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Abstract

The desirability of being able to search for specific per-
sons in surveillance videos captured by different cameras
has increasingly motivated interest in the problem of per-
son re-identification, which is a critical yet under-addressed
challenge in multi-camera tracking systems. The main dif-
ficulty of person re-identification arises from the variations
in human appearances from different camera views. In this
paper, to bridge the human appearance variations across
cameras, two coupled dictionaries that relate to the gallery
and probe cameras are jointly learned in the training phase
from both labeled and unlabeled images. The labeled train-
ing images carry the relationship between features from d-
ifferent cameras, and the abundant unlabeled training im-
ages are introduced to exploit the geometry of the marginal
distribution for obtaining robust sparse representation. In
the testing phase, the feature of each target image from the
probe camera is first encoded by the sparse representation
and then recovered in the feature space spanned by the im-
ages from the gallery camera. The features of the same per-
son from different cameras are similar following the above
transformation. Experimental results on publicly available
datasets demonstrate the superiority of our method.

1. Introduction

Many multi-camera surveillance-based applications re-
ly on the ability to determine whether a present target has
been observed from other cameras. Given a number of im-
ages of interest captured by the probe camera, a person re-
identification system aims to find all occurrences of these
targets from the gallery camera to identify these probe tar-
gets. Since the camera views of the surveillance system
might be non-overlapped, the system has to rely solely on
the visual appearances of the persons most of the time.
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The main difficulty of person re-identification arises
from the severe changes (e.g. view angle and lighting con-
ditions) from different views that can cause significant vari-
ations in appearance, so directly matching the features of
person images from different cameras is unreliable due to
feature misalignment or even missing features. Early meth-
ods such as [21, 22] relies on conventional face recogni-
tion technology and has problems dealing with low-quality
videos and irregular views. Some studies have investigated
seeking a more distinct and reliable low-level feature rep-
resentation of human appearances, e.g. stripe based rigid
blobs [3], spatiotemporal over-segmentation [8], weight-
ed consistent region [17], principle axis-based correspon-
dence [11], and symmetry-driven accumulation [7]. How-
ever, it is extremely difficult to compute both distinct and
reliable local low-level features under severe changes in dif-
ferent camera views. The same problem arises with feature
selection-based methods [10, 20]: if using all features is not
reliable, we cannot expect that simply using partial features
will lead to substantial performance improvement.

Some other studies [6, 28] have addressed person re-
identification as a distance learning problem and show sig-
nificant improvement in performance. Zheng et al. [28]
introduced a Relative Distance Comparison (RDC) mod-
el to maximize the probability of a pair of true matches
having a smaller distance than a wrongly match pair. The
large margin nearest neighbor algorithm is used in [6] to
learn the most effective metric to match data from arbitrary
cameras. Nevertheless, the previously mentioned distance
learning-based methods typically require enormous labeled
target pairs which may not be sufficient in practice.

To bridge the human appearance variations across cam-
eras, we present an efficient semi-supervised coupled dic-
tionary learning method for person re-identification in this
paper. Our method is inspired by the research on local linear
function approximation that a sparse linear combination of



elements from an appropriately chosen dictionary can well-
represent the intrinsic structures of features [26]. Based on
this observation, it is reasonable to assume that the same
person captured from different cameras have the same (but
unknown) intrinsic structure, which can be characterized by
the jointly learned dictionary in the training phase. Com-
pared to conventional distance learning-based methods, our
method requires only a small number of labeled images to
carry the relationship between appearance features from d-
ifferent cameras but introduces abundant unlabeled train-
ing images to exploit the geometry of the marginal distribu-
tion for obtaining better sparse representation. In the testing
phase, the feature of each target image from the probe cam-
era is first encoded by the sparse representation and then
recovered in the feature space spanned by the images from
the gallery camera. The features of the same person from
different cameras are similar following the above transfor-
mation.

The rest of the paper is organized as follows. Section 2
surveys the related work of person re-identification. Section
3 presents the proposed semi-supervised coupled dictionary
learning based on LCC. Section 4 discusses how to apply
the semi-supervised coupled dictionary learning for person
re-identification. Section 5 shows the experimental results,
and Section 6 concludes the paper.

