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Abstract
A training process for facial expression recognition is

usually performed sequentially in three individual stages:
feature learning, feature selection, and classifier construc-
tion. Extensive empirical studies are needed to search for
an optimal combination of feature representation, feature
set, and classifier to achieve good recognition performance.

This paper presents a novel Boosted Deep Belief Net-
work (BDBN) for performing the three training stages it-
eratively in a unified loopy framework. Through the pro-
posed BDBN framework, a set of features, which is effective
to characterize expression-related facial appearance/shape
changes, can be learned and selected to form a boosted
strong classifier in a statistical way. As learning contin-
ues, the strong classifier is improved iteratively and more
importantly, the discriminative capabilities of selected fea-
tures are strengthened as well according to their relative
importance to the strong classifier via a joint fine-tune pro-
cess in the BDBN framework. Extensive experiments on two
public databases showed that the BDBN framework yielded
dramatic improvements in facial expression analysis.

1. Introduction
Facial behavior is one of the most important cues for

sensing human emotion and intention in people. Driven
by recent advances in human-centered computing, an au-
tomatic system for accurate and reliable facial expres-
sion analysis has emerging applications such as interactive
games, online/remote education, entertainment, and intelli-
gent transportation systems.

Facial expression analysis usually employs a three-stage
training consisting of feature learning, feature selection,
and classifier construction. First, features that capture ex-
pression related facial appearance/geometry changes are
extracted from images or video sequences. These fea-
tures can be either hand-designed [32, 33, 34, 25, 1, 27,
28, 26, 22, 9, 4, 10, 13] or learned from training im-
ages [6, 29, 15, 16, 36, 2, 35, 30]. Then, a subset of the
extracted features, which is the most effective to distinguish

∗means equal contributions

one expression from the others, is selected to facilitate an
efficient classification and enhance the generalization capa-
bility [1, 27]. Finally, a classifier is constructed given the
extracted feature set for each target facial expression.

In the current practice of facial expression analysis, these
three stages are often performed sequentially and individu-
ally. To achieve satisfactory recognition performance, ex-
tensive empirical studies are needed to search for an opti-
mal combination of feature representation, feature set, and
classifier. For a new data set, this nontrivial process usually
would be repeated. Although each stage is optimized given
the results from the previous stage, it lacks a feedback from
the latter one. Recently, it has been demonstrated that ex-
pression recognition can benefit from performing two stages
together. In one example, given predefined feature rep-
resentations such as Gabor features, feature selection and
classifier construction were conducted iteratively in training
a boosted classifier, where a feature was selected accord-
ing to the current classification error and linearly combined
with previously selected features to form a strong classi-
fier [1]. In another example, feature learning and classifier
construction were performed back and forth in a Deep Be-
lief Network (DBN) [20, 21], where a hierarchical feature
representation and a logistic regression function for classi-
fication were learned alternatively.

Motivated by this, we propose a novel Boosted Deep
Belief Network (BDBN) to perform the three stages in a
unified loopy framework. Through the proposed BDBN
framework, a set of features, which is effective to character-
ize expression-related facial appearance/shape changes and
thus, highly discriminative for classification, can be learned
and selected to form a boosted strong classifier in a sta-
tistical way. Specifically, we develop and employ a novel
objective function, which accounts for recognition perfor-
mance of both the strong classifier and weak classifiers (fea-
tures), to drive a feature fine-tuning process. As learning
continues, the strong classifier is improved and more im-
portantly, the discriminative capabilities of selected features
are strengthened according to their relative importance to
the strong classifier, thanks to a joint fine-tune process in
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the BDBN framework. As shown in Fig. 1, recognition per-
formance of the strong classifier increases with the learning
going on, and so does each selected weak classifier, i.e., a
patch-based feature. In addition, much fewer features are
employed at the end of training because of the improved
discriminative capability.
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Figure 1. A boosted deep learning framework for facial expression recog-
nition. For image patches extracted at a specific location, an initial feature
representation is learned through a BU-UFL process. Then, a subset of
weak learners (features enclosed in the red rectangle) is selected by boost-
ing and fine-tuned jointly in a BTD-SFS process. The two processes run
alternatively until converge. With the learning going on, the discrimina-
tive ability of the strong classifier and the weak learners increases (see the
figure on the left and details can be found in Fig. 5). Best viewed in color.

