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Abstract

In this paper, we propose a label propagation framework
to handle the multiple object tracking (MOT) problem for a
generic object type (cf. pedestrian tracking). Given a tar-
get object by an initial bounding box, all objects of the same
type are localized together with their identities. We treat this
as a problem of propagating bi-labels, i.e. a binary class
label for detection and individual object labels for track-
ing. To propagate the class label, we adopt clustered Multi-
ple Task Learning (cMTL) while enforcing spatio-temporal
consistency and show that this improves the performance
when given limited training data. To track objects, we prop-
agate labels from trajectories to detections based on affin-
ity using appearance, motion, and context. Experiments on
public and challenging new sequences show that the pro-
posed method improves over the current state of the art on
this task.

1. Introduction
Multiple Object Tracking (MOT) plays an important role

in the computer vision literature. The problem is difficult
due to frequent occlusions and appearance similarity be-
tween objects. Owing to advances in object detection (es-
pecially in pedestrian detection [9, 11]), in some cases the
task can be solved efficiently using a tracking-as-detection
approach. However, generalizing the task to other objects
(see our data sets in Sec. 4) would require training a detec-
tor for each new object type, which is impractical.

In this paper we deal with the problem of tracking mul-
tiple objects of the same generic type given only one ini-
tial bounding box [18], and our task is to recover multiple
trajectories from image observations. Treating sliding win-
dows as points in a spatio-temporal cuboid and the initial
bounding box as a single labeled point, we aim to discover
and track new objects by propagating labels to similar can-
didates. From this perspective, our problem shares great
similarity with semantic video segmentation [3] which aims
to label all the pixels in a video given pixel labels in the first
frame. However, these two problems have significant dif-
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Figure 1: The proposed framework. Yellow arrows indicate the
propagation of class labels within the same frame and white ar-
rows indicate object label propagation over time (best viewed in
color).

ferences: labels in video segmentation involve only a fixed
number of pre-defined classes, whereas labels in our prob-
lem involve both binary classes (object vs. background) and
multiple classes (specific object identities). Thus the num-
ber of classes in our problem varies as objects appear or
disappear. Also, in video segmentation more than one pixel
can share the same label while in our case object labels are
exclusive.

We treat the labels as a combination of binary class
labels and object labels (identities), and we refer to de-
tection responses as an intermediate layer between image
observations and trajectory estimations. Furthermore, we
propose a sequential label propagation framework (Fig. 1)
to propagate class labels and object labels in both spatial
and temporal domains. This so called bi-label propagation
framework coincides with a tracking-by-detection strategy:
through spatially propagating the class labels (yellow ar-
rows in Fig. 1), we solve the detection problem, discovering
the appearance and disappearance of objects; by temporally
propagating object labels (white arrows in Fig. 1), we tackle
the multi-object tracking problem.

Learning a robust detector from a single training instance
is challenging and standard methods tend to either overfit
(e.g. using a kernel Support Vector Machine (SVM)) or un-
derfit (e.g. using a linear SVM). To address the generaliza-
tion issue, we train multiple detectors inspired by ensemble
learning. Multiple detectors are inherently related to each
other since they are dealing with the same type of objects.
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The motivation of Multiple Task Learning (MTL) [10] is to
learn multiple related tasks simultaneously rather than in-
dependently. Thus, we treat training each of the detectors
as one task and adopt clustered MTL (cMTL) [32] to reg-
ularize the training process of multiple detectors. In addi-
tion, we assume that images and hence detection results do
not change drastically from frame to frame. We model this
spatio-temporal consistency by integrating it into the cMTL
formula during the class label propagation.

Our key contributions are (1) proposing a probabilistic
framework for jointly propagating class and object labels in
spatial and temporal domains for generic MOT and (2) in-
troducing cMTL for generic object detection and improving
it by considering the spatio-temporal consistency.

2. Related work
MOT methods can be grouped into two categories [23]:

sequential (or online) approaches, which output trajectories
on the fly, and batch (or off-line) approaches, which output
results after processing all frames.