2. Related Work

Distance learning [1, 10, 12, 19, 20, 28] and local fea-
ture matching [3, 8, 14, 17, 27] have been widely studied in
person re-identification and appearance modeling.

Distance learning-based person re-identification learns
the optimal similarity measure between a pair of person im-
ages. Porikli [19] proposed a Brightness Transfer Function
(BTF) to evaluate the inter-camera radiometric properties.
The function is computed for every pair of cameras such
that an observed color value in one camera is mapped to the
corresponding observation in the other camera. Javed et al.
[12] further investigated Porikli’s method by showing that
all BTFs lie in a low dimensional subspace such that some
parameters of BTF are not required for computation. Based
on this discovery, BTFs can be estimated efficiently using
the Parzen window method. Zheng et al. [28] introduced
a Relative Distance Comparison (RDC) model to maximize
the probability of a pair of true matches having a smaller
distance than a wrongly match pair. This approach avoids
treating all features indiscriminately and does not assume
the existence of some universally distinctive and reliable
features. Pedagadi et al. [18] combined Principle Compo-
nent Analysis (PCA) and Local Fisher Discriminative Anal-
ysis (LFDA) to match the visual appearance features. Us-
ing the dimension reduction approach, the high dimension-
al features can be exploited in an efficient way. Some su-
pervised [10, 20] or unsupervised [1] algorithms have been
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proposed to select the most relevant features for person re-
identification. Gray et al. [10] used the AdaBoost algorithm
to find a subset of optimal features for human matching by
combining different types of simple features into a single
similarity function. Prosser et al. [20] developed a per-
son re-identification system based on RankSVM. In their
method, the combinations of local features are learned such
that the relative ranking of the matching scores are fitted to
the training data.

Local feature matching-based person re-identification
matches the carefully designed local features. Bird et al. [3]
used stripe based rigid blobs to model the appearances of
individuals. The image of a pedestrian is divided into ten e-
qually spaced horizontal strips, and the mean feature vectors
of the horizontal strips are learned in a training step. Gheis-
sari et al. [8] proposed a spatiotemporal over-segmentation
method for grouping pixels that belong to the same type of
fabric, after which they merged connected clusters whenev-
er the distance between clusters was less than the internal
variation of each of the individual clusters. The final dis-
tance between two individuals was then defined as the sum
of the correspondences between these resulting segmenta-
tions. Oreifej et al. [17] extracted foreground blobs in aerial
images and then assigned a weight to every blob region such
that the most consistent regions were given higher weights,
since it was more probable that they would lead to the tar-
get’s identity. Bazzani et al. [2] introduced the histogram
plus epitome feature for person re-identification. The pro-
posed feature incorporates both global and local statistical
descriptions of human appearances. Zhao et al. [27] used
an unsupervised learned salience model for patch matching
such that the reliable and discriminative matched patches
can be matched for better re-identification performance.

3. Semi-Supervised Coupled Dictionary

Learning

In this section, we first briefly review the local coordi-
nate coding method that serves as the basis of the dictionary
construction, and then present the semi-supervised coupled
dictionary learning.

3.1. LCC Dictionary Learning

Local coordinate coding (LCC) [26] is a high dimen-
sional nonlinear learning method for modeling data dis-
tributed on manifolds. LCC approximates a given in-
put point as a weighted linear combination of a few ele-
ments called anchor points. The goal of LCC is to dis-
cover a good dictionary set of anchor points for better
approximation. More specifically, given unlabeled train-
ing data {x,72,...,2,} € RY*", the dictionary D =
{di,dg,...,dp} € R4*k is learned by minimizing the ob-
jective function of the squares reconstruction errors and the



locality penalty. This process is formulated as follows
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where « is the sparse coefficients of -, o is the jth compo-
nent of o and d; is the jth column of D. £ = {D|||d;|| <
1,i=1,...,k} is the convex feasible set of D. Given a set
of training samples, we need to learn a good dictionary that
is adapted to the distribution of the samples. A common
approach for this task is to minimize the summed objective
functions of all data samples by optimizing D and «
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where «; is the coefficients of x;.

