimate the mapping matrix is
the direct solution from the observed data. Given a se-
quence of N image vectors, phases, and strides as Y =

[y0, . . . ,yN−1] ∈ RNI×N , s = [s0, . . . , sN−1]
T , and

v = [v0, . . . , vN−1]
T for a specific person, the following

equation holds,
Y = DΨ(s,v), (5)

where Ψ(s,v) = [ψ(f(s0, v0)), . . . ,ψ(f(sN−1, vN−1))] ∈
RNC×N is a RBF coefficient matrix. Here, if the rank of
the RBF coefficient matrix Ψ is equal to the number of
RBF centers NC , and s and v are known, mapping matrix
D can be solved by the following least square

D̂ = YΨ+, (6)

where Ψ+ is a pseudo-inverse of Ψ defined as Ψ+ =
ΨT (ΨΨT )−1. Once the mapping matrix D is obtained,
an image of the specific person with an arbitrary pair of
phases and strides is synthesized by Eqs. (1)(2). Note that
sequences Y ′, s′,v′ for another person gives another map-
ping matrix D′, and therefore the mapping matrix contains
the walking style information of each person. A limitation
of this approach is that D cannot be solved accurately if
limited phase-stride pairs are observed in the test data as
the rank of Ψ is degenerate.

3.3. Examplebased mapping matrix estimation

Another method of mapping matrix estimation is using
exemplars (gait sequences with set of strides obtained from
non-target training subjects (see Fig. 1)). In this approach,
we assume that sufficient pairs of phases and strides are ob-
served for those training subjects, and hence mapping ma-
trices are successfully computed using Eq. (6). Thereafter
PCA is applied to reduce the dimension, and the mean ma-
trix D̄E and M eigen matrices {DE

m}(m = 0, · · · ,M − 1)

2 A two-dimensional image with size NI is unfolded into a one-dimen-
sional vector y.
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Figure 2. (left) Observed pairs (circles) of strides and pitches under
speed variations and pitch-stride preference model (lines) for five
training subjects (each color). (right) Distribution of the pitch-
stride preference model parameters, ρ and θ.

are obtained as a result. Now, a mapping matrix D̂ for a test
subject is approximated by the eigen-space as

D̂ = D̄E +
M−1∑
m=0

amDE
m, (7)

where the weight vector a = [a0, . . . , aM−1]
T contains the

weights of eigenmatrices DE
m. While this exemplar-based

method enables us to represent the mapping matrix using
exemplars, a major weakness of this approach is that if the
training data do not contain sufficient variation of gait styles
and shapes, the synthesized images will differ significantly
from the observed test data.

3.4. Pitchstride preference model

To estimate a mapping matrix accurately by
reconstruction-based and/or exemplar-based approaches,
accurate estimation of the phase sequence s and the stride
sequence v is essential. It is, however, difficult to estimate
the phase and stride independently frame-by-frame, and
it is likely that unstable phase and stride sequence will be
estimated.

We notice that each subject has his or her own preferred
combination of pitch p (the first order difference of the
phase, expressed as pi = si−si−1) and stride v under speed
variation as shown in Fig. 2(a). In addition, we observe that
pairs of the pitches and strides are well represented by a line
3 for each subject. We therefore introduce the pitch-stride
preference model as a line in the pitch-stride space to con-
strain the stride and phase sequences in the estimation step.
Specifically, we express the line for the pitch-stride prefer-
ence model by ρ, θ representation as

v cos θ + p sin θ = ρ. (8)

Moreover, we introduce prior knowledge of the parameters
ρ and θ of the pitch-stride preference model. As shown
in Fig. 2(b), the distribution of the pitch-stride preference

3 Although a polynomial or exponential may fit the data better, due to the
limited range of observed pitch and stride, piecewise linearity assumption
holds, and straight line representation can be used for simplicity.

model parameters are tightly constrained. We therefore
represent this distribution as a single Gaussian distribution
N (µ,Σ), where µ is a two-dimensional mean vector, and
Σ is a 2 × 2 covariance matrix. We use this distribution as
a prior to constrain the parameters of the pitch-stride pref-
erence model of a test subject. Note that the mean vector µ
and the covariance matrix Σ are computed using the train-
ing subjects from the same auxiliary set that was used for
learning the eigen space of the mapping matrix.