As shown in Fig. 1, the BDBN framework consists of
two interconnected learning processes: a bottom-up un-
supervised feature learning (BU-UFL) process that learns
hierarchical feature representations given input data and
a boosted top-down supervised feature strengthen (BTD-
SFS) process that refines the features jointly in a supervised
manner. At the beginning, each training image is divided
into a set of partially overlapped image patches. Next, for
each set of patches extracted at the same location, an initial
feature representation is learned individually in a BU-UFL
process. Then, a subset of features (patches) with higher
discriminative power is selected and combined to form a
strong classifier in a supervised manner by boosting. The
classification error from the strong classifier and from the
weak classifiers (features) will be utilized and propagated
backward to initiate a BTD-SFS process, where only the
features selected previously would be fine-tuned jointly ac-
cording to their contributions to minimizing an objective
function. The BU-UFL and the BTD-SFS processes are it-
erated alternatively in a loop until converge.

Our proposed BDBN-based facial expression recogni-
tion framework has three major contributions.
• First, to the best of our knowledge, it is the first time to

systematically unify feature learning, feature selection,
and classifier construction in one framework.

• Second, unlike the traditional DBNs that employed the
whole facial region as input [24, 20, 21], the proposed
work facilitates a part-based representation, which is
especially suitable for facial expression analysis.

• Third, we propose a novel discriminative deep learn-
ing framework, where the boosting technique and mul-
tiple DBNs are integrated through a novel objective
function. Furthermore, the features are jointly fine-
tuned such that the discriminative capability of each
feature is strengthened according to its contribution to
the strong classifier.

Extensive experiments on the Extended Cohn-Kanade
(CK+) database [11, 17] and JAFFE database [18] showed
that the BDBN framework yielded dramatic improvements
in facial expression recognition compared to the state-of-
the-art techniques. In addition, due to the improvement of
the discriminative ability in selected features as iteration
goes, the learned strong classifier only employed a few fea-
tures, which demonstrated the effectiveness of feature learn-
ing/strengthen by using the proposed framework.

2. Previous Work
Extensive efforts have been devoted to recognize facial

expressions [19, 31]. Facial expression recognition usually
consists of two major procedures: offline training and on-
line recognition. Generally, the system training includes
three stages, i.e., feature learning, feature selection, and
classifier construction.

In the first stage, features are extracted from either
static images or video data to characterize facial appear-
ance/geometry changes caused by activation of a target ex-
pression. Most of the existing work utilizes various human-
crafted features including Gabor wavelet coefficients [33,
32, 25, 1, 27], Haar features [27, 28], histograms of Local
Binary Patterns (LBP) [34, 26, 22, 10], Histograms of Ori-
ented Gradients (HOG) [9, 4], scale-invariant feature trans-
form (SIFT) descriptors [9], and 3D shape parameters [13].

Recently, unsupervised feature learning approaches es-
pecially those based on sparse-coding [6, 29, 15, 16, 36, 2,
35, 30] have been employed to extract underlying “edge-
like” features from facial images and have shown promise
in facial expression analysis. To become more adaptable to
the real world that consists of combination of edges, deep
learning networks have been employed for the applications
of facial expression recognition [20, 21]. Since the whole
face region is employed as input [20, 21], every part of the
face is treated and fine-tuned equally no matter if it is rele-
vant to the target facial expression.

As suggested by the psychological studies, the informa-
tion extracted around nose, eyes, and mouth is more criti-
cal for facial expression analysis [3]. Furthermore, differ-
ent sets of facial muscles may be involved in different fa-
cial expressions. Therefore, in the second stage, a subset
of features, which is the most effective to distinguish one
expression from the others, is often selected to improve the
recognition performance [1, 27, 36]. For example, Zhong
et al. [36] developed a two-stage multi-task sparse learning
model to find common and specific facial patches, discrim-



inative to all expression categories and a target expression,
respectively.

In the final stage, the extracted feature set is fed into a
pre-specified classifier to train a facial expression recog-
nizer for a target expression.