Sequential approaches derive a cost function and es-
timate the lowest cost state based on sophisticated ap-
pearance, motion and interaction models. For example,
to maintain discrimination of individual objects, Yang et
al. [29] fuse multiple components: bags of local features,
a head model, and a color model of torso regions. In [6],
generic object category and instance-specific information
are integrated to track multiple objects in a particle filter
framework. Inspired by crowd simulation models, a dy-
namic model considering social motion patterns is intro-
duced in [21]. Similarly, Yamaguchi et al. [27] develop
an agent-based behavior model taking social and environ-
mental factors into account to predict destinations of pedes-
trians. The work in [14] estimates object motion based on
structured crowd patterns and learns spatio-temporal varia-
tions using a set of hidden Markov models.

Batch approaches exhibit a delay in outputting results,
but they tend to be more robust as they can access all ob-
servations simultaneously. Typical batch approaches [7,
12, 15, 28] cast the problem as a data association prob-
lem, linking short-term observations such as single detec-
tion responses or tracklets into longer trajectories using
methods such as the Hungarian algorithm [25], greedy bi-
partite matching [24], min-cost network flow [8, 26], K-
Shortest Paths [4], or discrete-continuous Conditional Ran-
dom Fields (CRF) [19].

Methods for generic object detection in video data re-
quire either pre-trained detectors [30] or off-line train-
ing [1]. Models are adapted to a given input video in order
to improve the detection accuracy, e.g. by iterative boost-
ing [1].

The closest work to ours is coupled detection and track-
ing [16, 26]. However, most work assumes that a detector
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Figure 2: (a) Our graphical model. (b) Top to bottom: sliding
windows X , detection responses Y , and trajectories Z. For sake
of display, we only show two trajectories (best viewed in color).

is available that has been trained off-line. For example, [26]
use a dictionary of foreground images for pedestrian de-
tection together with background subtraction. The work
in [16] employs off-line trained pedestrian and car detec-
tors. In terms of problem setting, we follow the model-free
approaches in [18, 31]. The method of Zhang and van der
Maaten requires initialization with bounding boxes of all
objects and in contrast to our method does not discover new
similar objects [31]. Luo and Kim first train a generic object
detector, and subsequently employ the detector to regular-
ize the training of multiple trackers [18]. In contrast to this
approach, we learn detection with the help of tracking, i.e.
the spatio-temporal consistency, as well as tracking based
on detection, in a joint optimization framework.

3. Bi-label Propagation

3.1. Bayesian perspective

Let X , Y and Z represent sliding windows (image obser-
vations), detection responses and trajectories, respectively.
Fig. 2(a) shows our graphical model which has three lay-
ers: image observation, detection, and trajectory layer, re-
spectively. The darkly shaded nodes are observed nodes,
the transparent nodes are hidden (or latent) nodes, and the
lightly shaded nodes (Y0 and Z0) are partly observed as
we are given only a single initial bounding box in the first
frame. From the image layer to the detection response layer
we propagate class labels. From the detection response
layer to the trajectory layer we propagate object labels.
Solving our problem corresponds to maximizing P (Z|X).
Introducing variable Y , we obtain

max
Z

P (Z|X) ∝ max
Z,Y

P (Z|X,Y )P (Y |X)

= max
Z,Y

∏
t

P (Zt|Xt, Yt, Z0:t−1)P (Yt|Xt, Yt−1) ,
(1)



where P (Y |X) models class label propagation (detection)
and P (Z|X,Y ) models object label propagation (tracking).
We expand it sequentially as

max
Zt,Yt

P (Zt|Xt, Yt, Z0:t−1)P (Yt|Xt, Yt−1) , (2)

and solve this estimation problem by decomposition. Tak-
ing the negative logarithm of Eq. 2, we rewrite it as:

min
Wt,Θt

LC(Wt) + LO(Θt) , (3)

where LC(Wt) models class label propagation, LO(Θt)
models object label propagation and Wt,Θt are parame-
ters representing the detector and propagation configuration
at time t. To minimize the function, we

(1) fix Θt−1 to minimize LC via Wt;
(2) fix Wt, minimize LO via Θt;
(3) t← t+ 1 (go to the next frame).