4. Estimation
4.1. Energy minimization framework

We formulate the estimation process as an energy min-
imization framework by considering both reconstruction-
based and example-based mapping matrix estimation ap-
proaches as well as the pitch-stride preference model. More
specifically, an energy function S is expressed as a sum of
three terms: (1) a mapping matrix fitness term SM , (2) a
pitch and stride smoothness term SS , and (3) a pitch-stride
preference model term SP as

S(D,a,s,v,ρ,θ)=SM (D,a,s,v)+SS(s,v)+SP (ρ,θ,s,v)
(9)

The mapping matrix term SM further consists of (1a) a data
fitness term: squared errors between the reconstructed im-
ages based on the mapping matrix D and the observed im-
ages Y and (1b) an eigenspace fitness term: squared error
between the mapping matrix D and those represented in the
eigenspace as

SM (D,a, s,v) = λMd∥DΨ(s,v)− Y ∥2F

+λMe∥D̄E +
M−1∑
m=0

amDE
m −D∥2F , (10)

where λMd and λMe are the coefficients for individual
terms and ∥ · ∥F means the Frobenius norm of a matrix.

The pitch and stride smoothness term SS consists of the
sums of squared second-order derivatives of the pitches and
strides as

SS(s,v) =
λSp

Nim − 3

Nim−2∑
i=2

(pi−1 − 2pi + pi+1)
2

+
λSv

Nim − 2

Nim−2∑
i=1

(vi−1 − 2vi + vi+1)
2, (11)

where λSp and λSv are the coefficients for individual terms,
and Nim is the number of input images.

The pitch-stride preference model term SP consists of
two terms. The first term is the fit of the pitch and stride
sequences to the pitch-stride preference model, and the sec-
ond term is the fit of the pitch-stride preference model pa-
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rameter to the prior, expressed as Mahalanobis distance, as

SP (ρ, θ, s,v) =
λPd

Nim

Nim−1∑
i=0

(vi cos θ + pi sin θ − ρ)2

+λPe([ρ, θ]
T − µ)TΣ−1([ρ, θ]T − µ) (12)

where λPd and λPe are the coefficients for individual
terms. vi and si are estimated using dynamic program-
ming (DP) framework (sec. 4.3) and using the definition
pi = si − si−1. We obtain the optimal mapping matrix D∗,
the weight vector a∗, phase sequence s∗, stride sequence
v∗, and pitch-stride preference model parameters ρ∗ and θ∗

by minimizing the energy function S.

4.2. Iterative solution

The energy function is a quadratic form with regard to
the mapping matrix D and weight vector a, and hence can
be solved by linear least squares under a fixed phase and
stride sequence. On the other hand, the energy function is
a nonlinear form with regard to s, v, ρ, and θ, and hence a
nonlinear optimizer needs to be introduced to solve it. As
the initial solution is crucial for the nonlinear optimizer, DP
is used to provide an appropriate initial solution.

For this purpose, we introduce an iterative solution
framework shown in Fig. 3. At first, initial phase and
stride sequences are estimated by DP as described in the
next subsection. Thereafter, the mapping matrix is obtained
by linear least squares under the fixed phase and stride se-
quence. The phase and stride sequence is then solved by
a non-linear optimizer, more specifically, the Levenberg-
Marquardt method, under the fixed mapping matrix, and
subsequently the pitch-stride preference model parameters
are solved under the fixed phase and stride sequence. These
steps are iterated until the convergence or the maximum
number of iterations is reached.

4.3. Initial phase and stride estimation

Initial phase and stride sequences are estimated by DP
in conjunction with phase-synchronized multi-stride multi-
subject exemplars. Let us define a set of quantized phases
with equal interval ∆s for the DP as {sqk|s

q
k = k∆s, k =

0, . . . , Ns − 1} and that of quantized strides with equal in-
terval ∆v as {vql |v

q
l = vmin + l∆v, l = 0, . . . , Nv − 1}. In

addition, an image vector for the n-th exemplar subject at

k-th quantized phase and l-th quantized stride is denoted as
yn
k,l. Given an input image sequence Y = [y0, . . . ,yN−1],

the optimal correspondence (path) between the input image
sequence and each subject of the phase-synchronized multi-
stride exemplar image sequence {yn

k,l} is obtained by the
DP, and the optimal subject and its associated path whose
cumulative cost is the minimum are adopted.

