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Abstract

Visual domain adaptation, which learns an accurate

classifier for a new domain using labeled images from an

old domain, has shown promising value in computer vision

yet still been a challenging problem. Most prior works have

explored two learning strategies independently for domain

adaptation: feature matching and instance reweighting. In

this paper, we show that both strategies are important and

inevitable when the domain difference is substantially large.

We therefore put forward a novel Transfer Joint Matching

(TJM) approach to model them in a unified optimization

problem. Specifically, TJM aims to reduce the domain dif-

ference by jointly matching the features and reweighting the

instances across domains in a principled dimensionality re-

duction procedure, and construct new feature representa-

tion that is invariant to both the distribution difference and

the irrelevant instances. Comprehensive experimental re-

sults verify that TJM can significantly outperform competi-

tive methods for cross-domain image recognition problems.

1. Introduction

The exponential growth of online images and videos has

created a compelling demand for automatic technologies for

organizing and analyzing the multimedia content. Unfortu-

nately, labeled images are usually very sparse in new visual

domains. Moreover, it is very complex, if not impossible, to

learn a visual category model without rich labeled images.

In such real-world applications, it is indispensable in image

classification to leverage abundant labeled images readily

available in some old domains. Recently, the literature has

witnessed increasing interests in developing domain adap-

tation [21] algorithms for cross-domain knowledge transfer

problems. Domain adaptation has proven to be promising

in image classification [25, 13] and tagging [23, 26], object

recognition [15, 2, 7, 10], and feature learning [14, 12, 22]

In cross-domain problems, the source and target data

are usually sampled from different probability distributions.

Thus the major computational issue of domain adaptation is
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Figure 1. (a) source domain after feature matching; (b) target do-

main after feature matching. Due to the irrelevant source instances

(shown as unfilled markers in c), the domain difference is still large

after feature matching. (c) source domain after joint feature match-

ing and instance reweighting. The irrelevant source instances are

now down-weighted to further reduce domain difference (b vs c).

how to reduce the distribution difference between domains.

Most recent works have explored two learning strategies in-

dependently for domain adaptation: (1) feature matching,

which discovers a shared feature representation by jointly

reducing the distribution difference and preserving the im-

portant properties of input data [19, 20, 16]; and (2) instance

reweighting, which minimizes the distribution difference by

reweighting the source data and then training a classifier on

the reweighted source data [11, 3, 4, 5]. However, Figure 1

demonstrates a difficult setting: when the domain difference

is substantially large, there will always exist some source

instances that are not relevant to the target instances even

in the feature-matching subspace. In this difficult setting, it

is important and inevitable to perform joint feature match-

ing and instance reweighting for robust domain adaptation.

Recent works have also explored joint feature reweighting

and subspace learning where irrelevant features are down-

weighted [1, 17, 9]. However, in visual domain adaptation,

the domain difference is substantially large and it is difficult

to define the relevance of raw features to different domains.

In this paper, we address the challenging setting in which

the source and target domains are different in both feature

distributions and instance relevances. We therefore propose

a novel domain adaptation solution, referred to as Trans-

fer Joint Matching (TJM), to jointly perform feature match-

ing and instance reweighting across domains in a principled

dimensionality reduction procedure. Specifically, we im-
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plement feature matching by minimizing the nonparamet-

ric Maximum Mean Discrepancy (MMD) [8] in an infinite-

dimensional reproducing kernel Hilbert space (RKHS), and

implement instance reweighting by minimizing the ℓ2,1-

norm structured sparsity penalty [17] on source instances.

We integrate the minimization of MMD and ℓ2,1-norm with

Principal Component Analysis (PCA) to construct domain-

invariant feature representation that is effective for substan-

tial domain difference. We present the learning algorithm

with convergence analysis for TJM optimization problem.

We perform comprehensive experiments on 6 real-world

datasets: digit (USPS+MNIST), object (MSRC+VOC2007

[16], Office+Caltech-256 [6]). From these datasets, we con-

struct 16 cross-domain image datasets, each under different

difficulty in knowledge adaptation. Our results demonstrate

a significant improvement of 3.24% in terms of the average

classification accuracy, where TJM outperforms the state-

of-the-art adaptation methods on most of datasets (10 out

of 16). Our results reveal substantial effects of joint feature

matching and instance reweighting for domain adaptation.