In summary, most of the aforementioned approaches per-
form the three training stages sequentially and individually,
except for a few combining two stages [1, 27, 36, 20, 21].
Although each stage is optimized given the results from the
previous one, it lacks a feedback from the latter stage. In ad-
dition, exhaustive search is needed to find an optimal com-
bination of feature representation, feature set, and classifier
given a specific dataset. In contrast, our work aims to sys-
tematically integrate the three stages in a loopy framework
to yield an optimal solution consisting of a concise yet pow-
erful feature set and a strong classifier to distinguish one
facial expression from the others.

3. Boosted Deep Belief Network for Facial Ex-
pression Recognition

3.1. Overview of the BDBN Framework
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Figure 2. A BDBN consists of multiple DBNs, each of which is composed
of multiple layers and intends to learn a hierarchical feature representation
corresponding to image patches extracted at a specific location. Only the
DBNs enclosed in the red rectangle corresponding to the patches selected
by boosting will be fine-tuned jointly.

In this work, we develop a BDBN framework to perform
feature learning, feature selection, and classifier construc-
tion in a loopy process. As shown in Fig. 2, the BDBN
framework consists of a group of DBN structures, each of
which is a multi-layer graphical model. Given a training
set of image patches extracted at the same position, each
DBN is utilized to learn a hierarchical feature representa-
tion. More importantly, these DBNs are connected through
a boosted classifier, i.e., an AdaBoost-like classifier in this
work, and fine-tuned jointly driven by a single objective
function so that the features extracted at different locations
are selected and strengthened jointly according to their rel-
ative importance to facial expression recognition.

The BDBN learning consists of two interconnected
learning processes: a BU-UFL process and a BTD-SFS pro-

cess. A BU-UFL process starts from the lowest layer and
outputs in the highest layer. The feature computed in the
highest layer of each DBN is employed as a weak learner
to construct an AdaBoost strong classifier. The most dis-
criminative features are selected by AdaBoost with weights
proportional to their classification errors. Then, the classi-
fication errors including the overall error produced by the
boosted strong classifier and the individual errors produced
by the weak learners are employed to drive a BTD-SFS pro-
cess, where the classification errors are back propagated to
the lower levels of the DBNs. Through the BTD-SFS pro-
cess, the features learned previously are fine-tuned jointly
to minimize the classification errors on the training set. The
BDBN learning repeats until it converges. In the subse-
quent discussion, we will first introduce the construction
and initialization of the BDBN framework, and then present
a novel BTD-SFS process for joint feature fine-tuning.

3.2. BDBN Framework Construction and Initializa­
tion based on a Group of DBNs

As shown in Fig. 2, we employ a DBN as the building
block for constructing the BDBN framework. Rather than
employing one DBN to learn features from the whole facial
region, we divide the facial region into partially overlapped
patches, each of which corresponds to a DBN, respectively.
The patch-based feature representation is especially suitable
for facial expression analysis as validated by the previous
studies [36]. Furthermore, it facilitates a feature selection
process that chooses the patches containing the most critical
information of a target expression.

DBN is a hierarchical graphical model composed of lay-
ers of nodes. The nodes in the higher layer learn the statis-
tical dependencies among the nodes in adjacent lower layer.
And thus, the higher layer intends to discover more com-
plex patterns of the input signal. Specifically, we use a
DBN composed of one visual layer (the lowest layer) and
five hidden layers to learn a hierarchical feature representa-
tion given training data extracted at the same patch location.

The conditional dependencies between each pair of con-
nected layers, except the top two layers, are modeled by
a Restricted Boltzmann Machine (RBM) [8]. The RBM
is a two-layer undirected graphical model composed of a
visible-unit layer and a hidden-unit layer. Hence, for an
L+1-layer DBN, the joint distribution of the visual layer
(the lowest layer) and the upper L hidden layers can be
modeled as
Prob(H0,H1,· · ·,HL

)=

L−2∏
l=0

Prob(Hl|Hl+1)Prob(HL−1
,HL

) (1)

where Hl denotes a set of random variables in the lth

layer; and H0 is actually the visual layer. Specifically,
Prob(Hl+1|Hl) and Prob(Hl|Hl+1) for l ∈ [0, L− 2] can be
calculated as Eq. 2 and Eq. 3, respectively.