For this DP scheme, a cumulative cost and the optimal
phase and stride transition from the (i − 1)-th frame (pre-
vious frame) to the i-th frame (current frame) at the k-th
quantized phase and l-th quantized stride in the n-th ex-
emplar subject, are denoted as cn(i, k, l), pns (i, k, l), and
pnv (i, k, l). Now, the optimal path for the input image se-
quence is estimated via the following procedure.

1. Initialize cumulative cost cn(0, k, l) at the first frame.
cn(0, k, l) = ∥yn

k,l − y0∥2 (13)

2. Update transition path {pns (i, k, l), pnv (i, k, l)} and cu-
mulative cost cn(i, k, l)

{pns (i, k, l), pnv (i, k, l)} =

arg min
t∈Rs

k,u∈Rv
l

cn(i− 1, t, u) (14)

cn(i, k, l) = cn(i− 1, pns (i, k, l), p
n
v (i, k, l))

+∥yn
k,l − yi∥2, (15)

where Rs
k is the set of possible quantized phases in the

previous frame, which is transited to the k-the quan-
tized phase in the current frame, and Rv

l is the set of
possible quantized strides in the previous frame, which
is transited to the l-th quantized stride in the current
frame. They are defined as

Rs
k = {sqt |0 ≤ sqk − sqt ≤ stol} (16)

Rv
l =

{
{vqu|0 ≤ vql − vqu ≤ vtol} (Acceleration)
{vqu| −vtol≤ vql −vqu ≤0} (Deceleration),

(17)

where stol and vtol are tolerance parameters to control
transition ranges for phase and stride, respectively.

3. Choose the optimal subject n∗ and its associated ter-
minal path {p∗s(N − 1), p∗v(N − 1)}

{n∗, p∗s(N−1), p∗v(N−1)} = argmin
n,k,l

cn(N−1, k, l),

(18)
where p∗s(i) and p∗v(i) are the optimal quantized phase
and stride at the i-th frame for the optimal subject n∗.

4. Trace the optimal path backward.

p∗s(i− 1) = pn
∗

s (i, p∗s(i), p
∗
v(i)) (19)

p∗v(i− 1) = pn
∗

v (i, p∗s(i), p
∗
v(i)) (20)

Finally, given the optimal path {p∗s(i), p∗v(i)}, the optimal
phase and stride sequence is set as {s∗i , v∗i |s∗i = sqp∗

s(i)
, v∗i =

vqp∗
v(i)

}.
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5. Experiments
5.1. Dataset

For the performance evaluation of gait recognition under
speed transition, we prepared two datasets: (1) dataset 1 and
(2) dataset 24. Although there are several publicly available
gait databases with multiple constant speeds (e.g., CMU
Mobo Database [10] and the OU-ISIR Gait Database [22]),
there are no publicly available gait databases with speed
transition within an image sequence.
Dataset 1: Here the probe set consists of speed transited
gait sequences recorded from 26 subjects in indoor envi-
ronment. We placed a poster on the wall and asked each
subject to walk toward the poster and gradually decrease
walking speed and to finally stop (see the supplementary
material). We used the final gait periods of the walking se-
quences as probe which contain significant change in stride.
For gallery set, we collected gait sequences from 179 sub-
jects, which includes the 26 probe subjects, and the subjects
walked at constant speed (4 km/h on treadmill) or nearly
constant speed (on ground) for few seconds.
Dataset 2: For probe set, we collected 25 subjects and each
subject walked on the treadmill twice using the automatic
speed transition protocol that contained a pair of acceler-
ations from 1 km/h to 5 km/h and decelerations from 5
km/h to 1 km/h. Each acceleration and deceleration was
performed within approximately three seconds, and middle
subsequences with one second were extracted for acceler-
ation and deceleration. For gallery set, we collected 154
subjects, which includes the 25 probe subjects, and each
subject walked at a constant speed (4 km/h) for six seconds.