2. Related Work

According to the literature survey [21], existing domain

adaptation methods can be roughly organized into two cate-

gories: feature matching and instance reweighting. Feature

matching methods aim to reduce the distribution difference

by learning a new feature representation. The feature repre-

sentation can be learned via (1) extracting domain-invariant

latent factors [12, 22, 6], (2) minimizing proper distance

measures [19, 20, 16], and (3) reweighting relevant features

with sparsity-promoting regularization [1, 17, 9]. Instance

reweighting methods aim to reduce the distribution differ-

ence by reweighting the source instances according to their

relevance to the target instances [11, 3, 4, 5]. However, all

these methods have only explored feature matching and in-

stance reweighting independently, and may not be effective

enough when the domain difference is substantially large.

To our knowledge, our work is among the first attempts

for visual domain adaptation which performs joint feature

matching and instance reweighting in a principled dimen-

sionality reduction procedure. The procedure is nontrivial,

since we have to work in an infinite-dimensional RKHS to

match the features more effectively, and no previous works

have explored instance reweighting in such learning setting.

3. Transfer Joint Matching

In this section, we present the Transfer Joint Matching

(TJM) approach for effective and robust domain adaptation.

3.1. Problem Definition

We begin with the definitions of terminologies. For clar-

ity, the frequently used notations are summarized in Table 1.

Table 1. Notations and their descriptions used in this paper.
Notation Description Notation Description

Ds,Dt source/target domain X input data matrix

ns, nt #source/target examples K input kernel matrix

m,C #shared features/classes A adaptation matrix

k #subspace bases M MMD matrix

λ regularization parameter G sub-gradient matrix

Notations: For a matrix A ∈ R
n×k, denote the ith row

as ai, the jth column as aj , the Frobenius norm as ‖A‖F =√∑n

i=1 ‖a
i‖

2
2, the ℓ2,1-norm as ‖A‖2,1 =

∑n

i=1

∥∥ai
∥∥
2
.

Definition 1 (Domain). A domain D is composed of an

m-dimensional feature space X and a marginal probabil-

ity distribution P (x), i.e., D = {X , P (x)}, where x ∈ X .

Definition 2 (Task). Given domain D, a task T is com-

posed of a C-cardinality label set Y and a classifier f(x),
i.e., T = {Y, f(x)}, where y ∈ Y , and f(x) = Q(y|x) can

be interpreted as the conditional probability distribution.

Problem 1 (Transfer Joint Matching). Given a labeled

source domain Ds = {(x1, y1), . . . , (xns
, yns

)} and an

unlabeled target domain Dt = {xns+1, . . . ,xns+nt
} un-

der Xs = Xt, Ys = Yt, Ps(xs) 6= Pt(xt), Qs(ys|xs) 6=
Qt(yt|xt), learn a new feature representation to reduce the

domain difference by jointly (1) matching feature distribu-

tions, and (2) reweighting source instances across domains.

3.2. Proposed Approach

In this paper, we propose to adapt different domains by a

feature transformationT so that (1) the features are matched

across domains through distance minimization, and (2) the

source instances are reweighted through structured sparsity:

min
T∈H

∥∥EP (xs) [T (xs)]− EP (xt) [T (xt)]
∥∥2+λ‖T ‖2,1 (1)

There are two key factors that determine the approach: (1)

the feature matching should be performed in a reproduc-

ing kernel Hilbert space (RKHS) H to match both first- and

high-order statistics; (2) the structured sparsity should be

performed in the instance space instead of the feature space,

otherwise we would have done feature reweighting rather

than instance reweighting. These key factors motivate us to

work in the RKHS, which is natural for both requirements.

3.2.1 Dimensionality Reduction

Dimensionality reduction methods can learn a transformed

feature representation by minimizing the reconstruction er-

ror of the input data. For simplicity and generality, we will

choose Principal Component Analysis (PCA) for data re-

construction. Denote X = [x1, . . . ,xn] ∈ R
m×n the input

data matrix, and H = I − 1
n
1 the centering matrix, where

n = ns + nt and 1 the n × n matrix of ones, then the co-

variance matrix can be computed as XHX
T. The learning



goal of PCA is to find an orthogonal transformation matrix

V ∈ R
m×k such that embedded data variance is maximized

max
VTV=I

tr
(
V

T
XHX

T
V
)

(2)

where tr(·) denotes the trace of a matrix. This optimization

problem can be efficiently solved by eigendecomposition

XHX
T
V = VΦ, where Φ = diag(φ1, . . . , φk) ∈ R

k×k

are the k largest eigenvalues. Then we find the optimal k-

dimensional representation by Z = [z1, . . . , zn] = V
T
X.

