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Abstract

The recent advances in RGB-D cameras have allowed us
to better solve increasingly complex computer vision tasks.
However, modern RGB-D cameras are still restricted by the
short effective distances. The limitation may make RGB-D
cameras not online accessible in practice, and degrade their
applicability. We propose an alternative scenario to address
this problem, and illustrate it with the application to action
recognition. We use Kinect to offline collect an auxiliary,
multi-modal database, in which not only the RGB videos but
also the depth maps and skeleton structures of actions of in-
terest are available. Our approach aims to enhance action
recognition in RGB videos by leveraging the extra database.
Specifically, it optimizes a feature transformation, by which
the actions to be recognized can be concisely reconstructed
by entries in the auxiliary database. In this way, the inter-
database variations are adapted. More importantly, each
action can be augmented with additional depth and skele-
ton images retrieved from the auxiliary database. The pro-
posed approach has been evaluated on three benchmarks of
action recognition. The promising results manifest that the
augmented depth and skeleton features can lead to remark-
able boost in recognition accuracy.

1. Introduction
Computer vision techniques are highly adapted to avail-

able imaging devices. We are aware of the recent advances
in imaging devices, such as the RGB-D camera Microsoft
Kinect, the binocular camera FUJIFILM FinePix Real 3D,
and the lightfield camera Lytro. The images they record
provide rich and diverse information. Thus, these emerging
cameras complement the conventional 2D RGB cameras in
developing computer vision algorithms. A vast amount of
research effort has been made on investigating the multi-
modal images taken by both conventional and emerging
cameras, with the aim to better solve computer vision tasks
and even initiate new applications.

∗This work was performed while this author was at Academia Sinica.

Action recognition is one of the computer vision appli-
cations that can be facilitated by emerging imaging devices,
especially the RGB-D cameras. As pointed out in [21],
the large intra-class variations, such as different poses and
partial occlusions, make automatic action recognition very
challenging. Information carried by RGB images is in gen-
eral insufficient to account for the unfavorable variations.
Recent research efforts, e.g., [9, 24, 27], have demonstrated
that the depth images taken by Kinect as well as the inferred
human 3D skeleton structures are very useful for handling
the intra-class variations and building up a more accurate
system of action recognition. However, RGB-D cameras
usually have short effective distances. For instance, Kinect
is with the effective range between 1.2 ∼ 3.5 meters. The
limitation makes Kinect not online accessible in many real-
world applications, such as surveillance.

We address this issue, and consider an alternative sce-
nario, in which an auxiliary, multi-modal database is estab-
lished by Kinect in advance. The database contains actions
of interest, and its entries are in form of triplets: the RGB
videos, the depth maps, and the skeleton structures of hu-
man actions. Our focus now is how to accurately recogniz-
ing actions in RGB videos by leveraging this extra database.
Figure 1a shows the problem setting of this work.

We treat actions to be recognized, called target actions
throughout, as queries to the auxiliary database. Our goal
is to retrieve the appropriate depth maps and skeleton struc-
tures for them. Before that, we should account for the vari-
ations between the target actions and the actions in the aux-
iliary database. The proposed approach deals with the two
tasks, cross-modal retrieval and domain adaptation, at the
same time. By assuming that the inter-database variations
can be modeled by a linear transformation, our approach op-
timizes a feature transformation, by which the transformed
target actions can be well reconstructed by the actions in the
auxiliary database. We cast this task as a rank minimiza-
tion problem based on the formulation of Jhuo et al. [13],
with the extension to carry out discriminant reconstruction.
The resulting constrained optimization problem can be ef-
fectively solved by augmented Lagrange multiplier (ALM)
method [15].
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Figure 1. (a) We aim to improve action recognition in RGB videos by leveraging an auxiliary, multi-modal database. (b) Our approach
deals with domain adaptation and cross-modal feature retrieval at the same time. Each action to be recognized is augmented with the
additional depth and skeleton features that are retrieved from the auxiliary database.

After completing the optimization, domain adaptation is
carried out. More importantly, each target action can be
augmented with additional depth and skeleton features by
sharing the optimized reconstruction coefficients. Namely,
how the depth and skeleton features are retrieved for a tar-
get action is the same as how its RGB features are recon-
structed. This idea is shown in Figure 1b. Then, multiple
kernel learning (MKL) is adopted to fuse the original RGB
features and the augmented depth and skeleton features, and
to achieve better performance.