The above objective function is not jointly convex over
D and «, which makes it difficult to solve D and « simul-
taneously. Nevertheless, it is convex over D given fixed o
and vice versa. Therefore, we can optimize one variable
at a time by fixing the other and alternating between the t-
wo variables. Specifically, when D is fixed, the different
«; can be decoupled into individual sparse coding problem-
s, which can be further transformed into a LASSO/LARS
problem [23].

Let 8 = A«, where A is a diagonal matrix whose el-
ements are Aj; = [|d; — z||* and B = Aa. If d; # =,
then A~! exists (otherwise, we directly represent x by it-
self). Therefore, for fixed D and x, optimizing over « can
be transformed into optimizing over 3 as follows
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where 8], = > |57| denotes I;-norm. After solving for
3, we obtain « = A™! 8.

After solving for «, optimizing over D is a constrained
quadratic programming problem as follows
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where @; is component-wise absolute value of oy, i.e. 643 =

aﬁ and X; is a diagonal matrix constructed from &; .

The above minimization problem can be solved by an
iterative updating approach. First, we store two matrices

A=Y, o] +2u¥; and B = Y, z;al + 2px;al and
use block-coordinate descent to find the optimal D. Specif-
ically, we update the jth column d? when other columns
are fixed in the kth iteration of dictionary updating. The
updating is carried out as follows

1
At = 11, <d§ — — (D*a; — bj)> (5)
ajj

where a; and b; are the jth columns of matrices A and B
respectively, and II; means projection onto the feasible set
L.

In our implementation, the number of dictionary item-
s k is set to 500, and the trade-off coefficient u is set to
0.15. The number of iterations for the alternating optimiza-
tion used in dictionary learning is 15.

3.2. Semi-Supervised Coupled LCC Dictionary
Learning

In the semi-supervised coupled dictionary learning, we
are given two sets of training data {x1, xo, ..., z, } € R¥*"
and {y1,%2, - .., Ym} € R">™ from two coupled feature s-
paces, X’ and ). We also know one-to-one correspondences
for the top ¢ pairs of points (¢ < m and ¢ < n). The goal
of semi-supervised coupled dictionary learning is to learn
two dictionaries D, and D, such that the LCC sparse rep-
resentation o(x;);<—; in terms of D, should be the same as
a(y;) in terms of D,,. The labeled data are used to carry the
relationship between X and ) while the unlabeled data are
introduced to exploit the geometry of the marginal distribu-
tion for obtaining robust sparse representations. Putting the
above together, we minimize the following objective func-
tion

QD Dy, @) = Buasetea (Das Do)+ (6)
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where a(®) is the shared coefficients matrix for {z;}iz1. 4
and {y; }i=1.. ¢ and a'®) and o¥) are the coefficients matri-
ces for {z; }i=t+1...n and {y; bizt+1...m, respectively.
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is the labeled term that requires the resulting shared coef-
ficients matrix «(#) that should reconstruct both z; and Yis
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are the unlabeled terms to guarantee that the sparse repre-
sentations well reconstruct the unlabeled data.

Although the form of (6) is complex, it is convex over D
given fixed « and vice versa. We minimize (6) by alternat-
ing optimization. To solve the dictionaries given fixed coef-
ficients «, we optimize D,, and D,, individually by utilizing
(4). Given fixed dictionaries, the coefficients of the unla-
beled data o, and «,, can be directly obtained by exploiting
(2) since they are not coupled. For the coupled coefficients
g, we can concatenate both the descriptors and the corre-
sponding dictionaries to jointly learn the coefficients. The
procedure is similar to the coupled learning paradigm, e.g.
[25]. Specifically, we group both the data and the dictionar-
ies of the labeled pairs as follows

R e[
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and optimize the following objective function
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which shares the same form as (2) and can be solved by (3).

4. Person Re-identification based on Semi-
Supervised Learned Coupled Dictionary

In this paper, our goal is to re-identify each probe image
by matching with gallery images. The proposed algorithm
handles challenging issues such as resolution and lighting
condition changes by the proposed semi-supervised coupled
dictionary learning.