Kernelization: To work in the RKHS, consider kernel

mapping ψ : x 7→ ψ(x), or ψ(X) = [ψ(x1), . . . , ψ(xn)],
and kernel matrix K = ψ(X)Tψ(X) ∈ R

n×n. We utilize

the Representer theorem V = φ (X)A to kernelize PCA as

max
ATA=I

tr
(
A

T
KHK

T
A
)

(3)

where A ∈ R
n×k is the transformation matrix for Kernel-

PCA, and the subspace embedding becomes Z = A
T
K.

Note that, through kernelization, now we can work in a pos-

sibly infinite-dimensional feature space, which can be easily

manipulated in the instance space using the “kernel trick”.

3.2.2 Feature Matching

However, even through the extracted k-dimensional repre-

sentation, the distribution difference between the source and

target domains will still be significantly large. Thus one ma-

jor computational issue of domain adaptation is to reduce

the difference in feature distributions by explicitly minimiz-

ing proper distance measures. Since parametrically estimat-

ing the probability density for a distribution is a nontrivial

problem, we resort to match the first- and high-order statis-

tics of different distributions. In this paper, we adopt the

empirical Maximum Mean Discrepancy (MMD) [8, 19, 20]

as the nonparametric distance measure to compare different

distributions in the RKHS. MMD computes the distance be-

tween the empirical expectations of source and target data

using k-dimensional embeddings extracted by Kernel-PCA:

∥∥∥∥∥∥
1

ns

ns∑

i=1

A
T
ki −

1

nt

ns+nt∑

j=ns+1

A
T
kj

∥∥∥∥∥∥

2

H

= tr
(
A

T
KMK

T
A
)

(4)

where M is the MMD matrix and is computed as follows

Mij =





1
nsns

, xi,xj ∈ Ds

1
ntnt

, xi,xj ∈ Dt

−1
nsnt

, otherwise

(5)

By minimizing Equation (4) such that Equation (3) is maxi-

mized, the first- and high-order statistics of feature distribu-

tions are matched under the new representation Z = A
T
K.

Note that we just developed TJM to be similar to TCA [20].

3.2.3 Instance Reweighting

However, matching the feature distributions based on MMD

minimization in Equation (4) is not good enough for domain

adaptation, since it can only match the first- and high-order

statistics, and the distribution matching is far from perfect.

In particular, when the domain difference is substantially

large, there will always exist some source instances that are

not relevant to the target instances even in the TCA sub-

space. Therefore, an instance reweighting procedure should

be cooperated with TCA to handle this difficult setting. Un-

fortunately, it is nontrivial to reweight source instances if we

also require to match the feature distributions in the infinite-

dimensional RKHS. Recent works have performed instance

reweighting via kernel mean matching [11, 5], sample se-

lection [28], and co-training [4]. But it remains unclear how

to unify them with feature matching for better performance.

In this paper, we propose to impose the ℓ2,1-norm struc-

tured sparsity regularizer on the transformation matrix A,

which can introduce row-sparsity to the transformation ma-

trix. Since each row of matrixA corresponds to an instance,

the row-sparsity can essentially facilitate adaptive instance

reweighting. We define the instance reweighting regularizer

‖As‖2,1 + ‖At‖
2
F (6)

where As := A1:ns,: is the transformation matrix corre-

sponding to the source instances, and At := Ans+1:ns+nt,:

is the transformation matrix corresponding to the target in-

stances. We only impose ℓ2,1-norm regularizer on source

instances, since our aim is to reweight source instances by

their relevance to the target instances. By minimizing Equa-

tion (6) such that Equation (3) is maximized, the source in-

stances relevant (irrelevant) to the target instances are adap-

tively reweighted with greater (less) importance in the new

representation Z = A
T
K. With this regularizer, TJM is ro-

bust to the domain difference caused by irrelevant instances.

It is important to note that, our instance reweighting reg-

ularizer defined in Equation (6) is essentially different from

the joint feature learning methods [1, 17, 9]. In joint fea-

ture learning, features are reweighted by their relevance to

a specific domain. However, in visual domain adaptation

problems, the domain difference is substantially large and it

is difficult to define the relevance of features to different do-

mains. Thus the joint feature learning methods may have to

struggle for the cross-domain image recognition problems.

3.2.4 Optimization Problem

In this paper, we aim to reduce the domain difference by

jointly matching the feature distributions and reweighting

the source instances. By incorporating Equations (4) and (6)

into Equation (3), we obtain the TJM optimization problem:

min
ATKHKTA=I

tr
(
A

T
KMK

T
A
)
+λ
(
‖As‖2,1 + ‖At‖

2
F

)

(7)



where λ is the regularization parameter to trade off feature

matching and instance reweighting. To highlight its func-

tionality, we term A as the adaptation matrix in the sequel.