The main contribution of this work is to provide an al-
ternative way of utilizing RGB-D cameras to facilitate ac-
tion recognition even when they are not online accessible.
The proposed approach is comprehensively evaluated on
three benchmarks of action recognition, which were taken
in diverse environments and contains actions of different
classes. By using the same auxiliary database, our approach
leads to remarkable accuracy improvement on each bench-
mark. Besides, our approach is designed in a general man-
ner, and can be applied to vision applications where multi-
modal images are helpful.

2. Related Work
Human action recognition has received strong attention

in computer vision. Being one of the most important com-
ponents in computer vision, action recognition is essen-
tial to widespread applications, such as surveillance and
human-computer interaction. As indicated in [21], one fun-
damental difficulty of action recognition results from the
large intra-class variations. The variations are caused by
both intrinsic and extrinsic factors, such as posture dif-
ferences among subjects, cluttered backgrounds, different
camera perspectives, mutual or self occlusions.

Designing powerful feature descriptors against intra-
class variations has gained significant progress. Global de-
scriptors, e.g., [8], encode the whole action observations.
Despite the compactness and simplicity, global descriptors
are often very sensitive to occlusions and deformations. Lo-

cal descriptors, e.g., [14, 17], instead treat an action as a
gather of patches or spatio-temporal cubes. Local descrip-
tors are widely used in the representation of actions. How-
ever, the geometric structure among local features is ig-
nored. It may result in performance degradation.

To address this issue, one research trend of action recog-
nition focuses on modeling geometric relationships among
local features. For instance, Matikainen et al. [18] gener-
ated a frequency lookup table to specify the geometrical dis-
placements between local features. Prabhakar et al. [22] es-
timated the causalities between visual words, and included
them as parts of the features. Besides, graphical models,
such as factorial conditional random fields [28] and hid-
den Markov model [6], have been applied to formulating the
spatio-temporal correlation of local evidences. The forego-
ing approaches to action recognition were developed upon
RGB images/videos. Their performances are bounded by
the available information in RGB images/videos.

Owing to the recent advances in sensor technology, it
has been feasible to record color as well as depth images in
real time by RGB-D cameras, e.g., Kinect. Research efforts
have shown that depth maps afford informative clues for hu-
man pose estimation [9, 24] and action recognition [19, 33].
Besides, the OpenNI library1 was developed upon RGB-D
cameras, and can identify the positions of key joints on the
human body, i.e., the skeleton. Researches, e.g., [27], on
3D skeleton representation and correction open the oppor-
tunity of handling multi-view action recognition. The intro-
duction of depth and skeleton information indeed benefits
action recognition. However, the short ranges of effective
distances still make RGB-D cameras inapplicable in mean
real-world applications

Training data acquisition is also a challenge for action
and object recognition. Sufficient training data are required
to derive a good predictor. In practice, complete training
dataset may not be available, and labeling huge data is also
expensive. Transfer learning [20] can alleviate the afore-

1http://www.openni.org/



mentioned problems. Cao et al. [5] leveraged the informa-
tion from a source dataset, and reduced the number of the
training data required in model learning. Yin et al. [34] as-
sociated samples to be recognized with alike data from an
extra dataset, and exploited the expanded data to make bet-
ter predictions. Jhuo et al. [13] instead enriched the set of
training data from multiple sources via domain adaptation
and data reconstruction. Chen and Grauman [7] synthesized
training data from an unlabeled pool of videos, and facili-
tated the learning of action categories with static images.
Our approach also utilizes knowledge transferred from an
auxiliary database for improving action recognition, but it
is different from the foregoing approaches in the sense that
it borrows visual features across different video modalities,
and resolves the problems caused by the absence of RGB-D
cameras.

Multiple kernel learning (MKL) [1, 23] refers to learning
a kernel machine with multiple kernels. MKL has shown
its capability for fusing heterogenous features and leading
to boosted performance. In our case, we represent actions
described by each type of features as a kernel matrix. These
features include the original RGB features as well as the
augmented depth and skeleton features. MKL carries out
discriminant learning, and derives an optimal kernel over a
given convex set of kernels. It turns out that all the features
are fused in the domain of kernel matrices.

