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Abstract

The desire of enabling computers to learn semantic con-
cepts from large quantities of Internet videos has motivat-
ed increasing interests on semantic video understanding,
while video segmentation is important yet challenging for
understanding videos. The main difficulty of video seg-
mentation arises from the burden of labeling training sam-
ples, making the problem largely unsolved. In this paper,
we present a novel nearest neighbor-based label transfer
scheme for weakly supervised video segmentation. Where-
as previous weakly supervised video segmentation method-
s have been limited to the two-class case, our proposed
scheme focuses on more challenging multiclass video seg-
mentation, which finds a semantically meaningful label for
every pixel in a video. Our scheme enjoys several favor-
able properties when compared with conventional methods.
First, a weakly supervised hashing procedure is carried out
to handle both metric and semantic similarity. Second, the
proposed nearest neighbor-based label transfer algorithm
effectively avoids overfitting caused by weakly supervised
data. Third, a multi-video graph model is built to encour-
age smoothness between regions that are spatiotemporally
adjacent and similar in appearance. We demonstrate the
effectiveness of the proposed scheme by comparing it with
several other state-of-the-art weakly supervised segmenta-
tion methods on one new Wild8 dataset and two other pub-
licly available datasets.

1. Introduction
Video segmentation, the problem of assigning labels for

pixels in a video sequence, is an important computer vi-
sion task with applications in areas such as advertisement
recommendation, activity recognition, video summarization
and target retrieval. Despite its significance, the problem is

largely under-addressed due to the heavy burden of labeling
training samples. Learning a fully supervised segmentation
model requires the labeling of every pixel in every frame
of the training videos, which is very time-consuming and
labor-intensive.

To reduce the labeling burden of the fully supervised
model, semi-supervised video segmentation methods are
proposed [6] whereby only part of the training frames are
required to be labeled. Nevertheless, although the labeling
tasks can be easier in semi-supervised methods than that
in fully supervised ones, it is still very difficult to obtain
enough labeled training data because of the difficulty of
pixel-level labeling. To avoid pixel-level labeling, weak-
ly supervised video segmentation methods are proposed
[14, 27] in which semantic labels are assigned to videos but
the labels are not spatially or temporally localized within
the videos. Video-level labeling is much easier to do than
pixel-level labeling but the absence of localization informa-
tion leads to training data ambiguity and limits the applica-
tion of weakly supervised methods. Note that the data am-
biguity of weakly supervised video segmentation is more
serious than that of weakly supervised image segmentation
since using more pixels leads to more possible labelings and
is easier to cause training overfitting.

Thus, most margin maximization-based weakly super-
vised image segmentation methods [30, 31, 32, 36] are not
suitable for video segmentation; and existing weakly su-
pervised video segmentation methods [14, 27] only achieve
convincing results for the task of two-class video segmen-
tation, i.e. separating the foreground region from the back-
ground, but they are not suitable for multiclass video seg-
mentation. Compared with the two-class case, multiclass
video segmentation faces the following challenges: (1) easy
to mix up multiple classes in the metric space, (2) easy to
cause overfitting in multiclass label prediction and (3) diffi-
cult to conduct appearance-based multiclass classification.
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To conquer these challenges, we propose a nearest
neighbor-based label transfer scheme for weakly supervised
multiclass video segmentation. According to [35], videos
are first segmented into supervoxels, from which color, pat-
tern, texture, and motion features are extracted. We then
apply a weakly supervised hashing procedure to transform
the features to compact binary codes, such that the seman-
tic similarity of two supervoxels can be efficiently calcu-
lated by the Hamming distance between their binary codes.
We develop the nearest neighbor-based label transfer algo-
rithm which works under the following intuition: if two
supervoxels from different videos are similar to each oth-
er, and the two videos share some video-level labels, it is
reasonable to assume that both supervoxels share the same
labels. Considering all the pairwise relationships between
such supervoxels, the categorical probability of a supervox-
el can be estimated by transferring the video-level labels
from its neighbors. We show that a key improvement of the
proposed algorithm over conventional algorithms is that it
effectively avoids overfitting caused by weakly supervised
data. Using the appearance-based categorical probability as
the unary energy, we build a multi-video graph model to
encourage smoothness between spatiotemporally adjacen-
t supervoxels in the same video and supervoxels of similar
appearance across the videos. Following the above proce-
dure, the video-level labels are transformed to the pixel lev-
el. By using standard supervised methods, we can further
utilize the resultant pixel-level labeled videos to segment
new videos.