3.2. Class label propagation

Let us review the Bayesian formula of class label propa-
gation P (Yt|Xt, Yt−1) in Eq. 2. We want to maximize the
likelihood of Yt conditioned on observations Xt (spatial do-
main) and the previous estimation Yt−1 (temporal domain).

Our detection problem differs from the traditional detec-
tion problem as we do not have sufficient data to handle
large intra-class variation. Fig. 3 illustrates the extent of
intra-class variation in three test videos.

As training a single classifier leads to underfitting or
overfitting, we train multiple detectors and make a decision
based on all of them. Moreover, by treating training each
detector as one task, we investigate the relationship among
multiple detectors and adopt clustered MTL to train these
detectors simultaneously, improving the generalization abil-
ity.

In the first frame, we add small perturbations to the ini-
tial bounding box (slight shift, rotation, scale changes) to
augment the positive data. Sliding windows with an over-
lap (intersection/union) of the positive samples between 0.2
and 0.3 are negative samples. In the following frames, we
collect confident instances as positive samples and augment
the training data in the same way.

By randomly sampling a subset of instances from the
whole training data without placement m times, we ob-
tain m sets of training data Xl,t,i ∈ Rd×Nt,i , i = 1, ...,m
and their labels Yt,i ∈ {1,−1}Nt,i , where the subscript “l”
means “labeled”, d is the feature space dimension and Nt,i

is the number of instances. Let the multiple detectors be
W = [w1, ...,wm] ∈ Rd×m. Using the least square error
the data cost term is

∑m
i=1 ∥X

T
l,t,iwt,i − Yt,i∥2. The detec-

tors are related as they are dealing with objects of the same
type. Meanwhile, as a result of data distribution a cluster
of instances are more similar to each other compared with
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Figure 3: Illustration of intra-class variance. Shown are cropped
regions from (a) the Airshow sequence, (b) the Goose sequence
and (c) the Hockey sequence.

others, e.g. some instances exhibit a similar viewpoint while
some do not. Consequently, some detectors will be closer
to each other in the model parameter space. We therefore
assume that the detectors form k clusters as Cj , j = 1, ..., k,
and model the coupling among all detectors following [32]:

k∑
j=1

∑
v∈Cj

∥wv− w̄j ∥2= tr(WT W)− tr(FT WT WF) , (4)

where w̄j is the mean of the detectors within the same clus-
ter, tr(•) is the trace norm, and F ∈ Rm×k is an orthog-
onal cluster indicator matrix with Fi,j = 1√

nj
if i ∈ Cj

and Fi,j = 0 otherwise. Along with regularization of each
detector

∑m
i=1 ∥ wi ∥2= tr(WT W), we have a regulariza-

tion term tr(W((1 + η)I− FFT )WT ), where η is a weight
parameter. Following the convex relaxation of cMTL [32],
this regularization term is relaxed to tr(W(ηI+M)−1WT ),
subject to tr(M) = k,M ≼ I,M ∈ Sm

+ , where Sm
+ is the set

of positive semi-definite (PSD) matrices and M ≼ I means
I−M is PSD.

Traditional MOT applies a detector to every frame inde-
pendently. By contrast, we find that detection responses in
two subsequent frames should not change drastically. To
utilize such information, we track confident instances via a
weak tracker (KLT in our implementation) from frame t−1
to frame t, and produce a density map Pt (see an example in
Fig. 4(d)) by smoothing the confidence scores with a Gaus-
sian (σ = 5). Based on Pt, sliding windows Xu,t ∈ Rd×N

(here the subscript “u” means “unlabeled”) can be weakly
labeled as Ψ(Pt) which is the summation of the density of
pixels close to their centers (within a circle of radius 4).
The cost term ∥ 1

m

∑m
i=1 XT

u,twt,i−Ψ(Pt)∥2 can be consid-
ered as a weakly supervised term which propagates labels
in the temporal domain. Intuitively, it assists the detector
to recall more instances; Fig. 4 shows this concept. Yellow
boxes indicate the detection results (also positive instances),
black boxes are negative instances, and white boxes are un-
labeled samples. With the help of spatio-temporal consis-
tency, some candidates have weak labels indicated by the
orange boxes in frame t shown in Fig. 4(e), and the weak
labels help to recover missed detections, see the dashed yel-
low box in frame t in Fig. 4(f) which is a missed detection
caused by occlusion in Fig. 4(c). Based on the terms de-
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Figure 4: Illustration of how the spatio-temporal consistency
guides the detection procedure (best viewed in color).