3. Problem Definition
We aim to carry out depth- and skeleton-associated ac-

tion recognition, even when there are no RGB-D cameras
online available. The goal is realized by borrowing informa-
tion from an auxiliary, multi-modal database in this work.
Suppose that a set of actions is given, D = {xi, yi}Ni=1,
where xi ∈ X and yi ∈ Y = {1, 2, ..., C} are the RGB fea-
ture representation of the ith action and its class label. Be-
sides, an auxiliary database, D̃ = {(x̃i, d̃i, s̃i)}Mi=1, taken
by Kinect is available, where x̃i ∈ X , d̃i ∈ D, and s̃i ∈ S
are the RGB, depth, and skeleton features of the ith in-
stance, respectively. The data in D̃ are unlabeled. We use
tildes to mark the auxiliary instances and dataset for clear-
ness. D and D̃ have common RGB data domainX , but have
different data distributions. This is why domain adaptation
is required. We focus on associating each action xi ∈ D
with appropriate depth map di and skeleton structure si, so
that the absence of RGB-D cameras is compensated.

The auxiliary dataset D̃ is compiled to cover the actions
of interest in advance, i.e., Y in this case. Collecting D̃ of-
fline is reasonable since we often focus on recognizing pre-
defined types of actions in most applications. Nevertheless,
the classes of actions inD are not required to be the same as
those in D̃. In our experiments, D is in turn one of the three
action recognition benchmarks, while D̃ we collect contains
all types of actions included in the three benchmarks.

4. The Proposed Approach
The proposed approach is described in this section.

4.1. Domain adaptation

To borrow features from D̃ to D, we correlate the two
independently collected datasets by exploring their com-
mon video modality, RGB. An intuitive way, like [34], is
the nearest neighbor search in the RGB domain. Then, the
corresponding depth and skeleton features are associated.
However, this method ignores the inter-database variations,
and results in suboptimal performance in our cases.

Domain adaptation is applied to tackling the variations.
Among the existing algorithms of domain adaptation, we
prefer those that work in an interpretable way, since we
would like to reapply the obtained adaptation model to the
other video modalities. Inspired by the good performance
reported in [13], we also adopt reconstruction-based domain
adaptation, so that the optimized reconstruction coefficients
can be reused in the synthesis of the augmented depth and
skeleton features. By assuming that the inter-database vari-
ations between D and D̃ can be modeled by a linear trans-
formation, the transformed actions in D will be well recon-
structed by actions in D̃. The idea can be specified by:

WX = X̃A+ E, (1)

where X = [x1 · · ·xN ] ∈ Rd×N and X̃ = [x̃1 · · · x̃M ] ∈
Rd×M are the data matrices of D and D̃, respectively,
W ∈ Rd×d is the linear transformation,A = [α1 · · ·αN ] ∈
RM×N is the matrix of reconstruction coefficients, and
E = [e1 · · · eN ] ∈ Rd×N is the error matrix. It can be
checked column by column in (1) that each transformed
sample Wxi is well reconstructed by auxiliary data X̃αi,
if residue ei is minimized.

Although formulation (1) accounts for the inter-database
variations, W can be optimized in a better way. First, dis-
tinct from the setting of [13], D is labeled multi-class data
in our cases. We can activate discriminant learning for de-
riving better W . Second, outliers may exist in D. We need
to handle the outliers, since they may dominate the recon-
struction errors in optimizing W .