2. Related Work

2.1. Video Segmentation

Impressive progress has been reported on unsupervised
video segmentation with methods ranging from hierarchi-
cal graph model [12], streaming graph model [35], region
tracking [3], interactive matting [1] hypergraph cut [15] and
multiple hypothesis tracking [4]. These methods success-
fully segment videos into consistent regions, namely super-
voxels. However, due to the absence of supervision infor-
mation, these unsupervised segmentation methods cannot
associate the supervoxels with semantic meanings, so their
application is limited to low-level video processing rather
than high-level semantic understanding.

By contrast, supervised classifiers such as random forest
[2] show promising results for semantic video segmenta-
tion [5, 24, 22], although fully supervised training classi-
fiers require copious quantities of labeled video data, which
are extremely arduous to obtain by hand labeling. To re-
duce the burden of labeling, semi-supervised methods are
introduced for video segmentation [6, 29]. Given a sec-
tion of hand-labeled frames from a video sequence, semi-
supervised methods propagate labels throughout the rest of

the video sequence. Although semi-supervised methods re-
quire less labeling work than supervised methods, it is still
very difficult to obtain enough labeled training data because
of the difficulty of pixel-level labeling. To avoid pixel-level
labeling, weakly supervised video segmentation is proposed
[14, 27] whereby semantic labels are associated with train-
ing videos but the labels are not spatially or temporally lo-
calized within the video. Through discriminative learning
[14] and concept ranking [27], both methods separate the
foreground from the background but do not apply for mul-
ticlass video segmentation.

2.2. Weakly Supervised Image Segmentation

Weakly supervised image segmentation has been pro-
foundly investigated, such as [30, 31, 32, 37, 36, 11, 28].
Vasconcelos et al. [28] transformed the weakly supervised
segmentation problem to an annotation problem by apply-
ing unsupervised normalized cut segmentation [23] before
assigning labels. The method is easy to implement but on-
ly feasible for simple tasks. Vezhnevets and Buhmann [30]
exploited a weakly supervised random forest for image seg-
mentation. It has been shown that directly maximizing the
classification margin for weakly supervised data leads to
learning overfitting, and in [30] additional labeled data are
used to regularize the random forest construction to prevent
this. Consequently, [30] still needs a large quantity of pixel-
level labeled data for training. Vezhnevets et al. [31] ex-
tended [30] by introducing a multi-image model, in which
the smoothness between adjacent and similar superpixels is
encouraged. Since the unary energy of [31] depends on the
weakly supervised random forest method proposed in [30],
however, additional hand labeled data are also required to
regularize the model.

Vezhnevets et al. [32] proposed a weakly supervised
method for both metric learning and image segmentation.
Since it is based on alternating optimization, the results are
sensitive to model initialization and training overfitting may
be caused by bad initialization. The proposed scheme in
this paper also focuses on the task of metric learning and
segmentation. Compared to the above-mentioned methods,
it does not depend on pixel-level data or alternating opti-
mization. Thus, it is more efficient and more robust to am-
biguous data and noise than [32].

3. Weakly Supervised Multiclass Video Seg-
mentation

Weakly labeled videos are first segmented into spa-
tiotemporal supervoxels, which are represented as high di-
mensional points in the feature space, and weakly super-
vised hashing is subsequently carried out for metric learn-
ing. The proposed nearest neighbor-based label transfer al-
gorithm is then used to estimate categorical probabilities,
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Figure 1. Flowchart of the proposed weakly supervised multiclass video segmentation scheme. Weakly labeled videos are first segmented
into spatiotemporal supervoxels, which are represented as high dimensional points in the feature space, and weakly supervised hashing
is subsequently carried out for metric learning. The proposed nearest neighbor-based label transfer algorithm is then used to estimate
categorical probabilities, and the final pixel-level labels are decided by the multi-video model.

and the final pixel-level labels are decided by the multi-
video model. We omit the step of segmenting new videos,
since this can be regarded as a standard supervised learning
problem. Figure 1 shows the flow of the proposed scheme.