Figure 1 illustrates the overall flow of our approach. In
the training phase, labeled pairs of images as well as unla-
beled images from the gallery and probe cameras are used
to jointly learn the coupled LCC dictionaries. In the test-
ing phase, we encode the feature of a given probe image by
the LCC sparse representation through the probe dictionary,
and then recover the feature through the gallery dictionary.
We can finally match the target image with each person in
the gallery set.
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4.1. Feature Extraction

To extract visual features of the same dimension from d-
ifferent scale images, we divide the images into the same
number of local (overlapping) patches. In our implementa-
tion, we use 15 rows and 5 columns, leading to 75 patches in
an image. In each patch, we extract HSV color histograms
quantized into 30 bins, gradient histogram quantized into 9
bins, and LBP [16] histogram quantized into 59 bins, result-
ing in a 98 dimensional descriptor for each local patch. We
then learn the coupled dictionaries for the 98-dimensional
features.

4.2. Coupled Dictionary Learning for Person Re-
identification

Let z € X and y € )Y denote the features of per-
sons captured by two different cameras. A person re-
identification system aims to find a good matching measure
M : X x Y — R such that matching the features of the
same person results in a smaller score. Most of the exist-
ing methods try to learn M from pre-labeled training im-
ages; however, even the features from the same person can
be very different as a result of resolution and lighting con-
dition changes across cameras, making M highly nonlin-
ear and requiring enormous numbers of labeled image pairs
which may be not sufficient in practice.

We surmise that the condition changes across cameras
can be characterized by a transformation function F : X —
Y. Since the transformation function is heterogeneous, we
cannot directly learn F. Nevertheless, we can estimate a
homogenous F with a given metric measure M:XxY -
R on labeled images {(z;, y;)} by minimizing the summed
matching score

Fog = axgmin 3 (M (F(@).9)) +#0F) (12

where ) . (M (F(xs), yi)> minimizes the matching score,
Q(F) is the regularization term, and p is the trade-off pa-
rameter.

Note that F is a nonlinear function that requires an
enormous quantity of training images, but as has been
shown in [26], an arbitrary nonlinear (3, ~y)-Lipschitz' s-
mooth function F can be approximated by a linear function

> o (¥)F(dj) with respect to the coding a(z):

F@) =Y ol (@)F(d)
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'A function F(z) on R? is (B, y)-Lipschitz smooth with respect to
norm || - |[if [F(z") — F(z) < Bllz — 2’| and |F(2') — F(z) —
VF(z)T (2 — z)| < 7|z — 2'||?, where we assume 3,7 > 0.
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Figure 1. Flowchart of the proposed semi-supervised coupled dictionary learning-based person re-identification. In the training phase,
labeled pairs of images as well as unlabeled images from the gallery and probe cameras are used to jointly learn the coupled LCC dictio-
naries. In the testing phase, we encode the feature of a given probe image by the LCC sparse representation through the probe dictionary,
and recover the feature through the gallery dictionary. We can then match the target image with each person in the gallery set.

and the quality of this approximation is bounded by the right
hand side, which can be further simplified as

M+ |el(e
I+ ol (@)
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With this approximation, we transform (12) into the follow-
ing objective function

argmlnz Zo/}" (d3), + pQF). (15)
Let M denote the l>-norm distance, and then we have
argmin Z Yi — Z ol F( di)|| +uQ(F).  (16)

F(d?)

Note that when D, and « are fixed, F(d) become constant
projection vectors. Therefore, we can concatenate these row
vectors into a projection matrix D,,. If we further use the
locality penalty defined in (1) as the regularization term, we

obtain

argmin 3 (s — Dyoul” +p 3 o]
Yy 7 J

dj *Iin

a7
In practice, D, and « are not fixed but jointly optimized
with D, by minimizing Eipeieq (Da, Dy, a(®)) defined in
().

In addition to the labeled data in our implementation, we
also introduce abundant unlabeled data on X to exploit the
geometry of the marginal distribution for obtaining robust
linear approximation by minimizing Eyniapetcd (Dz, ™)
and introduce abundant unlabeled data on ) as the prior of
F by minimizing Eniabeled (Dy, a(y)).