scribed above, we have

LC(Wt) = α tr(Wt(ηI + Mt)
−1WT

t )︸ ︷︷ ︸
regularization

+

λ

2
∥ 1
m

m∑
i=1

XT
u,twt,i−Ψ(Pt)∥2︸ ︷︷ ︸

spatio−temporal consistency

+
m∑
i=1

1

2Nt,i
∥XT

l,t,iwt,i−Yt,i∥2︸ ︷︷ ︸
loss

s.t. tr(Mt) = k,Mt ≼ I,Mt ∈ Sm
+

(5)

We treat this as a joint convex problem with regard to W and
M [2]. Following [32], we adopt the Accelerated Project
Gradient method to optimize this function. Labels of Xu,t

are obtained by averaging the scores of all detectors as:

Yu,t =
1

m

m∑
i=1

XT
u,twt,i (6)

We choose candidates with a score greater than zero and
apply non-maximum suppression to output final class labels
Yu,t ∈ {−1, 1}N .

3.3. Object label propagation

In the Bayesian formula Eq. 2, object label propagation
is P (Zt|Xt, Yt, Z0:t−1), where the estimation of Zt is con-
ditioned on detection responses Yt and the history of esti-
mations Z0:t−1. Let the n trajectories at time t− 1 be

T = {Ti|Ti =< TA
i , TM

i , TC
i >, i = 1, ..., n} , (7)

t t 

 

t-1 t-1 

Figure 5: Object labels are propagated from trajectories (different
colors mean different objects) in frame t−1 to detection responses
in frame t. Note the proximity of a flower indicated by the black
dashed circle (best viewed in color).

where TA
i , TM

i and TC
i indicate appearance, motion, and

context information, and let the m detection responses at
time t be

D = {Dj |Dj =< DA
j , D

L
j , D

C
j >, j = 1, ...,m} , (8)

where DA
j , DL

j and DC
j represent the appearance, location

and context information. Tracking is carried out by propa-
gating object labels from trajectories to detection responses
via a configuration variable Θt ∈ Rn×m. Initially, all the
elements of Θt are 0. If an element Θtij is switched to
1, then the label of trajectory Ti is propagated to detection
response Dj , and the propagated quantity depends on the
affinity S(Ti → Dj) between Ti and Dj (here “→” means
considering Dj as a component of Ti at time t), which is de-
termined by appearance, motion and context. Fig. 5 shows
this process. Objects are assumed to move smoothly, so
we only consider detection responses within Ti’s spatio-
temporal proximity Ωi (a circle with radius dTh) and mini-
mize the following energy function:

LO(Θt) = −
∑
i

∑
j∈Ωi

S(Ti → Dj)Θtij . (9)

Appearance Model. We simply consider the intensity
cue for appearance affinity. The appearance model TA

i of
trajectory Ti consists of the last 15 templates of this object,
and the appearance similarity between Dj and Ti is

SA(Ti → Dj) = med(NCC(TA
i , DA

j )) , (10)

where NCC(•, •) is the normalized cross-correlation (NCC)
similarity measure and med(•) is the median.

Motion Model. We maintain the past three dis-
placements and predict a displacement veci weighted by
[ 47 ,

2
7 ,

1
7 ], where older values are weighted higher. Given

Dj , the actual displacement vecj is the difference between
DL

j and the most recent location of the object corresponding
to Ti. The motion affinity is

SM (Ti → Dj) = cos(veci, vecj) . (11)

Context Model. In modeling context information, we
follow the work in [22] and employ 2D histograms of
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Figure 6: Context model. Contexts of (a) trajectories and (b)
detection responses are modeled by histograms, counting objects
within an object’s proximity.