An important advantage of TJM is its capability to simul-

taneously match the feature distributions and reweight the

source instances in a principled dimensionality reduction

procedure. Thus TJM can be easy to implement and deploy.

3.3. Learning Algorithm

According to the constrained optimization theory, we de-

note Φ = diag(φ1, . . . , φk) ∈ R
k×k as the Lagrange mul-

tiplier, and derive the Lagrange function for problem (7) as

L = tr
(
A

T
KMK

T
A
)
+ λ

(
‖As‖2,1 + ‖At‖

2
F

)

+ tr
((
I−A

T
KHK

T
A
)
Φ
) (8)

Setting ∂L
∂A

= 0, we obtain generalized eigendecomposition

(
KMK

T + λG
)
A = KHK

T
AΦ (9)

‖As‖2,1 is a non-smooth function at zero, thus we compute

its sub-gradient as
∂(‖As‖2,1

+‖At‖
2

F )
∂A

= 2GA, where G is

a diagonal sub-gradient matrix with ith element equal to1

Gii =





1
2‖ai‖ , xi ∈ Ds, a

i 6= 0

0, xi ∈ Ds, a
i = 0

1, xi ∈ Dt

(10)

Finding the optimal adaptation matrix A is reduced to solv-

ing Equation (9) for the k smallest eigenvectors. Unfortu-

nately, the sub-gradient matrix G is dependent on the adap-

tation matrix A, which is also unknown beforehand. Thus,

we resort to the alternating optimization strategy, where we

iteratively update one variable with the other one fixed. The

complete procedure is summarized in Algorithm 1. We will

analyze the convergence of Algorithm 1 in Subsection 3.5.

3.4. Computational Complexity

Here we analyze the computational complexity of Algo-

rithm 1 by the big O notation. Denote T the number of

iterations, then typical values of k are not greater than 500,

T not greater than 50, so k ≪ min(m,n), T ≪ min(m,n).
The computational cost is detailed as follows: O

(
mn2

)
for

computing the kernel matrix, i.e., Line 2; O
(
Tkn2

)
for

solving the generalized eigendecomposition problem with

dense matrices, i.e., Line 5; O
(
Tn2

)
for computing the

sub-gradient matrix, i.e., Line 6. In total, the computational

complexity of Algorithm 1 is O
(
Tkn2 +mn2

)
. The com-

plexity can be greatly reduced by low-rank approximation.

1It is noteworthy that in practice, ‖ai‖ can be very close to zero but not

zero. However, ‖ai‖ can be zero theoretically. In this case, we follow the

regularization theory and define Gii = 1
2‖ai‖+ǫ

, where ǫ is a very small

constant. It is easy to see that 1
2‖ai‖+ǫ

approximates 1
2‖ai‖

when ǫ→ 0.

Algorithm 1: TJM: Transfer Joint Matching

Input: Data X; #subspace bases k, regularization parameter λ.

Output: Adaptation matrix A, embedding Z, adaptive classifier f .

1 begin

2 Compute MMD matrix M by Equation (5), and kernel matrix

K by Kij ← K(xi,xj) where K(·, ·) is a predefined kernel.

3 Set M←M/‖M‖F , G← I.

4 repeat

5 Solve the generalized eigendecomposition problem in

Equation (9) and select the k smallest eigenvectors to

construct the adaptation matrix A, and Z← ATK.

6 Update the sub-gradient matrix G by Equation (10).

7 until Convergence

8 Return an adaptive classifier f trained on
{

A
T
ki, yi

}ns

i=1
.

3.5. Convergence Analysis

We prove that the alternating optimization procedure in

Algorithm 1 converges to the optimal solution of A corre-

sponding to optimization problem (7). Our proof is similar

to methods in [18, 27]. We begin with the following lemma.

Lemma 1. [18] The following inequality holds given that

{vi
τ}

r
i=1 are none-zero vectors, and r is arbitrary number.

r∑

i=1

(
∥∥vi

τ+1

∥∥−
∥∥vi

τ+1

∥∥2

2 ‖vi
τ‖

)
≤

r∑

i=1

(
∥∥vi

τ

∥∥−
∥∥vi

τ

∥∥2

2 ‖vi
τ‖

)

(11)

Theorem 1. The iterative optimization in Algorithm 1, i.e.,

Lines 4∼7, can monotonically decrease the objective func-

tion in Equation (7) in each iteration until convergence.