Without loss of generality, we assume training data are
sorted according to their labels, i.e., X = [X1 · · ·XC ],
where Xc is the submatrix whose columns are data of class
c. A = [A1 · · ·AC ] and E = [E1 · · ·EC ] are defined ac-
cordingly. We consider discriminant learning and outlier
handling, and reformulate (1) as the following constrained
optimization problem:

min
W,A,E

C∑
c=1

rank(Ac) + λ‖E‖2,1

s.t. WX = X̃A+ E and WW> = I,

(2)



Algorithm 1: The inexact ALM algorithm for solving constrained optimization problem (4)

Input : Target actions X , Auxiliary actions X̃ , Parameter λ;

Initialize: E = 0, W = I, A = (X̃>X̃)−1X̃>WX, U = 0, V = 0, µ = 10−3;

while not converged do
1. Update F by F c = argminF c

1
µ‖F

c‖∗ + 1
2‖F

c − (Ac + Uc

µ )‖2F , for c = 1, 2, ..., C;
2. Update W by W = (X̃A+ E − V

µ )X
>(XX>)−1;

3. W ← orthogonal(W );
4. Update E by E = argminE

λ
µ‖E‖2,1 +

1
2‖E − (WX − X̃A+ V

µ )‖
2
F ;

5. Update A by A = (I + X̃>X̃)−1[X̃>(WX − E) + 1
µ (X̃

>V − U) + F ];
6. Update the Lagrange multipliers: U = U + µ(A− F ), V = V + µ(WX − X̃A− E);
7. Update the penalty parameter µ by µ = 1.2µ;
8. Check convergence conditions: A− F −→ 0 and WX − X̃A− E −→ 0;

where ‖E‖2,1 =
∑N
i=1 ‖ei‖2 is the l2,1 norm of E, and λ

is a positive tradeoff parameter. Constraint WW> = I en-
sures that W is a basis transformation. Minimizing the rank
of Ac enforces that the reconstruction coefficient vectors
corresponding to data of class c are similar to each other.
It follows that discriminant learning is activated. The use
of the l2,1 norm in error measure alleviates the overfitting
problem caused by the outliers.

Rank minimization in general is known as an NP-hard
problem, and there is no efficient algorithm to solve it.
Hence, we consider the convex relaxation of (2):

min
W,A,E

C∑
c=1

‖Ac‖∗ + λ‖E‖2,1

s.t. WX = X̃A+ E and WW> = I,

(3)

where ‖Ac‖∗ is the nuclear norm of Ac, i.e., sum of the
singular values. It serves as a convex approximation of
rank(Ac). In this work, we solve the constrained optimiza-
tion problem (3) by using the Augmented Lagrange Multi-
plier (ALM) method [15]. The ALM method deals with a
constrained optimization problem by solving a series of un-
constrained ones. To begin with, we introduce an auxiliary
variable F = [F 1 · · ·FC ] ∈ RM×N , and convert (3) into
an equivalent form

min
W,A,F,E

C∑
c=1

‖F c‖∗ + λ‖E‖2,1

s.t. WX = X̃A+ E and A = F.

(4)

The orthogonality constraint of W is temporarily ignored.
Nevertheless, W is orthogonalized afterwards as in most
orthogonality preserving methods, e.g., [31]. We optimize
(4) by the inexact ALM method, which minimizes the aug-

mented Lagrange function of (4):

min
W,A,F,E,U,V

C∑
c=1

‖F c‖∗ + α‖E‖2,1 + 〈U,A− F 〉+
µ

2
‖A− F‖2F

+ 〈V,WX − X̃A− E〉+ µ

2
‖WX − X̃A− E‖2F , (5)

where 〈·, ·〉 denotes the inner product operator, µ is a posi-
tive penalty parameter, and U and V are the Lagrange mul-
tipliers. Refer to [15] for the details of the augmented La-
grange function.

Starting with a small value of penalty parameter µ, the
inexact ALM method iteratively solves (5) with gradually
increased µ. The procedure is repeated until all the con-
straints in (4) are satisfied. At each iteration, the strat-
egy of alternate optimization is adopted for solving vari-
ables {W,A,F,E}. Namely, we optimize one of the four
variables by fixing the rest, and then switch roles of the
variables sequentially. For the optimization problem w.r.t.
{F c}Cc=1, the singular value shrinkage operator Dτ in [4]
is used as the solver to optimize F c with D 1

µ
(Ac + Uc

µ ) =

argminF c
1
µ‖F

c‖∗ + 1
2‖F

c − (Ac + Uc

µ )‖2F . For the opti-
mization problems regarding W and A, there exist closed-
form solutions derived by setting the partial derivative to
zero. That is, W = (X̃A + E − V

µ )X
>(XX>)−1 and

A = (I+ X̃>X̃)−1[X̃>(WX−E)+ 1
µ (X̃

>V −U)+F ].
Besides, we apply QR-decomposition to orthogonalize the
obtained W such that constraint WW> = I holds. As for
the optimization problem w.r.t. E, it can be updated using
the analytical solution in [16]. We summarize the optimiza-
tion procedure in Algorithm 1.