As an auxiliary training set, we collected 24 separate
subjects and each subject walked at 2, 3, 4, and 5 km/h.
The phase registration method [24] was applied for each
sequence, and the multi-stride phase-normalized image se-
quences were extracted. A simple frame-shifting scheme
was then performed to synchronize the phase among the
training subjects and consequently the phase-synchronized
multi-speed multi-subject exemplar image sequences were
obtained. However, within the same speed sequence, stride
differences were observed across the subjects owing to indi-
vidual pitch-stride preferences. Therefore, we constructed
multi-stride multi-subject exemplar image sequences using
a shape morphing technique [26]. Both extrapolation and
interpolation were used, and the morphing rates were se-
lected so that the strides became well aligned. These multi-
stride multi-subject exemplar image sequences were used
for learning the eigenspace of the mapping matrix, obtain-
ing a prior for the pitch-stride preference model parameters
and the initial phase and stride estimation by DP.

All of the image sequences were captured at 60 fps and
binarized by background subtraction-based graph-cut seg-

4 http://www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitST.html

Figure 4. Probe examples of size-normalized image sequences un-
der acceleration (top) and deceleration (bottom) (every 8-th frame
from a 60 fps sequence).

Figure 5. Constant-speed reconstruction (bottom) from a deceler-
ated gait image sequence compared with ground truth (top).

mentation [25] and size-normalized into 22 × 32 pixels.
Probe examples of size-normalized image sequences under
acceleration and deceleration are shown in Fig. 4.

5.2. Parameter setting

The number of RBF centers on the cylindrical manifold
was set to NC

s = 30 for azimuth (phase) and NC
v = 4 for

height (stride), which sums up to NC = NC
s NC

v = 120,
and the standard deviation for the RBF kernel was set to
σ = 2π/NC

s . To set the coefficients for the energy func-
tion, we do a parameter sensitivity analysis (provided in
the supplementary material) where we noticed that perfor-
mance is largely affected by the data term and the exemplar
term coefficients, while it is little affected by the other coef-
ficients. The coefficients for the energy function were set as
λMd = 1, λMe = 0.01, λSv = 104, λSp = 10, λPd = 102,
and λPe = 0.01, respectively. In the DP, the quantiza-
tion intervals for phase and speed were set as ∆s = 0.01
and ∆v = 0.01, and the tolerance parameters were set as
stol = 2.0 and vtol = 1.0.

5.3. Reconstruction of constant speed gait

In this section, reconstructed constant speed phase-
normalized image sequences are compared with original
image sequences under the same constant speed for qual-
itative evaluation as shown in Fig. 5. The results show that
the reconstructed phase-normalized image sequence is sim-
ilar to the constant-speed gallery of the same subject.

5.4. Gait recognition

In this section, performance of gait recognition un-
der speed transition is evaluated. The Procrustes shape
analysis-based method (denoted as Procrustes) [14], HMM-
based method (denoted as HMM) [2] and Dynamic time
warping (DTW) [6] were adopted as benchmarks. The Pro-
crustes shape [14] can handle stride changes to some extent,
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Acceleration Deceleration
Performance measure No trans. Procrustes HMM DTW Proposed No trans. Procrustes HMM DTW Proposed

EER (%) 12.0 28.0 9.2 20.0 8.0 12.0 24.0 8.0 19.0 8.0
AUC 0.054 0.217 0.091 0.088 0.014 0.039 0.133 0.067 0.075 0.015

Rank-1 id. rate (%) 48.0 24.0 56.0 40.0 72.0 60.0 36.0 72.0 36.0 84.0
Rank-5 id. rate (%) 76.0 48.0 80.0 52.0 96.0 80.0 60.0 88.0 56.0 92.0

Table 1. EER, AUC, rank-1 and rank-5 identification rates for dataset 2. Bold figures represent the best results.
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Figure 6. ROC (left) and CMC curves (right) for dataset 1.
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Figure 7. ROC (top) and CMC curves (bottom) for dataset 2.

while the HMM-based method [2] can handle pitch changes
within a gait period. However, DTW considers only one as-
pect of the speed change: phase evolution speed change,
and cannot handle stride change. In addition, direct match-
ing (denoted as No trans.) is also considered as a baseline
method. GEI [11] was used as gait feature for the proposed
method and No trans. Two scenarios were considered for
the experiments: a verification scenario (one-to-one match-
ing) and an identification scenario (one-to-many matching).
In the verification scenario, the receiver operating character-
istics (ROC) curve that depicts the trade-off between false
acceptance rate (FAR) and false rejection rate (FRR) as well
as equal error rate (EER) of the FAR and the FRR, and the
area under the ROC curve (AUC) were used as performance
measures. As for the identification scenario, the cumula-
tive matching characteristics (CMC) curve itself and also

the rank-1 and rank-5 identification rates picked up from
the CMC curve were used as performance measures.