Prob(Hl+1|Hl) =
1

1 + exp−(Wl,l+1Hl + bl+1
h )

(2)



Prob(Hl|Hl+1) =
1

1 + exp−
[
(Wl,l+1)T Hl+1 + bl

v

] (3)

where Wl,l+1 denotes the weight matrix between the lth

and the (l + 1)
th layers; bl+1

h represents the hidden bias
vector at the (l + 1)

th layer; and bl
v represents the visual

bias vector at the lth layer, respectively.
The output of DBN at the highest layer (HL), which

represents the probability of a target expression being ac-
tivated, can be estimated as

HL = WL−1,LHL−1 (4)

where WL−1,L denotes the weight matrix between the top
two layers.

DBN learning is to estimate Wl,l+1, bl+1
h , and blv for

l ∈ [0, L− 2] as well as WL−1,L, given training data. At
the beginning, an initial estimate of the parameters (Wl,l+1,
bl+1
h , and blv for l ∈ [0, L− 2]) can be computed using

an unsupervised bottom-up learning strategy [7]. Then,
through a bottom-up feed forward process, we can compute
HL−1 given the input and the parameters (WL−2,L−1, bL−1

h ,
and bL−2

v ). Given HL−1, i.e., the input from the (L− 1)
th

layer, and the expression labels, the weight matrix WL−1,L

is initialized as the projection matrix of Linear Discriminant
Analysis (LDA) in this work so that the output of DBN, i.e.,
HL, is a discriminative feature for facial expression recog-
nition. Note that, this bottom-up learning process is per-
formed for each patch location individually to learn an ini-
tial feature representation.

3.3. Joint Feature Fine­tuning in a BTD­SFS
After constructing a BDBN framework with initialized

DBNs, each image patch can be transformed into a hier-
archical feature representation. Then, we need to refine
the features to strengthen their recognition ability by fine-
tuning the DBN parameters (W, bh, and bv). This fine-
tuning process is conducted in a top-down manner by up-
dating the weight matrix WL−1,L first. In this work, we
develop a novel BTD-SFS process, where the fine-tuning
for all DBNs is performed jointly.

As discussed above, a BDBN framework consists of
multiple DBNs. The output of each DBN at its highest layer
(HL) can be used as a weak classifier for constructing an
AdaBoost classifier. Therefore, for an image set containing
NI samples, the overall predication error is:

εstrong=

NI∑
i=1

βi

[
1

1+exp(−
∑M

j=1 αjsgn(WL−1,L
j HL−1

i,j −Tj))
−Ei

]2

(5)
where Ei ∈ {0, 1} is the expression label of the ith im-
age; WL−1,L

j HL−1
i,j =HL

i,j is the DBN output for the jth se-
lected image patch in the ith image; α and T are weights
and thresholds of M selected weak classifiers in the Ad-
aBoost classifier. sgn(·) is a sign function defined as:

sgn(WL−1,L

j HL−1

i,j − Tj)=

{
1 if WL−1,L

j HL−1

i,j >=Tj

−1 otherwise
(6)

To facilitate the calculation of partial derivative of the
sgn(·) function, we compute

sgn(WL−1,L

j HL−1

i,j − Tj)≈
WL−1,L

j HL−1

i,j − Tj√
(WL−1,L

j HL−1

i,j − Tj)2 + η2
(7)

where η is a constant to control the slope of sgn(·) function.
Since the number of negative samples (i.e., the images

without the target expression activated) is much higher than
that of positive samples (i.e., the images with the target ex-
pression), a weighting coefficient βi is introduced to bal-
ance the contributions of the negative samples and the pos-
itive samples in Eq. 5.

Furthermore, unlike the traditional AdaBoost classifier,
which only considers the overall classification error of the
strong classifier, we propose a novel objective function that
accounts for both the overall classification error εstrong and
individual classification errors from all selected weak learn-
ers εweak as follows:

ε = λεstrong + εweak, (8)

where
εweak=

M∑
j=1

αj

NI∑
i=1

βi

 sgn(WL−1,L
j HL−1

i,j − Tj)+ 1

2
−Ei

2

(9)
and λ is a weight balancing the two terms 1.