nearby objects to improve the robustness. As shown in
Fig. 6, there are (a) five trajectories and (b) four detection
responses. To compute a histogram for Ti, we divide the
neighborhood of Ti into M partitions (here M = 4 for sake
of display). For each object located in this neighborhood we
compute a distance vector relative to Ti. According to the
distance vector, we accumulate the distance values for each
partition. By normalization, we obtain an M -bin histogram
Hi. The context affinity is

SC(Ti → Dj) = exp(−Bhatt(Hi,Hj)). (12)

Having obtained affinities based on three cues, we combine
them as follows:

S(Ti→Dj) = SA(Ti→Dj) ∗ SM (Ti→Dj) ∗ SC(Ti→Dj) .
(13)

We minimize the energy (Eq. 9) by greedy search in an
iterative way. First we turn off all propagation switches. We
then compute the affinities of all propagation pairs and turn
on the propagation switch (say Ti and Dj) which most de-
creases the energy. At the same time, Dj is labeled as the
extension of Ti. We remove this pair of trajectory and de-
tection response from the search space. This procedure is
repeated until there is no further energy decrease. Finally,
trajectories outside the search space are updated consider-
ing the extended component. The remaining trajectories in
the search space are terminated, and new trajectories are
initialized based on detection responses in the search space.
For clarity, the algorithm is summarized in Algorithm 1.

4. Experiments
4.1. Data sets & Setup

We test our algorithm on eight data sets, Airshow, Goose,
Sailing, Zebra, Crab, Antelope, Flower1 and Hockey. The
first three are new sequences obtained from YouTube
videos, and the last five are public sequences [18, 20, 31].
These data sets are challenging as they contain (1) crowd

1This sequence is part of the original sequence in [31] (500 frames of
the original 2249 frames)

Algorithm 1: Object label propagation for MOT
Data: T , D, proximity set Ω.
Result: Θt, labels of detection responses.

1 Initialization: Θt = 0.
2 while LO decrease, do
3 foreach Ti ∈ T and Dj ∈ Ωi, do
4 compute the energy decrease of Ti and Dj .

5 find Ti and Dj with the greatest decrease via Eq. 9
6 set Θtij = 1, propagate the label of Ti to Dj .
7 remove Ti and Dj , update the proximity set Ω.

8 Terminate trajectories in T , initialize trajectories
according to detection responses in D.

scenarios with similar objects, (2) partial or complete oc-
clusions, (3) background clutter, and (4) out-of-plane rota-
tions. Parameters λ, α and η in Eq. 5 are set to be 0.1, 0.001
and 0.001 respectively. The proximity parameter dTh is 20.
The number of detectors is 12. For each task, we sample 2

3
instances from the whole training data. We extract HoG [9],
LBP and colors as features for object detection. The thresh-
old to determine the confident instances is 0.5. Note that
for the public data sets, we refer to results reported in [18].
For data sets which are not public, we obtain results by run-
ning the authors’ code ([13, 31]) or by re-implementing the
method ([18] and K-SVM).

4.2. Generic object detection

We conducted experiments on generic object detection to
verify the effectiveness of the proposed cMTL based detec-
tion method. Five methods were compared: (1) TLD [13]
which uses a detector based on Random Ferns; (2) K-SVM.
We train K independent SVMs on clustered training data
from K-means clustering and detect objects by classifica-
tion. This is a typical way to handle intra-class variance.
The number of SVMs is four; we use the same number of
clusters in our algorithm; (3) GMOT [18] is a framework
which handles the same problem with a detector based on
a Laplacian SVM; (4) our baseline method BL which uses
cMTL without the spatio-temporal consistency; (5) our full
method. Table 1 shows the results. A detection response is
defined as true positive if its overlap with the ground truth
bounding box is at least 0.5.

The results indicate that: (1) TLD only discovers a small
portion of objects on some sequences. We suspect that this
is due to limitations of the TLD detector which uses two-
pixel comparisons and therefore cannot handle large intra-
class variance; (2) K-SVM and GMOT show good perfor-
mance, and BL generally outperforms these, showing the
effectiveness of cMTL to handle intra-class variance; (3)
the full method outperforms all other methods; in compar-
ison with BL the recall rate is increased due to the spatio-



Table 1: Generic object detection results in terms of recall and
precision values. The best results are shown in bold, the second
best are underlined.