The optimization procedure converges with 30 ∼ 70 iter-
ations in our experiments. The step of optimizing W takes
the most time. The running time can be significantly re-
duced after using principal component analysis (PCA) to
preprocess data. Each iteration is executed within five sec-
onds in all of our experiment settings.



4.2. Feature augmentation

After completing the optimization procedure in Algo-
rithm 1, the linear transformation W which adapts the vari-
ations between D and D̃ is obtained. The next step is
to explore how the transformed target actions are recon-
structed by actions in the auxiliary database. The optimized
A records the reconstruction coefficients for training data,
but how unseen testing data are reconstructed remains un-
known. To address this issue, we transform each training
and testing action x via the learned W , and seek its recon-
struction coefficients by solving

α = argmin
α
‖Wx− X̃α‖2 + γ‖α‖2, (6)

where γ is a positive constant, controlling the trade-off be-
tween the fitness and the regularization term. There exists
closed-form solution to (6), i.e.,

α = (X̃>X̃ + γI)−1X̃>Wx. (7)

Once α is obtained, we are ready to retrieve the depth
and skeleton features of x. Recall that the data entries of D̃
are in form of triplets. We exploit the modality correspon-
dences in D̃, and associate target action x with additional
depth features d and skeleton features s by the rule: How
the depth and skeleton features are retrieved is the same as
how the RGB features are reconstructed. That is,

d← [d̃1 · · · d̃M ]α and s← [s̃1 · · · s̃M ]α. (8)

The association procedure in (8) is repeated for each
training sample. It follows that the augmented training
dataset D = {(xi,di, si)}Ni=1 is constructed. The proce-
dure is also applicable to testing samples. Parameter λ in
(4) and γ in (7) are critical to the performance. Their values
are determined by cross validation in our implementation.

4.3. Prediction with augmented features

In the augmented dataset, three video modalities of each
action are available at the same time. Multiple kernel learn-
ing can then be adopted for combining the three heteroge-
neous features to achieve better performance. Specifically,
we compile an kernel matrix for actions in each modeality.
Kernel matrix Kx = [kx(xi,xj)] ∈ RN×N is constructed
for actions in RGB videos with

kx(xi,xj) = exp (
−‖xi − xj‖2

σ2
x

), (9)

where σx is the hyperparameter. Accordingly, we have ker-
nels Kd and Ks for actions in depth and skeleton features,
respectively. In this work, we adopt SimpleMKL [23], one
of the state-of-the-art MKL packages, to learn SVM clas-
sifiers with the three kernels as input. It will automatically
determine the optimal combination of the three types of fea-
tures in the domain of kernel matrices.

Figure 2. The auxiliary dataset we collected. One example comes
from each of the 40 action categories.

5. Feature Representation
The features representations adopted to characterize ac-

tions in RGB videos, depth maps, and skeleton structures
are described in this section.
RGB videos: The backgrounds of RGB videos are firstly
estimated by using the inpainting technique [25]. We then
take the background regions and adopt the background sub-
traction algorithm [2] to segment out the foreground region
of each video frame. Based on the foregrounds, an RGB
video is resized to 48×64× t pixels, where t is the num-
ber of frames. The 3D-HOG descriptor [30] is applied to
extract features in the space-time volume. In more detail,
we use 16×16×16 pixel blocks, each of which is further
divided into 2×2×2 cells. Five hundred prototypes are de-
rived to build up the embedding space. It leads to a compact
representation for RGB action videos.
Depth maps: We apply the spatio-temporal local binary
pattern [35] to depict depth maps.
Skeleton structures: We implement Fourier temporal
pyramid [27] to represent skeleton structures. The short
time Fourier transform is applied to each skeleton segments
in a 3-level pyramid. The feature representation is the con-
catenation of the Fourier coefficients from all the segments.

6. Experimental Results
In this section, the performance of our approach is eval-

uated on three action recognition benchmarks.