The given dataset can be represented as τ = {Bj =

({xj
i}

Nj

i=1, Y
j)}Nj=1 where supervoxel xj

i comes from video
Bj . Each video Bj has a label set Y j , which is a subset of
the full label set

(
Y j ⊂ Y = {1, . . . , C}

)
corresponding to

semantic concepts. Every supervoxel xj
i is associated with

a latent label yji ∈ Y j . The bag label set Y j contains the
labels of all supervoxels in that bag (Y j = ∪yji ). N is the
number of videos and Nj is the number of supervoxels in
the jth video. We use f j

i to indicate the feature of xj
i . For

ease of notation, we also sequence the supervoxels from 1
to L, and use a matrix X = [x1 . . . xL] to indicate the input
supervoxels.

3.1. Weakly Supervised Hashing

A key factor of a segmentation algorithm is the metric
which properly measures dissimilarity between supervoxel-
s. The L2 distance based on human-defined features, e.g.
SIFT, color histogram, LBP and optical flow, is the most
straightforward metric for measuring the dissimilarity be-
tween supervoxels. In the context of weakly supervised
video segmentation however, the L2 distance on human-
defined visual features is not optimal due to the ignorance of
two valuable observations: spatiotemporally adjacent cues
and the high-level semantic information.

Regarding smoothness, if two supervoxels are spatiotem-
porally adjacent and are neighbors in the feature space, the
two supervoxels belong to the same semantic concept. By
contrast, if two videos do not share any semantic labels,
none of the supervoxel pairs across the two videos belong
to the same semantic concept.

Combining the two observations, two types of pairwise
relationship sets can be built up using the weakly supervised
video data: the link relationship set (M) and the non-link
relationship set (V ). Specifically, for a video Bj , a pair of
supervoxels (xj

i , x
j
k) ∈ M if xj

i and xj
k are spatiotemporally

adjacent and ||f j
i − f j

k ||2 < ϵ. For a pair of videos Bj1 and
Bj2 , the supervoxel pairs (xj1

i , xj2
k )i=1...Nj1 ,k=1...Nj2

∈ V

if Y j1 ∩ Y j2 = ∅. The above two relationship sets are rep-
resented by defining a matrix S ∈ RL×L that incorporates
the pairwise information

Sij =

 1 : (xi, xj) ∈ M
−1 : (xi, xj) ∈ V
0 : otherwise.

(1)

Regarding the running speed in our implementation, we
sample a subset of supervoxels to construct S instead of us-
ing all the supervoxels. Through constructing S, we trans-
form the video-level semantic labels to a supervoxel-level
relationship matrix that is used for metric learning. We fol-
low the spirit of semi-supervised hashing [33, 17] by gener-
ating binary codes for metric learning, because it efficiently
handles both metric and semantic similarity. A sequence
of K hashing functions H = [h1, . . . , hK ] are learned and
each hashing function maps the original features to either
1 or -1. H(X) ∈ RK×L is the mapped binary codes of
X . An objective function that measures the conformity be-
tween the binary codes and S is maximized, while the bal-
ance and independence of the binary codes are guaranteed

H∗ = argmax
H

tr
{
H(X)SH(X)⊤

}
, (2)

s.t. hk(x) = 0, k = 1 . . .K,

H(X)H(X)T = LI.