Hence, for the kth selected feature (image patch), the
weight matrix between the two top layers (WL−1,L

k ) can be
updated by minimizing Eq. 8. In this work, we perform a
line search method to search for a descent direction as:

∂ε

∂WL−1,L
k

=− 2λ

NI∑
i=1

βi

[
1− Ei(1 + Ai)

(1 + Ai)3

]
∂Ai

∂WL−1,L
k

+ 2αk

NI∑
i=1

βi

(
Bik + 1

2
− Ei

)
∂Bik

∂WL−1,L
k

,

(10)

where
∂Ai

∂WL−1,L

k

= −Aiαk
∂Bi,k

∂WL−1,L
k

,
∂Bi,k

∂WL−1,L

k

=
η2HL−1

i,k

(C2
i,k + η2)

3
2

,

Ai = exp

− M∑
j=1

αjBi,j

 , Bi,j =
Ci,j√

C2
i,j + η2

,

and Ci,j = WL−1,L

j HL−1

i,j − Tj .
(11)

Then, the weight matrix WL−1,L
k for the kth selected

feature is updated by W
L−1,L

k ← W
L−1,L

k − γ ∂ε

∂WL−1,L

k

, where

γ is a learning rate 2.
After that, the parameters of the lower layers (Wl,l+1,

blv , and bl+1
h for l ∈ [0, L− 2]) are updated based on a

standard back-propagation algorithm [8]. Updating param-
eters of the lower layers will be affected by boosting in two
ways: 1) by the weighted errors estimated in boosting, and
2) by the weight matrix WL−1,L updated in the previous

1In our experiment, λ was set to 1.0 empirically.
2γ was initially set to 1.0 and decreased during learning in our exper-

iments.



Algorithm 1 Iterative feature learning, feature selection, and
classifier construction through a BDBN
Input: NI training images with the corresponding expression labels E,

and the number of hidden layers of the DBN L
Output: the DBN parameters (weight matrices Wl,l+1 for l ∈ [0, L−

1], visual bias bl
v and hidden bias bl+1

h for l ∈ [0, L − 2]) and
the AdaBoost parameters (weights α and thresholds T for M weak
classifiers)
Preprocessing: Extract NP patches with the patch size u×u for each
input image and form a set of NI ×NP patches P
Initialization:
for j = 1 to NP do

Compute Wl,l+1
j , bl

v,j , and bl+1
h,j for l ∈ [0, L− 2];

Calculate HL−1
j by contrastive divergence learning [7];

Initialize WL−1,L
j

end for
repeat

for i = 1 to NI do
for j = 1 to NP do

Calculate HL

i,j = WL−1,L

j HL−1

i,j ;
end for
Form HL

i = [HL

i,1, · · · , HL

i,N
P

] for the ith image;

end for
Given HL for NI images, train an AdaBoost classifier to estimate its
parameters α (weights) and T (thresholds) for M weak classifiers
for k = 1 to M do

Calculate ∂ε

∂WL−1,L

k

based on Eq. 10

Update WL−1,L

k ← WL−1,L

k −γ ∂ε

∂WL−1,L

k

; {γ is a learning rate}

Update the parameters Wl,l+1
k , bl

v,k, and bl+1
h,k for l ∈ [0, L−

2] based on a standard back-propagation algorithm [8];
Update HL−1

k .
end for

until Converge

iteration. Note that, only the weight matrices of the se-
lected M features would be updated, which will decrease
the computation cost significantly. Then, the bottom-up and
the top-down learning processes will alternatively run un-
til converge. An algorithm for feature learning/strengthen,
feature selection, and classifier construction through the
BDBN framework is summarized in Algorithm 1.

4. Experimental Results
4.1. Image Database and Experimental Setup

To demonstrate the effectiveness of the proposed BDBN
framework, we have performed extensive experiments
on two well-known facial expression databases: Ex-
tended Cohn-Kanade (CK+) database [11, 17] and JAFFE
database [18], which have been widely used for evaluating
facial expression recognition systems.