Proof. Denote Aτ and Gτ the variables in iteration τ . Note

that, Aτ depends on Gτ−1 and Gτ depends on Aτ . Based

on the eigendecomposition principle, the computation of

Aτ in Line 5, Algorithm 1 satisfies following optimization

Aτ = argmin
ATKHKTA=I

tr
(
A

T
(
KMK

T + λGτ−1

)
A
)

For clarity, denoteW = KMK
T+λGt, where (Gt)ii = 1

if xt ∈ Dt and (Gt)ii = 0 otherwise. Then we can derive

tr

(

A
T
τ

(

W + λGτ−1

)

Aτ

)

≤ tr

(

A
T
τ−1

(

W + λGτ−1

)

Aτ−1

)

⇒ tr

(

A
T
τ WAτ

)

+ λ

ns
∑

i=1

∥

∥

∥a
i
τ

∥

∥

∥

2

2

∥

∥

∥a
i
τ−1

∥

∥

∥

≤ tr

(

A
T
τ−1WAτ−1

)

+ λ

ns
∑

i=1

∥

∥

∥a
i
τ−1

∥

∥

∥

2

2

∥

∥

∥a
i
τ−1

∥

∥

∥

⇒ tr

(

A
T
τ WAτ

)

+ λ

ns
∑

i=1

∥

∥

∥a
i
τ

∥

∥

∥ − λ

ns
∑

i=1







∥

∥

∥a
i
τ

∥

∥

∥ −

∥

∥

∥a
i
τ

∥

∥

∥

2

2

∥

∥

∥
ai
τ−1

∥

∥

∥







≤ tr

(

A
T
τ−1WAτ−1

)

+ λ

ns
∑

i=1

∥

∥

∥
a
i
τ−1

∥

∥

∥
− λ

m
∑

i=1







∥

∥

∥
a
i
τ−1

∥

∥

∥
−

∥

∥

∥a
i
τ−1

∥

∥

∥

2

2

∥

∥

∥a
i
τ−1

∥

∥

∥







Using Lemma 1 and the definition of ‖A‖2,1, we obtain

tr
(

A
T
τ WAτ

)

+λ
∥

∥

∥
A

(s)
τ

∥

∥

∥

2,1
≤ tr

(

A
T
τ−1WAτ−1

)

+λ
∥

∥

∥
A

(s)
τ−1

∥

∥

∥

2,1

which establishes that the objective function in Equation (7)

monotonically decreases under updates in Algorithm 1.



4. Experiments

In this section, we conduct extensive experiments for im-

age classification problems to evaluate the TJM approach.

Datasets and codes will be available online on publication.

4.1. Data Preparation

USPS+MNIST, MSRC+VOC2007, and Office+Caltech-

256 (see Figure 2 and Table 2) are six benchmark datasets

widely adopted for visual domain adaptation algorithms.

USPS dataset consists of 7,291 training images and

2,007 test images of size 16× 16.

MNIST dataset has a training set of 60,000 examples

and a test set of 10,000 examples of size 28× 28.

From Figure 2, we can see that USPS and MNIST follow

very different distributions. They share 10 classes of digits.

To speed up experiments, we construct one dataset USPS

vs MNIST by randomly sampling 1,800 images in USPS to

form the source data, and randomly sampling 2,000 images

in MNIST to form the target data. We switch source/target

pair to get another dataset MNIST vs USPS. We uniformly

rescale all images to size 16×16, and represent each one by

a feature vector encoding the gray-scale pixel values. Thus

the source and target data can share the same feature space.

MSRC dataset is provided by Microsoft Research Cam-

bridge, which contains 4,323 images labeled by 18 classes.

VOC2007 dataset (the training/validation subset) con-

tains 5,011 images annotated with 20 concepts.

From Figure 2, we can see that MSRC and VOC2007

follow significantly different distributions, that is, MSRC

is from standard images for benchmark evaluation, while

VOC2007 is from arbitrary photos in Flickr. They share

the following 6 semantic classes: “aeroplane”, “bicycle”,

“bird”, “car”, “cow”, “sheep”. We follow [16] to construct

one dataset MSRC vs VOC by selecting all 1,269 images

in MSRC to form the source domain, and all 1,530 images

in VOC2007 to form the target domain. Then we switch

the source/target pair to get another dataset VOC vs MSRC.

We uniformly rescale all images to be 256 pixels in length,

and extract 128-dimensional dense SIFT (DSIFT) features

using the VLFeat open source package. A 240-dimensional

codebook is created, where Kmeans clustering is used to

obtain the codewords. In this way, the training and test data

are constructed to share the same label set and feature space.