The objective function is difficult to solve, but its relaxed
form can be efficiently optimized by the spectral method.
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After the weakly supervised hashing procedure, a supervox-
el xj

i is represented as a sequence of binary codes bji , and
the dissimilarity between a pair of supervoxels xj1

i1
and xj2

i2
is measured by the Hamming distance

dH(xj1
i1
, xj2

i2
) =

1

4
||bj1i1 − bj2i2 ||2. (3)

3.2. Nearest Neighbor­based Label Transfer

All supervised learning methods rely on the smoothness
assumption [7]: if two points in the feature space are close,
the corresponding labels should also be similar. Consid-
ering a supervoxel-label pair (xj

i , y
j
i ), if we have another

point xj∗

i∗ that is close to xj
i , we may expect to predict yji by

yj
∗

i∗ . In the weakly supervised context, we rarely know the
category label of any training sample, so the naı̈ve nearest
neighbor-based method does not work.

However, if two supervoxels from different videos are
similar to each other, and the two videos share some video-
level labels, it is reasonable to conclude from the smooth-
ness assumption that both supervoxels share the same label-
s. If xj

i is close to xj∗

i∗ and Y j ∩ Y j∗ ̸= ∅, we transfer the
video-level labels Y j ∩Y j∗ to the supervoxel labels yji , and
the categorical probability of a given supervoxel xj

i is

p(yji |x
j
i ) = (4)

1

|Nap(x
j
i )|

∑
xj∗
i∗ ∈Nap(x

j
i )

δ
(
yji ∈

(
Y j ∩ Y j∗

))
|Y j ∩ Y j∗ |

,

where Nap(·) denotes the appearance-based neighbor set
and δ(·) is the indicator function. Each neighbor of xj

i

has the same weight (1/|Nap(x
j
i )|) for estimation and each

shared label contributes equally. If most neighbors of xj
i

have the same video-level labels, yji will have a high prob-
ability in that category.

In this paper, instead of searching for a constant num-
ber of nearest neighbors, a supervoxel xj∗

i∗ is regarded as
the neighbor of xj

i if it satisfies three conditions: (1) it is
sufficiently similar to xj

i ,

dH(xj
i , x

j∗

i∗ ) < σ, (5)

(2) of all the supervoxels in video Bj , xj
i is the most similar

supervoxel to xj∗

i∗

xj
i = argmin

xj
k,k=1...Nj

dH(xj
i , x

j∗

i∗ ), (6)

and (3) Bj and Bj∗ share some labels

Y j ∩ Y j∗ ̸= ∅. (7)

Highlight 1 

 

Highlight 2 

 

Highlight 3 

3 

2 1 

4 

5 

4 

5 

3 

1 

2 

4 

1 
2 

3 

Figure 2. Intuition behind the three conditions of finding neigh-
bors for nearest neighbor-based label transfer. The colors indicate
different videos, and the various shapes indicate supervoxels taken
from different categories. Square, circle, triangle, star and rhom-
bus indicate tree, grass, lion, water and bird, respectively. Refer
to the text for detailed explanations.

Figure 2 details the intuition behind the three conditions
of finding neighbors for nearest neighbor-based label trans-
fer. The Highlight 1 area shows the requirement of the first
condition of finding neighbors: the red triangle 5 is far from
all the blue points, so there is no indication of whether or
not it is circle.

Since appearances of some categories (e.g. tree and
grass) are relatively similar, the distance between two
points from such categories can be smaller than the thresh-
old. In this case, using the first condition alone will lead to
a wrong determination of neighbors. The Highlight 2 area
in Figure 2 shows this situation: although the blue square 4
is close to the red circle 3, it is from the square category, not
the circle category. Although two points from different cat-
egories may be close, they are rarely the closest points. By
contrast, since points from the same category tend to fall n-
ear one another, they are likely to be the closest points from
the same category. By this analysis, our second condition
suppresses all the points that are not the closest such that
the algorithm is robust to noisy points.

The Highlight 3 area in Figure 2 illustrates the third con-
dition for finding neighbors: the green and blue points share
no common labels, so although the green points are near the
blue points, they are not from the same category and are not
regarded as neighbors for label transfer.