For preprocessing purpose, the face regions across dif-
ferent facial images were aligned given the detected eye po-
sitions to remove the scale and positional variance and then
cropped to 167×137. Then 80 partially overlapped image
patches with a size of 24×24 were extracted from each
cropped facial image. For each DBN module in the BDBN

framework, we employed five hidden layers plus one visual
layer following the implementation of [8]3. The number of
nodes in each hidden layer is 1, 1000, 1000, 500, and 500,
from the highest layer to the lowest one respectively; and
the number of nodes in the visual layer is 576, which is con-
sistent with the image patch dimension. This preprocessing
strategy has been adopted in both data sets we employed.
4.2. Experiments on the CK+ Database

The CK+ database [11, 17] contains 327 expression-
labeled image sequences, each of which has one of 7 ex-
pressions, i.e., anger, contempt, disgust, fear, happiness,
sadness, and surprise activated. For each image sequence,
only the last frame (the peak frame) is provided with an
expression label. To collect more image samples from
the database, we selected the last three frames for train-
ing/testing purpose from each image sequence. In addition,
we also collected the first frame from each of the 327 la-
beled sequences for “neutral” expression. This way, an ex-
perimental data set named CK-DB with a total of 1308 im-
ages is built. The CK-DB was divided into 8 subsets, where
the subjects in any two of subsets are not overlapped. For
each run, 7 subsets were employed for training and the re-
maining one subset for testing. We performed such 8 runs
by enumerating the subset used for testing; and the recog-
nition performance was computed as the average of the 8
runs. In addition, an one-versus-all classification strategy
was adopted to train a binary classifier for each expression.

4.2.1 Performance Evaluation on the CK-DB
We first compared the proposed BDBN framework with
three baseline feature learning methods based on traditional
DBNs. The first method, denoted as GDBN, takes the whole
facial image as input to a single DBN. Each facial image is
further scaled to a size of 24×24 to reduce the computation
complexity4. The comparison between BDBN and GDBN is
used to demonstrate the superiority of the patch-based rep-
resentation over the holistic feature representation.

The second and third methods employed the exact same
input as BDBN (i.e., 80 image patches) and 80 DBNs,
each of which corresponds to a patch location. The sec-
ond method, denoted as Ada+BUs, learned the features by
only bottom-up feature learning; while the third method,
denoted as Ada+IDBNs, employed both bottom-up and
top-down feature learning in each DBN individually (ver-
sus a joint fine-tuning in the BDBN). For both Ada+BUs
and Ada+IDBNs, the outputs from the highest layers of
all 80 DBNs were employed as features to train an Ad-
aBoost classifier. The comparison between BDBN and

3We add one more hidden layer since introduction of new layers in the
deep structure generally can improve the model [7].

4We followed the implementation in [8] for GDBN, where 24 × 24
whole facial regions are used as input. The recognition performance on
48× 48 is similar to that on 24× 24 but with a much higher computa-
tional cost.



Ada+BUs/Ada+IDBNs intends to demonstrate the effec-
tiveness of the joint feature learning, feature selection, and
classifier construction.

For all baseline methods, we employed the traditional
DBN implementation in [8] with a five-hidden-layer struc-
ture, where a two-node soft-max output layer (the high-
est layer) was used. Thus, the numbers of nodes are
2, 1000, 1000, 500, 500, from the highest hidden layer
to the lowest one, respectively; and the numbers of nodes in
the visual layer is 24× 24 = 576.

As shown in Fig. 3, the proposed BDBN framework out-
performed all baseline methods impressively in terms of
the average classification rate (0.967), the average hit rate
(0.891), the average false positive rate (0.025) and the aver-
age F1 score (0.834) of the 6 basic expressions, i.e., anger,
disgust, fear, happiness, sadness, surprise 5.
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0.9

Classification Rate 

0

0.5

1
Hit Rate 

0
0.1
0.2

False Positive Rate

ang dis fear hap sad sur
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BDBN GDBN Ada+BUs Ada+IDBNs

Figure 3. From top to bottom, performance comparison on the CK-DB in
terms of a) classification rate, b) hit rate, c) false positive rate, and d) F1
score for 6 basic expressions. Best viewed in color.