Sequence Recall Precision

TLD
GM

OT

K-S
VM

BL Ours TLD
GM

OT

K-S
VM

BL Ours

Antelope .29 .74 .88 .77 .89 .57 .66 .71 .76 .77
Goose .66 .80 .92 .85 .94 .94 .85 .97 .98 .99
Zebra .60 .80 .66 .74 .82 .92 .97 .88 .91 .91
Crab .22 .52 .55 .56 .58 .58 .81 .70 .85 .88
Flower .21 .47 .30 .50 .63 .58 .62 .95 .94 .91
Airshow .16 .13 .38 .43 .63 .52 .56 .76 .77 .75
Sailing .60 .63 .56 .67 .84 1 .93 1 1 .99
Hockey .65 .84 .43 .65 .82 .92 .89 .75 .88 .94
Avg. .56 .56 .56 .61 .70 .67 .79 .79 .88 .89

Table 2: Comparative results for different values of K (number of
SVMs in K-SVM and, correspondingly, number of clusters in our
method).

Sequence Method Recall Precision
K= 2 4 6 8 Avg. 2 4 6 8 Avg.

Antelope
K-SVM .90 .88 .86 .84 .87 .66 .71 .72 .73 .70
Ours .83 .89 .80 .80 .82 .81 .77 .81 .80 .80

Zebra
K-SVM .66 .66 .70 .70 .68 .88 .88 .89 .87 .88
Ours .73 .82 .72 .72 .75 .85 .91 .84 .84 .86

temporal consistency.

In a separate experiment we vary the number K in K-
SVM as well as the corresponding number of clusters in
our algorithm. Two representative public sequences (Anti-
lope and Zebra) are used in this experiment. Table 2 shows
the results, which demonstrate that our algorithm outper-
forms K-SVM for most K in terms of recall rate, which
is important in our setting. Note that we keep K fixed for
the other experiments; a suitable choice of K is beyond the
scope of this paper.

In a more extensive comparison of the baseline method
with TLD we obtain the precision-recall curves for the An-
telope and Zebra sequences, shown in Fig. 7. BL uses a
threshold on the score value to determine whether a candi-
date is an object, and TLD [13] uses the percentage of ferns
voting for a positive decision. The results show that our
baseline method outperforms TLD consistently.

To test the variation of performance resulting from dif-
ferent initial bounding boxes, we run our algorithm five
times on the Goose sequence, each time labelling a differ-
ent initial object. The recall rates are 0.935± 0.006 and the
precision rates 0.990 ± 0.004, indicating low dependence
on the initialization (see Fig. 8).
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Figure 7: Precision-Recall performance of TLD and BL on the
Antelope and Zebra sequences.
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Figure 8: Performance variation of five different initializations on
the Goose sequence.

4.3. Generic MOT

We carried out experiments to compare our framework
with several state-of-the-art methods on the task of detect-
ing and tracking multiple objects. The experiments are pre-
sented in three parts:

(1) For each sequence we compare with TLD [13] and
GMOT [18]. TLD was originally developed for single ob-
ject tracking, and we extended it to multiple objects by de-
creasing the threshold to let it detect some similar objects
and track them. It is initialized with the same bounding box
as other methods.

(2) For the Zebra, Crab, Flower, Airshow and Sailing
sequences, we apply SPOT [31] to track multiple objects
(four in our experiments) in each sequence. To compare the
performance, we excerpt results corresponding to these four
objects from our whole result in each sequence and evaluate
the results. It is worth noting that our algorithm starts with



a single bounding box while SPOT [31] starts with all four
bounding boxes for each sequence.

(3) For the Hockey sequence, we additionally compare
with [7, 6, 20] using the results from [18].