It should be noted that conventional weakly supervised
segmentation methods [14, 27] use all the training data to
make predictions, e.g. when labeling the bird areas in the
1st row of Figure 1, all the other videos are used to learn
the appearance model of bird. As the videos from the 3rd
and 4th rows do not have bird, supervoxels in these videos
are regarded as negative samples. However, since appear-
ances of the categories (lion, grass, sand) of the videos are
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very different from the appearance of water, we cannot ex-
pect the resultant classifier to correctly distinguish bird and
water. Hence, The training error may be small (it can cor-
rectly classify bird+water against lion+grass+sand), but
the testing error can be very large (it fails to classify bird a-
gainst water). In other words, using such videos for training
causes overfitting in multiclass video segmentation. In our
proposed algorithm, by contrast, videos without common
labels do not help each other in prediction, and overfitting
can be efficiently avoided.

3.3. Multi­Video Graph Model

Given the input weakly supervised videos τ = {Bj =

({xj
i}

Nj

i=1, Y
j)}Nj=1, the categorical posterior is

p
(
{yji }|{x

j
i}, {Y

j}
)

(8)

∝ p
(
{yji }|{x

j
i}
)
p
(
{Y j}|{yji }

)
,

which has two factors. The first factor

p
(
{yji }|{x

j
i}
)

= p
(
{yji }

)∏
j,i

p
(
xj
i |y

j
i

)
(9)

∝ p
(
{yji }

)∏
j,i

p
(
yji |x

j
i

)
is a posterior that can be formulated by a Markov Random
Fields (MRF) model. Based on the Hammersley-Clifford
theorem [13], the configuration factor p({yji }) is a Gibbs
distribution, and then (9) can be simplified as

p
(
{yji }|{x

j
i}
)

(10)

∝ exp
(∑

j,i
T log p

(
yji |x

j
i

)
− U

(
{yji }

))
= exp

(
−E

(
{yji }

))
,

where T is the temperature parameter, U({yji }) is the pri-
or potential energy, and E({yji }) is the posterior energy.
In this paper, two types of configuration priors are encour-
aged. The first prior is the spatiotemporal smoothness,
which regards all the spatiotemporally adjacent supervoxels
of a supervoxel xj

i as its spatiotemporal-neighbor Nst(x
j
i ).

The second prior is the smoothness between similar super-
voxels, and we use Nap(x

j
i ) defined in Section 3.3 as the

appearance-neighbor set of xj
i . The pairwise smoothness

cost has the form of a contrast sensitive Potts model [20]

v
(
yj1i1 , y

j2
i2

)
=

(
K − dH

(
xj1
i1
, xj2

i2

))
δ
(
yj1i1 ̸= yj2i2

)
.

(11)
and the posterior energy can be written as

E
(
{yji }

)
=

∑
j=1...N,i=1...Nj

(
−T log p

(
yji |x

j
i

)
(12)

+
∑

xj∗
i∗ ∈(Nst(xj

i)∪Nap(xj
i))

v
(
yji , y

j∗

i∗

))
.

The second factor of (8) is

p
(
{Y j}|{yji }

)
=

{
1 : ∀j, Y j = ∪{yjk}k
0 : otherwise,

(13)

which guarantees the weakly supervised restrictions. Since
assigning labels that do not appear in a video causes in-
finity posterior energy, the only remaining concern is that
all the video-level labels should be assigned to supervox-
els. This restriction can be guaranteed by simply choosing
a supervoxel with the largest categorical posterior for each
video-level label and fixing the label.

Finally, we inference the posterior energy by the coarse-
to-fine supervoel trees [16] and the alpha-enpension [26]
algorithm is used for optimization, such that the optimized
supervoxel-level labels maximize the posterior.

4. Experiments
We validate the proposed scheme on one new Wild8

dataset, the YTO dataset and the SUNY 24-class Dataset.

4.1. Wild8 Dataset

We construct a “Wild8” dataset to quantitatively evaluate
the proposed scheme due to the lack of a multiclass video
segmentation dataset with semantical pixel-level ground-
truth. Our dataset consists of 100 sequences of weakly su-
pervised videos from 3 documentary series1 of which 33 se-
quences are manually labeled with pixel-level ground-truth
for evaluation. The dataset covers 8 categories (bird, lion,
elephant, sky, tree, grass, sand, and water) and all the se-
quences are associated with multiple categories. Each se-
quence has a length of three seconds and is sampled at
10Hz. All the frames are resized to the same dimensions
(640× 480) for ease of processing.