Office [24, 6] is an increasingly popular benchmark for

visual domain adaptation. The database contains three real-

world object domains, Amazon (images downloaded from

online merchants), Webcam (low-resolution images by a

web camera), and DSLR (high-resolution images by a dig-

ital SLR camera). It has 4,652 images and 31 categories.

Caltech-256 is a standard database for object recogni-

tion. The database has 30,607 images and 256 categories.

In these expriments, we adopt the public Office+Caltech

datasets released by Gong et al. [6]. SURF features are ex-

Figure 2. USPS, MNIST, MSRC, VOC2007, Office, Caltech-256.

Table 2. Statistics of the six benchmark digit and object datasets.
Dataset Type #Examples #Features #Classes Subsets

USPS Digit 1,800 256 10 USPS

MNIST Digit 2,000 256 10 MNIST

MSRC Object 1,269 240 20 MSRC

VOC2007 Object 1,530 240 68 VOC

Office Object 1,410 800 10 A, W, D

Caltech-256 Object 1,123 800 10 C

tracted and quantized into an 800-bin histogram with code-

books computed with Kmeans on a subset of images from

Amazon. Then the histograms are standardized by z-score.

Specifically, we have four domains, C (Caltech-256), A

(Amazon), W (Webcam), and D (DSLR). By randomly se-

lecting two different domains as source domain and target

domain respectively, we construct 4×3 = 12 cross-domain

object datasets, e.g., C → A, C → W, C → D, . . . , D → W.

4.2. Baseline Methods

We compare our TJM approach with five state-of-the-art

(related) baseline methods for image recognition problems.

• 1-Nearest Neighbor Classifier (NN)

• Principal Component Analysis (PCA) + NN

• Joint Feature Selection and Subspace Learning (FSSL)

[9] + NN

• Transfer Component Analysis (TCA) [20] + NN

• Geodesic Flow Kernel (GFK) [6] + NN
In particular, TCA is the most closely related method to

TJM, while TJM differs from TCA by introducing an ℓ2,1-

norm sparsity penalty on the source data, which can take

advantage for joint feature matching and instance reweight-

ing. As suggested by [6], NN is chosen as the base classifier

since it does not require tuning cross-validation parameters.

4.3. Implementation Details

We follow the same evaluation protocol as [6, 20] for fair

comparison. NN is trained on the labeled source data, and

tested on the unlabeled target data; PCA, FSSL, TCA, GFK,

and TJM are performed on all data as a dimensionality re-

duction procedure, then an NN classifier is trained on the

labeled source data for classifying the unlabeled target data.

Under our experimental setup, it is impossible to tune

the optimal parameters using cross validation, since labeled

and unlabeled data are sampled from different distributions.

Thus we evaluate all methods by empirically searching the

parameter space for the optimal parameter settings which
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Figure 3. Recognition accuracy (%) on 16 cross-domain digit and object datasets, each under different difficulty in knowledge adaptation.

Table 3. Accuracy (%) on cross-domain digit and object datasets

(bold and italic numbers indicate the best and second best results).

Dataset
Standard Learning Transfer Learning

NN PCA FSSL TCA GFK TJM

USPS vs MNIST (1) 44.7 44.95 51.45 44.15 46.45 52.25

MNIST vs USPS (2) 65.94 66.22 57.44 58.78 61.22 63.28

MSRC vs VOC (3) 31.96 32.94 29.74 32.55 34.18 32.75

VOC vs MSRC (4) 41.06 42.79 37.93 32.75 44.47 49.41

C→A (5) 23.70 36.95 35.88 45.82 41.02 46.76

C→W (6) 25.76 32.54 32.32 30.51 40.68 38.98

C→D (7) 25.48 38.22 37.53 35.67 38.85 44.59

A→C (8) 26.00 34.73 33.91 40.07 40.25 39.45

A→W (9) 29.83 35.59 34.35 35.25 38.98 42.03

A→D (10) 25.48 27.39 26.37 34.39 36.31 45.22

W→C (11) 19.86 26.36 25.85 29.92 30.72 30.19

W→A (12) 22.96 29.35 29.53 28.81 29.75 29.96

W→D (13) 59.24 77.07 76.79 85.99 80.89 89.17

D→C (14) 26.27 29.65 27.89 32.06 30.28 31.43

D→A (15) 28.50 32.05 30.61 31.42 32.05 32.78

D→W (16) 63.39 75.93 74.99 86.44 75.59 85.42

Average 35.01 41.42 40.16 42.79 43.86 47.10

gives the highest average accuracy on all datasets, and re-

port the best results of each method. For subspace learning

methods, we set #bases by searching k ∈ [10, 20, . . . , 200].
For transfer learning methods, we set adaptation regulariza-

tion parameter λ by searching λ ∈ {0.01, 0.1, 1, 10, 100}.