Example images are shown in Fig. 9. We adopt the cri-
teria of Multiple Object Tracking Accuracy (MOTA), Mul-
tiple Object Tracking Precision (MOTP) proposed in [5] as
well as Mostly Tracked (MT) trajectories and Mostly Loss
(ML) trajectories [17] to give quantitative results. MOTA
takes the missed detection, false positives and false matches
into consideration. MOTP measures the average overlap be-
tween the ground truth and the true positive. MT is the ratio
of the ground truth trajectories which are covered by track-
ing results for more than 80% in length. ML is the ratio of
the ground truth trajectories which are covered by tracking
results for less than 20% in length. As shown in Table 3,
the arrows following the criteria indicate the trend of better
performance.

Results in Table 3 show that: (1) compared with TLD
and GMOT, our method outperforms other methods on
most sequences; (2) compared with SPOT, our approach
achieves better results except on the MOTP metric. We sus-
pect that this is due to SPOT trackers being object-specific,
thereby obtaining greater overlap scores, i.e. larger MOTP
values; (3) for the Hockey sequence, our method obtains re-
sults comparable with methods that use a specific off-line
trained human detector.

In order to test the sensitivity on different initializations,
we run our algorithm on the Goose sequence five times with
different initial bounding boxes. The MOTA, MOTP, MT
and ML are 0.935 ± 0.012, 0.660 ± 0.009, 0.750 ± 0.042
and 0.071 ± 0.029 respectively (see Fig. 8), indicating low
sensitivity to the initial labeling.

5. Conclusion

This paper proposed a framework for tracking multiple
objects of the same general type, where class and object la-
bels are propagated in the spatio-temporal domain. We in-
troduced cMTL for generic object detection and have shown
the benefit of including spatio-temporal consistency. The
proposed method takes a sequential approach, entailing the
limitation that object trajectories may be more fragmented
than when taking a more global view of the data. Compar-
ative experiments on eight sequences (five public and three
new data sets) confirmed the effectiveness of the proposed
method. From a practical viewpoint an advantage of our
method over most other work in the area is the requirement
of labeling just a single initial bounding box, thereby pro-
viding a multi-object tracker without resorting to an off-line
trained detector.

Table 3: Generic Multiple Object Tracking results. The table
shows results in terms of four performance criteria from the lit-
erature (arrows indicating direction of better performance) on five
public and three new datasets.

Sequence Method MOTA ↑MOTP↑MT ↑ML ↓

Antelope
TLD [13] .088 .650 .235 .765
GMOT [18] .356 .633 .368 .368
Our method .622 .714 .691 .177

Goose
TLD[13] .621 .611 .286 .179
GMOT [18] .798 .604 .643 .071
Our method .938 .649 .786 .036

Zebra

TLD [13] .587 .645 .159 .420
GMOT [18] .777 .668 .435 .304
Our method .743 .683 .580 .246
SPOT [31] .661 .753 .750 0
Our method .982 .747 1 0

Crab

TLD [13] .068 .646 .049 .864
GMOT [18] .391 .600 .097 .709
Our method .497 .692 .214 .689
SPOT [31] .190 .766 .500 .250
Our method .924 .724 1 0

Flower

TLD [13] .053 .677 0 .632
GMOT [18] .186 .650 .053 .421
Our method .566 .718 .316 .368
SPOT [31] .372 .730 .500 .250
Our method .524 .737 .500 0

Airshow

TLD [13] .013 .596 0 .733
GMOT [18] .028 .716 0 .867
Our method .415 .646 0 .067
SPOT [31] -.503 .676 0 .250
Our method .346 .650 0 0

Sailing

TLD [13] .403 .737 .250 .083
GMOT [18] .548 .684 .250 .083
Our method .819 .640 .833 .083
SPOT [31] .554 .731 .750 .250
Our method .786 .652 .750 0

Hockey

TLD [13] .547 .647 .179 .250
GMOT [18] .803 .691 .679 .107
Our method .766 .736 .607 .143
Brendel et al. [7] .797 .600 - -
Breitenstein et al. [6] .765 .570 - -
Okuma et al. [20] .678 .510 - -

Avg.

TLD [13] .279 .655 .140 .602
GMOT [18] .410 .637 .310 .427
Our method .613 .685 .482 .336
SPOT [31] .235 .728 .500 .200
Our method .629 .703 .650 0
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