We utilize the streamGBH algorithm [35] implemented
by the publicly available LIBSVX library [34] for super-
voxel segmentation. To balance the preservation of the ob-
ject boundary and spatiotemporal uniformity, we choose the
15th hierarchy as the finest level in building the supervoxel
trees and set the other parameters as their default values.

We then represent the supervoxels using the following
set of features: RGB color histogram quantized into 48 bin-
s, local binary patterns quantized into 59 bins [19], optical
flow histogram quantized into 5 bins [8], gradient histogram
quantized into 9 bins [18], and densely computed heatmaps.
The distance threshold ϵ for hashing is set to allow the top
30% of similar supervoxels to be neighbors. The number of
hashing functions K is set to 128 because our experiments
show that using more hashing functions improves results
slightly but increases the computational time. The tempera-
ture parameter T is empirically set to 105.

1“Winged Migration” (Jacques Perrin et al., 2001), “The Last Lions”
(Dereck Joubert, 2011), and “Africa” (David Attenborough, 2013).
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Figure 4. Samples of our segmentation results on the Wild8 dataset. We use different colors to indicate the categories in the first column,
and list sample frames of weakly supervised videos in the second column, while the ground-truths are given in the third column. The
categorical probabilities (a lighter area indicates higher probability) and segmentation results before and after smoothing are given in the
fourth to sixth columns. We show successful segmentation results in (a) and partially successful segmentation results in (b).
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Figure 3. Average per class accuracy over different values of σ (a)
and different nearest neighbor numbers (b).

We test various values of the filtering threshold σ in (5).
A larger σ allows the algorithm to use more (but noisy)
clues, while a smaller σ tends to use the most promising
clues. It emerges that the best choice depends on the size
of the database. For the Wild8 dataset, we set σ to allow
the top 20% similar supervoxels to empirically be neigh-
bors (Figure 3a). We try different nearest neighbor numbers
in (6) instead of only using the most similar neighbors. The
experiment shows that a large number of nearest neighbors
(e.g. 10+) will cause a slight drop in performance. If the
appearance of some categories is similar, the distance be-
tween two supervoxels from such categories will be small,
and a large number of nearest neighbors may thus lead to
the incorrect determination of neighbors.

We compare the proposed scheme with the state-of-the-
art weakly supervised video segmentation methods, includ-
ing CRANE [27], MIN [25], SVM [14] and MIL [31]. For
CRANE and MIN, we first collect positive (with noise) and

negative samples for each category, and then apply concept
ranking. For SVM, we use LIBLINEAR [10] to train a one-
against-all classifier for each category. For MIL, we use
randomly initialized AmmMIL-RF+PPinv [30] with multi-
video smoothness. All the methods take the same supervox-
els and features as input. For fair comparison, our scheme
without hashing or smoothness are also tested. We summa-
rize the segmentation accuracies of the 8 categories, the av-
erage per category accuracy (ave acc), total per pixel accu-
racy (tot acc), and mean average precision (mAP) in Table
1. Note that the mAP must be calculated before smoothing.

Our scheme outperforms all existing weakly supervised
video segmentation methods, especially in the difficult tasks
of segmenting lion and elephant. MIL [31] achieves the
highest accuracy on the water and grass categories since the
margin maximization algorithm tends to perform well on
larger categories, at the expense of the poor performance on
small categories, such as bird, lion and elephant. We can see
that the weakly supervised hashing brings an improvement
of 3.3% on the ave acc while the multi-video smoothing
brings an improvement of 0.7%.