The ROC and CMC curves for dataset 1 and dataset 2
are shown in Fig. 6 and Fig. 7, respectively. Moreover,
EER, AUC, rank-1 and rank-5 identification rates dataset 2
are shown in Table 1. The results show that the proposed
method outperforms the benchmark methods for both the
verification and identification scenarios on both datasets.

In case of dataset 2, it can be noticed that all the methods
do better in case of deceleration. The reason is that gait fluc-
tuation (e.g., arm swing, head inclination are different from
the gallery) is more evident in case of acceleration. We can
also notice that performance of all the methods are worse
in dataset 1 compared to those in dataset 2. The reason is
that dataset 1 is more challenging as it contains significant
gait fluctuation and very short or zero stride lengths (when
a person stops). Exemplars used in the proposed method do
not contain such variations and therefore we see the perfor-
mance degradation for the proposed method.

6. Conclusion

This paper described a method of gait recognition under
speed transition. A cylindrical manifold was introduced to
represent an image with an arbitrary phase and stride. While
the mapping function from a point on the cylindrical mani-
fold to the image space is estimated by the reconstruction-
based and example-based cues, the phase and stride se-
quences are estimated in conjunction with the pitch-stride
preference model. The whole estimation process is formu-
lated in an energy minimization framework with efficient
initialization by the DP. The experimental results demon-
strated the effectiveness of the proposed method. Future
work includes the extension of the proposed method to deal
with simultaneous speed and view change, and the formu-
lation of a better pitch-stride model to treat wide range of
pitches and strides.
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[28] R. Martı́n-Félez and T. Xiang. Gait recognition by ranking. In Proc.
of European Conf. on Computer Vision, pages 328–341, 2012. 2

[29] D. Matovski, M. Nixon, S. Mahmoodi, and J. Carter. The effect of
time on the performance of gait biometrics. In Proc. of Int. Conf. on
Biometrics: Theory Applications and Systems, pages 1–6, Sep. 2010.
1

[30] H. Murase and R. Sakai. Moving object recognition in eigenspace
representation: Gait analysis and lip reading. Pattern Recognition
Letters, 17:155–162, 1996. 2

[31] S. Sarkar, J. Phillips, Z. Liu, I. Vega, P. Grother, and K. Bowyer. The
human id gait challenge problem: Data sets, performance, and analy-
sis. Trans. on Pattern Analysis and Machine Intelligence, 27(2):162–
177, 2005. 1, 2

[32] A. Sunderesan, A. Chowdhury, and R. Chellappa. A hidden markov
model based framework for recognition of humans from gait se-
quences. In Proc. IEEE Int’l Conf. on Image Processing 2003, vol-
ume 2, pages 93–96, 2003. 2

[33] R. Tanawongsuwan and A. Bobick. Modelling the effects of walking
speed on appearance-based gait recognition. In Proc. of Computer
vision and pattern recognition, pages 783–790, 2004. 1, 2

[34] D. Tao, X. Li, X. Wu, and S. Maybank. Human carrying status in
visual surveillance. In Proc. of Computer Vision and Pattern Recog-
nition, volume 2, pages 1670–1677, Jun. 2006. 2

[35] A. Tsuji, Y. Makihara, and Y. Yagi. Silhouette transformation based
on walking speed for gait identification. In Proc. of Computer Vision
and Pattern Recognition, Jun 2010. 1, 2

[36] R. Urtasun, D. J. Fleet, A. Hertzmann, and P. Fua. Priors for people
tracking from small training sets. In Proc. of Int. Conf. on Computer
Vision, pages 403–410, Oct. 2005. 3

[37] A. Veeraraghavan, A. Srivastava, A. K. Roy-Chowdhury, and
R. Chellappa. Rate-invariant recognition of humans and their ac-
tivities. Trans. Img. Proc., 18(6):1326–1339, June 2009. 1, 2

[38] C. Wang, J. Zhang, L. Wang, J. Pu, and X. Yuan. Human
identification using temporal information preserving gait template.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
34(11):2164–2176, 2012. 2

[39] G. Zhao, R. Chen, G. Chen, and H. Li. Recognition of human pe-
riodic movements from unstructured information using a motion-
based frequency domain approach. Image and Vision Computing,
24:795–809, 2006. 2

8