The TJM approach involves only two model parameters:

#subspace bases k and regularization parameter λ. In the

coming sections, we provide empirical analysis on param-

eter sensitivity, which verifies that TJM can achieve stable

performance under a wide range of parameter values. When

comparing with the baseline methods, we use a common set

of parameter settings: k = 20 and λ = 1.0. The number of

iterations for TJM to converge is T = 10. Similar to [20],

we use Gaussian kernel with bandwidth set to the median

squared distance between training instances. We do not run

TJM repeatedly as it goes well with constant initialization.

We use classification Accuracy on test data as the evalu-

ation metric, which is widely used in literature [20, 6, 16]

Accuracy =
|x : x ∈ Dt ∧ ŷ (x) = y (x)|

|x : x ∈ Dt|
(12)

where Dt is the set of test data, y(x) is the truth label of x,

ŷ(x) is the label predicted by the classification algorithm.

4.4. Experimental Results

The classification (recognition) accuracies of TJM and

the five baseline methods on the 16 cross-domain digit and

object datasets are illustrated in Table 3. For better inter-

pretation, the results are also visualized in Figure 3. We ob-

serve that TJM achieves much better performance than the

five baseline methods on most (10 out of 16) datasets. The

average classification accuracy of TJM on the 16 datasets is

47.10%, gaining a significant performance improvement of

3.24% compared to the best baseline GFK. Note that, the

adaptation difficulty in the 16 datasets varies a lot, since the

standard NN classifier can only achieve an average classi-

fication accuracy of 35.01%, and may perform very poorly

on many of the datasets. Although TJM cannot perform the

best on all datasets, it is still established as an effective and

robust approach due to the following aspects: (1) if it per-

forms the best, then it usually outperforms the best baseline

by a large margin, e.g., on dataset A → D; (2) otherwise, it

performs only slightly worse than the best baseline. It ver-

ifies that TJM can construct more effective and robust rep-

resentation for cross-domain image recognition problems.

Secondly, we notice that FSSL performs well on the digit

datasets, but poorly on the object datasets. FSSL executes

joint feature selection and subspace learning, in which a

shared subspace is extracted while the relevant features are

automatically selected for domain adaptation. However, in

computer vision problems, the domain difference is sub-

stantially large, and thus it is nontrivial to define or select a

set of relevant features that is invariant to different domains.

Therefore, existing feature selection methods, e.g., FSSL

and Multi-Task Feature Learning (MTFL) [1], can perform

well only when the relevant features can be adaptively se-

lected. One such successful case is digit recognition, where

the black-pixels of the image background can be defined as

the irrelevant features and can be automatically filtered out.

Another successful case is text classification, where it is nat-

ural to extract some semantically relevant words. Neverthe-

less, feature selection strategy is not as effective as instance

reweighting for a wide range of computer vision problems.

Thirdly, TJM significantly outperforms TCA, which is

a state-of-the-art domain adaptation method based on fea-

ture matching. TCA jointly executes feature transformation

and feature matching in a reproducing kernel Hilbert space

(RKHS), and thus is superior to PCA. However, as we have

justified in this paper, only feature matching is not good
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Figure 4. Effectiveness analysis for TJM: MMD distance, classification accuracy, and instance reweighting results on the A → W dataset.

enough for domain adaptation when the domain difference

is substantially large, since there will always be some source

instances which are not similar to the target instances even

in the TCA-extracted subspace. TJM addresses TCA’s lim-

itation by introducing a structured sparsity penalty on the

source instances, which can adaptively reweight the source

instances according to their relevance to the target instances.

Lastly, we observe that GFK performs pretty well on the

object datasets, but somewhat poorly on the digit datasets.

In GFK, the subspace dimension should be small enough to

ensure that different subspaces can transit smoothly along

the geodesic flow. Then these infinite number of subspaces

are implicitly extracted to encode the source and target data

into a domain-invariant representation. However, the low-

dimensional subspaces may not represent input data accu-

rately when the input space is high-dimensional. TJM per-

forms much better by learning an accurate shared subspace.

It is important to note that, GFK outperforms TCA and un-

derperforms TJM in general. This further verifies when the

domain difference is substantially large, apart from feature

matching, instance reweighting is also very important and

inevitable for effective and robust visual domain adaptation.

4.5. Effectiveness Analysis

We further verify the effectiveness of TJM by inspecting

the distribution distance and instance reweighting results.