Samples of our segmentation results on the Wild8 dataset
are shown in Figure 4. In most cases, our algorithm gives
accurate categorical probabilities, e.g the 1st, and 4th-8th
rows in Figure 4(a). The 3rd row in Figure 4(a) shows the
power of the smoothness, while the 4th row in Figure 4(b)
gives a negative example. In general, the multi-video s-
moothness slightly improves segmentation performance but
more importantly makes the visual appearance of the seg-
mentation look good.
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Method bird water sky tree grass lion sand elephant ave acc tot acc mAP
CRANE [27] 47.8 76.5 89.5 42.8 73.7 19.3 43.2 16.8 51.2 62.4 43.9

MIN [25] 48.1 75.2 87.2 36.7 74.1 15.4 43.3 13.2 49.2 60.8 42.1
SVM [14] 42.5 74.5 86.9 45.5 74.0 16.6 42.1 12.3 49.3 61.2 41.0
MIL [31] 31.5 79.3 85.4 41.1 78.3 2.1 55.2 5.5 47.3 62.9 41.8

Ours without hashing 50.9 73.7 90.4 45.9 74.4 17.7 56.7 24.1 54.2 65.1 47.5
Ours without smoothness 53.5 77.1 92.6 50.1 75.6 20.9 58.8 28.3 57.1 67.7 52.4

Ours 53.0 77.3 93.8 50.1 76.5 21.3 60.1 28.1 57.5 68.4 -
Table 1. Results of the Wild8 dataset. We measure the segmentation accuracy of each class, average per category accuracy (ave acc), total
per pixel accuracy (tot acc) and mean average precision (mAP). When compared with the state-of-the-art, our scheme outperforms all
existing weakly supervised video segmentation methods.

Method CRANE MIN SVM MIL Ours
mAP 42.5 37.7 31.2 38.5 46.1

Table 2. mAP scores of different weakly supervised segmentation
methods on the YTO dataset.

4.2. YTO Dataset

The YouTube-Objects (YTO) dataset [21] is composed
of videos from YouTube over 10 object classes (aeroplane,
bird, boat, car, cat, cow, dog, horse, motorbike and train).
There are up to 24 videos for each class, of which the dura-
tion varies from 30 seconds to 3 minutes. The videos have
been weakly annotated by hand. We test our scheme on this
dataset to validate its performance for large scale data.

It should be mentioned that although the YTO dataset
contains videos from multiple classes, each video belongs
to only one class and only objects of the relevant class can
be presented in the video. We therefore denote the task on
this dataset as a two-class segmentation rather than a mul-
ticlass segmentation since different classes do not interact
with each other.

To apply our multiclass algorithm on the YTO dataset,
we assign a common latent “background” label to all the
videos so that all the videos share one label and have the
same weight for label transfer. In this case, our nearest
neighbor-based label transfer scheme is very similar to the
CRANE algorithm which can be deemed as a special case of
our scheme for two-class segmentation. We omit the multi-
video smoothing step in this dataset since it takes too much
time and memory to apply global optimization in such a big
graph.

We report the mAP scores for different weakly super-
vised video segmentation methods in Table 2. All the
methods use the same supervoxels and features and are
tested on the same labeled videos provided by [27]. Our
scheme achieves the highest mAP score among state-of-the-
art methods and its improvement over CRANE is the result
of the additional metric learning procedure and the more
carefully designed nearest neighbor set construction.

4.3. SUNY Dataset

The SUNY 24-class dataset [9] is a collection of general-
purpose sequences from Xigh.org. The dataset contains 8
videos with pixel-level labels. Compared with the Wild8
dataset, the SUNY dataset is more challenging because: (1)
the number of its sequences is smaller, (2) each sequence
has more labels, and (3) some labels only appear in one se-
quence. We use all 8 sequences and their video-level labels
to inference the pixel-level labels. The proposed scheme
achieves 14.1% ave acc on this dataset and the CRANE al-
gorithm achieves 13.8% ave acc on this dataset.

5. Conclusion

This paper introduced a new nearest neighbor-based la-
bel transfer scheme for the challenging task of weakly su-
pervised multiclass video segmentation. In this scheme,
the weakly supervised hashing procedure for metric learn-
ing handles both metric and semantic similarity; the n-
earest neighbor-based label transfer algorithm suppresses
the overfitting problem; and the multi-video graph model
encourages smoothness between supervoxels that are spa-
tiotemporally adjacent and similar in appearance. The suc-
cess of the proposed scheme boosts video segmentation for
practical applications including video advertisement recom-
mendation, object tracking and recognition, and semantic
level video summarization.
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