4.3. Appearance Matching

Given a probe image, its feature representation x is trans-
formed to F (x) to avoid resolution and lighting condition
changes across different cameras. However, since the fea-
ture in a local patch is highly determined by the location
of the patch, direct patch-to-patch matching is not robust to
pose and view angle changes, so we use a greedy nearest-
neighbor patch matching strategy to solve this feature-shift
problem.

Our motivation is simple but effective: each patch is
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Figure 2. Results of manifold transformation: (a) a wave manifold and (b) a Swissroll manifold that shares the same intrinsic structure,
where the pixels with the same color are corresponding matched pairs; (c) result of linear regression, (d) result of polynomial regression,
(e) result of coupled dictionary learning with 50 labeled points, (f) result of coupled dictionary learning with 500 labeled points, (g) result
of semi-supervised coupled dictionary learning with 50 labeled points and 4950 unlabeled points and (h) result of semi-supervised coupled
dictionary learning with 500 labeled points and 4500 unlabeled points.

matched to its nearest neighbor measured by the Euclidean
distance within the pre-defined search range. In each iter-
ation, we pick the matched pair of patches with the mini-
mal score and remove the matched patches from the search
range in the future matching. The final appearance match-
ing score is the sum of all the patches. A person image is
divided into three biometric regions corresponding to head,
body and legs, and the search range of a patch is restricted
to its own biometric region. According to [7], the partition
of biometric regions can be determined by the degree of
x-axis asymmetry. However, we find that using a fixed pro-
portion (5 : 11 : 16) works better in practice. It should be
mentioned that the nearest-neighbor patch matching is also
carried out for the labeled training pairs before learning the
coupled dictionaries.

5. Experimental Results

We first validate the proposed semi-supervisd coupled
dictionary learning method on a synthetic dataset and then
evaluate the performance of our approach on the pub-
licly available VIPeR [9] and CAVIAR4REID [4] datasets.
The VIPeR is used for the single-shot evaluation and the
CAVIARA4REID is used for the multiple-shot evaluation.

5.1. Synthetic Data

Our first toy experiment is based on a synthetic dataset,
where a nonlinear function is learned to transform a mani-
fold from one space to another. As shown in Figure 2-(a)
and 2-(b), the wave manifold and the Swissroll manifold
share the same intrinsic structure, where the pixels with the
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same color are corresponding matched pairs. We randomly
sampled 5000 points from the wave manifold, and some of
them are labeled. The goal is to learn a function that trans-
form the points from the first space to the second one. The
transformation is nonlinear and its quality can be evaluat-
ed by the root mean square error (RMSE). We can use this
toy experiment to validate the performance of the proposed
method on nonlinear function learning.

Figure 2-(c) shows the transformation result of a linear
regression model learned with 500 labeled points and the
RMSE is 10.1. Obviously, it fails to characterize the nonlin-
ear transformation. Figure 2-(d) shows the transformation
result of a third order polynomial regression model learned
with 500 labeled points, and the RMSE is 7.6. As can be
seen, without the prior of an appropriate form, the nonlin-
ear regression fails either. Figure 2-(e) and 2-(f) show the
transformation results of coupled dictionary learning with
50 and 500 labeled points. Their RMSEs are 12.5 and 5.4
respectively. The results are getting better than conventional
regression methods, but are still not satisfactory. Figure 2-
(g) shows the transformation result of semi-supervised cou-
pled dictionary learning with 50 labeled and 4950 unlabeled
points and the RMSE is 4.1. Although fewer labeled points
are used, it is better than Figure 2-(f) because of consider-
ing the distribution of unlabeled points. Figure 2-(h) shows
the transformation result of semi-supervised coupled dictio-
nary learning with 500 labeled and 4500 unlabeled points.
As can be seen, the result fits the true manifold perfectly
and the RMSE is as small as 0.3.



5.2. Single-Shot Person Re-identification Evalua-
tion

We evaluate the performance of our approach for single-
shot person re-identification using the publicly available
VIPeR dataset [9], which contains 632 pedestrian image
pairs. Each pair contains two images of the same individ-
ual seen from different camera views under pose changes
and varying illumination conditions. Each image has been
scaled to 128 x 48 pixels. In our experiment, the images in
camera A are used as the probe images, while the images in
camera B are used as the gallery images. The evaluation on
this dataset is repeated 10 times, and the average result is
reported. In each repetition, the dataset is randomly halved
into training data and testing data, and one-third of the train-
ing data are labeled while the rest are unlabeled.