Distribution Distance: We perform NN, PCA, TCA,

and TJM on dataset A → W with the optimal parameter set-

tings. Then we compute the MMD distance of each method

on their induced embeddings by Equation (4). We note that,

smaller distribution distance implies better generalization

performance of the feature representation across domains.

Figure 4(a) shows the distribution distance computed for

each method, and Figure 4(b) shows the classification accu-

racy. We can make these observations. (1) Without learning

a feature representation, the distribution distance of NN in

the original feature space is the largest. (2) PCA can learn

a new representation in which the distribution distance is

slightly reduced, thus it can help cross-domain problems

only to some limited extent. (3) TCA can explicitly reduce

the difference in the feature distributions, thus it can achieve

better classification accuracy than PCA. (4) TJM can ex-

plicitly reduce the difference in both the feature space and

instance space, thus it can extract the best representation in

which the distribution distance is optimally minimized. By

iteratively refining the source instance weighting through

the structured sparsity penalty, TJM can increase (decrease)

the weights of the relevant (irrelevant) source instances in

each iteration to improve the classification performance.

Instance Reweighting: We perform TCA and TJM

on dataset A → W using their optimal parameter settings.

Then we follow the definition of ℓ2,1-norm to compute the

weighting of each instance xi as ‖ai‖ in the new feature

subspace. Note that, in the adaptation matrix A, each row

corresponds to an instance, and each column corresponds to

a subspace dimension. Thus the ℓ2-norm of each row in A,

i.e., ‖ai‖, can essentially indicate the importance weighting

of each instance in reconstructing the feature representation.

Figures 4(c) and 4(d) show the instance weighting results

of TCA and TJM respectively, where a vertical line is plot-

ted to separate source and target instances. An effective and

robust representation for cross-domain problems requires

that (1) the relevant source instances should be reweighted

with greater importance, and (2) the irrelevant source in-

stances should be reweighted with less importance. In this

sense, we see that TCA weights the instances nearly equally,

and thus cannot extract a good representation in which the

source instances are reweighted by their relevance to the

target instances.The significant performance improvement

from TCA to TJM verifies that it is important and inevitable

to jointly match features and reweight instances for effective

and robust visual domain adaptation. It is great to see that

TJM can learn the ideal instance weighting, i.e., irrelevant

source instances are adaptively filtered out to reduce the do-

main difference. Thus TJM can extract a domain-invariant

representation for much better generalization performance.

4.6. Parameter Sensitivity

We conduct sensitivity analysis on the USPS vs MNIST,

VOC vs MSRC, and A → W datasets, while similar trends

on all other datasets are not shown due to space limitation.

We run TJM with varying values of k. It can be chosen
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Figure 5. Parameter sensitivity and convergence study for TJM on digit and object datasets (dashed lines show the best baseline results).

Table 4. Time complexity of TJM and all the baseline methods.
Method Runtime (s) Method Runtime (s) Method Runtime (s)

NN 0.31 PCA 0.42 FSSL 3.45

TCA 0.87 GFK 1.29 TJM 6.88

such that the low-dimensional representation is accurate for

data reconstruction. We plot classification accuracy w.r.t.

different values of k in Figure 5(a), and choose k ∈ [10, 50].
We run TJM with varying values of λ. Intuitively, when

λ→ 0, TJM optimization problem degenerates. When λ→
∞, the joint feature matching and instance reweighting is

not performed. We plot classification accuracy w.r.t. differ-

ent values of λ in Figure 5(b), and choose λ ∈ [0.1, 10.0].

4.7. Convergence and Time Complexity

We empirically check the convergence property of TJM.

Figures 5(c) and 5(d) show that classification accuracy (ob-

jective function) increases (decreases) steadily with more

iterations and converges within only 10 iterations.

We check time complexity on dataset A → W with 800

features and 1,253 images, and show the results in Table 4.

We see that TJM iterates T -times and is worse than TCA.

5. Conclusion and Future Work

In this paper, we have proposed a novel Transfer Joint

Matching (TJM) approach for visual domain adaptation

problems. TJM aims to jointly match features and reweight

instances across domains in a principled dimensionality re-

duction procedure. An important advantage of TJM is that it

is robust to both the distribution difference and the irrelevant

instances. Comprehensive experimental results show that

TJM is effective for a variety of cross-domain problems,

and can significantly outperform state-of-the-art adaptation

methods even if the domain difference is substantially large.

In the future, we plan to extend joint matching strategy

to alternative sparse learning methods, e.g., Sparse Coding.
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