Furthermore, we compared the proposed BDBN method
with the state-of-the-art methods evaluated on CK+ or the
original Cohn-Kanade database [11] 6 including methods
employing LBP features [36, 23] and Gabor wavelet fea-
tures [1]. To make a fair comparison, we only compared
with the methods with a similar experimental setting: the
last frame [1] or the last 3 frames [36, 23] in each image
sequence were employed for training/testing. Among the
compared methods, Common and Specific Patches (CSPL)
method [36] employed multi-task learning; and AdaGa-
bor [1] employed an AdaBoost, for feature selection, re-
spectively. For these methods in comparison, we used their
experimental results reported in their papers. As shown in
Table 1, BDBN framework outperformed all the methods in
comparison [1, 36, 23]. This demonstrated that the features

5We did not recognize the “contempt” and “neutral” for a fair com-
parison with the state-of-the-art methods evaluated on the original Cohn-
Kanade database [11].

6Cohn-Kanade database [11] is an early version of CK+ and contains a
subset of CK+ data (i.e., 320 image sequences with expression labels [23]).

learned and selected through BDBN contain more discrim-
inative information for facial expression recognition.
Table 1. Performance comparison on the CK+ database in terms of aver-
age classification rate for 6 expressions. LOSO: leave-one-subject-out.

Methods CSPL [36] AdaGabor [1] LBPSVM [23] BDBN

Validation Setting 10-Fold LOSO 10-Fold 8-Fold

Performance 0.899 0.933 0.951 0.967

4.2.2 Analysis of Patches Selection Results on the CK+
Database

We are curious about what information each selected patch
provides. For each expression, patches selected by the fi-
nal strong classifiers through BDBN learning are marked by
boxes in Fig. 4. In addition, we only show those patches that
were selected more frequently in the 8-fold experiments.
Specifically, patches enclosed in red boxes were selected
in all the 8 runs across different subjects. These patches,
we believe, contain the most discriminative information to
recognize the corresponding expression. Those patches en-
closed in blue boxes were selected in more than 4 runs.

Most of the selected patches, especially those enclosed
in red boxes, are located around lip, eye, nose, and eye-
brow, which coincides with the psychological studies [3].
It is also interesting that the patches selected for the ex-
pressions are closely related to a set of facial Action Units
(AUs) [5], which can be used to describe the corresponding
expression. For example, as shown in Fig. 4, the patches
selected for recognizing the sadness expression are either
located around the lip, which is closely related with AU 15
(Lip Corner Depressor), or around the eye corners and eye-
brows, which are related to AU 4 (Brow Lowerer) and AU 1
(Inner Brow Raiser), respectively. The combination of AU
1, AU 4 and AU 15 describes the sadness expression [17].
Similar results can be found in other expressions.

(a) Ang (b) Dis (c) Fea (d) Hap (e) Sad (f) Sur

Figure 4. An analysis of the selected features for the six basic expressions
in CK+ database. Red color means selection with the highest frequency,
i.e., the feature was selected in all 8 runs; while blue color stands for rela-
tively lower selection frequency, i.e., the feature was selected in more than
4 runs. Best viewed in color.

Another interesting discovery is that the number of
selected patches decreases as BDBN learning continues.
Starting from dozens patches selected in the first iteration,
fewer and fewer patches are chosen. Finally, a small set
of features (usually less than 7) was employed in the fi-
nal strong classifier. Furthermore, the discriminative pow-
ers of the selected features were strengthened drastically.
As shown in Fig. 5, an 80-dimensional vector is employed
to store the individual recognition rates of all features



(patches), where an “X” means the feature is not selected.
We can find that most of the less expression-related features
(e.g., patches around hair and neck) were deselected with
learning going on; and individual recognition rates of the
selected features (patches), which are shown as the num-
bers in the corresponding vector, increase as iteration goes.

Figure 5. Recognition rate of the strong classifier increases with a de-
crease in the number of selected patches as iteration goes. More impor-
tantly, individual recognition rates for the selected features (patches) in-
crease as well. An 80-dimensional vector is employed to store the indi-
vidual recognition rates of all features (patches), where an “X” means the
feature is not selected. Best viewed in color.