We compare our semi-supervised coupled dictionary
learning (SSCDL)-based person re-identification with most
published results on the VIPeR dataset, including RDC
[28], ITML [5], LMNN [24], KISSME [13], ELF [10], eL-
DFV [15], SDALF [7] and LF [18]. All methods use the
same data splitting assignments for training and testing. The
performance comparison is graphically depicted by the Cu-
mulated Matching Characteristics (CMC) curves in Figure
3. From the figure, it is clear that our proposed method gives
the best result. To show the quantized comparison result-
s more clearly, we also summarize the performance com-
parison in Table 1. As can be seen, our proposed method
achieves 25.6% rank 1 matching rate, which improves the
previous best results over 1.5%. The rank 10 matching rate
for SSCDL is 68.1% which again outperforms all the oth-
er methods. It is worthy to note that SSCDL is a semi-
supervised algorithm that only requires one-third of labeled
data by comparison with others.

Method [ r=1 r=5 1r=10 r=20
RDC 15.7 384 539 70.1
ITML 11.6 314 458 639

LMNN 6.2 19.7 32.6 52.1

KISSME 19.6 482 62.2 76.9
ELF 8.1 24.1 36.6 52.1

eLDFA 22.34 47.0 60.0 71.0

SDALF 19.9 389 494 65.7

LF 24.1 51.2 67.1 82.0

SSCDL 25.6  53.7 68.1 83.6

S
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> O - = TML
£ 4l e = = =LMNN
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201 %} eLDFV
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Figure 3. Performance comparison using CMC curves on the
VIPeR dataset with 316 testing pairs. A rank r matching rate indi-
cates the percentage that corrected matches in the top r ranks.

It includes people walking along, meeting with others,
window shopping, entering and existing shops. There
are 72 individuals in total: 50 of them appear in both
camera views and the remaining 22 persons only appear in
one camera view. Multiple images are obtained for each
person to maximize the appearance variance over different
conditions. The main complexity of the dataset arises from
the very severe resolution and lighting changes between
the two camera views. We randomly choose 14 of the 50
individuals appearing in two cameras as the labeled training
data, and the remaining 36 individuals are used as testing
data. The 22 persons appearing in one camera are used as
the unlabeled training data. The evaluation is repeated 10
times, and the average result is reported. In each repetition,
the labeled training data are again randomly chosen.

We compare our proposed SSCDL method with LF [18]
and HPE [2] on this dataset. LF and SSCDL use the same
splitting assignment of training and testing. HPE is an un-
supervised method that does not require a training step, and
we report its published result tested on the 50 individuals.
The CMC curves of the three methods are shown in Figure
4. We also summarized the results in Table 2. The pro-
posed SSCDL achieves 49.1% rank 1 matching rate, which
outperforms LP significantly.

Method H r=1 r=5 r=10 r=20
HPE 9.7 33.2 556 76.3
LF 36.1 51.2 &88.6 97.5

SSCDL 49.1 80.2 93.5 97.9

Table 1. Top ranked matching rates (%) on the VIPeR dataset with
316 testing pairs.

5.3. CAVIAR4REID

CAVIAR4REID [4] is a multi-shot person re-
identification dataset which is made by processing 26
sequences captured from two cameras in a shopping center.

Table 2. Top ranked matching rates (%) on the CAVIAR4REID
dataset with 36 testing pairs.

6. Conclusion

In this paper, we propose the semi-supervised coupled
dictionary learning method for person re-identification. To
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Figure 4. Performance comparison using CMC curves on the
CAVIAR4REID dataset with 36 testing pairs. A rank r match-
ing rate indicates the percentage that corrected matches in the top
7 ranks.

handle the challenge of resolution and lighting condition
changes in different cameras, a pair of coupled dictionar-
ies that relate to the probe and gallery cameras are jointly
learned from both labeled and unlabeled images. We ana-
lyze the principle that semi-supervised coupled dictionary
learning is theoretically appropriate for feature transforma-
tion across camera views and validate the proposed method
in two publicly available datasets.
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