4.2.3 Computational Complexity
Our expression recognition system consists of an offline
training phase and an online recognition phase. The offline
training is performed in two steps: an initialization process
for constructing 80 DBNs and a joint feature learning pro-
cess via the BDBN with the BU-UFL and the BTD-SFS
running alternatively. It took about 8 days to complete the
overall training for 6 expressions in an 8-fold experimental
setup on a 6-core 2.4GHZ PC using Matlab implementa-
tion. Note that BDBN training became more and more ef-
ficient as the learning continued because the number of se-
lected patches kept decreasing until converge. In our exper-
iments, less than 7 weak classifiers (selected patches) were
employed in most of the final strong classifiers. For the on-
line recognition, the average running time for each image
is nearly 30ms × number of weak classifiers using Matlab
implementation. In addition, the online recognition can be
performed in real-time using a parallel computing strategy.

4.3. Experiments on the JAFFE Database
JAFFE database [18] consists of 213 images from 10

Japanese female subjects. Each subject has 3 or 4 examples
of each of the six basic expressions and one sample of a
neutral expression. The experimental results on the JAFFE
database are used to demonstrate the cross-database gener-
alization ability of the proposed method.
4.3.1 Cross-database Validation
To evaluate the generalization ability, we performed a cross-
database validation, i.e., we trained the BDBN framework

on the CK+ database and tested its performance on the
JAFFE database. It is well received that the generalization
across database is usually low. Shan et al [23] trained se-
lected LBP features using SVMs on Cohn-Kanade database
and tested the trained system on the JAFFE database, and
obtained a classification rate about 41% for 7 expressions
(6 basis expressions and neutral). From Table 2, we can find
that the performance of BDBN is much higher than [23],
which demonstrates that the features learned by BDBN cap-
ture the most critical expression-related information that
can be generalized across different data sets.
Table 2. Cross-database validation, trained on CK+ database and tested
on the JAFFE database, in terms of average classification rate for 7 ex-
pressions (6 basis expressions and neutral). In [23], LBP features were
employed and fed into SVM with three different kernels, i.e., linear, poly-
nomial, RBF, respectively.

Ada+SVM(Linear) [23] Ada+SVM(Poly) [23] Ada+SVM(RBF) [23] BDBN

0.404 0.404 0.413 0.680

Table 3. Performance comparison on the JAFFE database in terms of av-
erage classification rate for 7 expressions (6 basis expressions and neutral).
BDBNJ was trained on images only from JAFFE; while BDBNJ+C was
trained on CK+ first and refined using the images in JAFFE.

SLLE [14] SFRCS [12] Ada+SVM(RBF) [23] BDBNJ BDBNJ+C

0.868 0.860 0.810 0.918 0.930

4.3.2 Performance Evaluation on the JAFFE Database
We also evaluated the BDBN framework trained and tested
on the JAFFE database with a leave-one-subject-out train-
ing/testing strategy. We employed two settings: the first
one, denoted as “BDBN with JAFFE Only” (BDBNJ ), em-
ployed only the images in JAFFE for training, and the
other one, denoted as “BDBN with JAFFE and CK+”
(BDBNJ+C), was trained on the CK+ database first and
then refined using the images in JAFFE. To make a fair com-
parison, we only compared with the-state-of-the-art meth-
ods employing the leave-one-subject-out strategy and rec-
ognizing 7 expressions. As shown in Table 3, the BDBN
with both settings outperformed the other methods. More-
over, the BDBNJ+C achieved the best performance, which
implies that a learned BDBN can be effectively adapted to
a new dataset with additional training data.

5. Conclusion and Future Work
In this work, we propose a novel BDBN framework to

combine feature learning/strengthen, feature selection, and
classifier construction in a unified framework. Specifically,
features are fine-tuned jointly and are selected to form a
strong classifier in a novel BTD-SFS process. Through this
framework, highly complex features can be learned from fa-
cial images, and more importantly, the discriminative capa-
bilities of selected features are strengthened iteratively ac-
cording to their relative importance to the strong classifier.
As demonstrated in the experiments, the BDBN learning
framework outperformed all methods in comparison includ-
ing the state-of-the-art techniques evaluated on two public



facial expression databases. There are several future di-
rections to extend this framework. First, we will evaluate
BDBN in more challenging scenarios, e.g., more sponta-
neous expressions with face pose variations. Second, this
BDBN framework can be immediately employed in other
classification problems, such as recognizing facial action
units. Finally, we expect to extend the framework to handle
video data, from which dynamic aspect of facial expressions
can be captured and employed.
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