6.1. Datasets

Three benchmarks of action recognition, including IX-
MAS [29], i3DPost [10], and UIUC-1 [26], are adopted for
performance evaluation. Besides, we use Microsoft Kinect



Method Ours: d+s Ours: d Ours: s RGB Bor-DEP Bor-SKE KSDA 1NN-Bor [32]

Accuracy 89.1 81.6 88.5 78.6 51.2 82.6 80.6 80.3 87.7

Table 1. Recognition rates (%) by different approaches on IXMAS dataset.

Method Ours: d+s Ours: d Ours: s RGB Bor-DEP Bor-SKE KSDA 1NN-Bor [12]

Accuracy 88.3 84.4 87.9 82.0 57.8 80.1 82.8 83.2 84.9

Table 2. Recognition rates (%) by different approaches on i3DPost dataset.

to build up a three-modal dataset, which serves as the aux-
iliary database in all the experiments on the three bench-
marks. These databases are described as follows.

Auxiliary dataset: Ten actors were employed to con-
struct the dataset. Each actor performed 40 types of actions
to cover all the action classes in the three benchmarks used
in the experiments. Each action was recorded by two cam-
eras, respectively located with view angles of 0 ◦ and 45 ◦.
For each action, we further included its horizontal mirror in
the dataset. Figure 2 gives an overview of the dataset.

IXMAS: We followed [32], in which 11 kinds of actions
by 10 actors were used. We conducted performance evalu-
ation and comparison on action videos captured by camera
#1, #2, and #3 in the dataset.

i3DPost: For comparing with other state-of-the-art meth-
ods, we followed the evaluation protocols suggested in [12],
where total 8 daily activities performed by 8 actors were
considered. Our approach and the adopted baselines are
evaluated on videos taken by camera #5 and #6.

UIUC-1: The UIUC-1 human activity dataset consists of
532 high resolution sequences of 14 activities performed by
8 actors. All the sequences are used in our experiments.

6.2. Baselines

We establish several baselines for performance compari-
son. The goal of comparison is to identify the contributions
of the developed components in our approach. These base-
lines are denoted below in bold and in abbreviation:
RGB: This baseline simply ignores the information from
the auxiliary database. It extracts the RGB features, and
learns an SVM classifier to make the prediction. Compar-
ing to this baseline examines whether the auxiliary database
helps in recognizing target actions.
Bor-DEP: This baseline discards the original RGB fea-
tures and simply works on the associated depth maps. In-
vestigating its performance helps identify whether the asso-
ciated features themselves are informative or not.
Bor-SKE: It is the same as Bor-DEP, except the used fea-
tures become the associated skeleton structures.
KSDA: Kernel SDA [3] is a semi-supervised learning al-
gorithm. In our cases, the RGB action videos in D and D̃
are considered as the labeled and the unlabeled training data
in kernel SDA, respectively.

1NN-Bor: For each sample in D, we associate its near-
est sample in D̃, and borrow the corresponding depth and
skeleton features. MKL is used for feature fusion. This
baseline neglects the possible inter-database variations.

Our approach is denoted by Ours:d+s, if it works on the
RGB features and the associated depth and skeleton fea-
tures. Two degenerate variants Ours:d and Ours:s are built
when it considers the RGB features and either the associ-
ated depth or the associated skeleton features, respectively.

6.3. Experiment settings

To make a fair comparison, we adopt the widely used
setup, leave-one-actor-out (LOAO) cross validation. Sup-
pose that there are N actors in the benchmark. LOAO is the
same as N -fold cross validation, except training data of the
same actor must belong to an identical fold. The obtained
recognition rates of our approach, the adopted baselines,
and the state-of-the-art methods are reported in Table 1 ∼
3, one for each benchmark.

We further test our approach with different numbers of
actors used in training. Specifically, action videos by k ac-
tors are used for training, while the rest are for testing. We
set k = 3, ..., N − 1, respectively. In each case, we try N
random splits of the actors, and compute the average recog-
nition rates. Figure 3 shows the quantitative results on the
three benchmarks.

6.4. Analysis and discussion

Table 1 and Figure 3 give the results regarding IXMAS
dataset. Baseline KSDA is a bit better than baseline RGB.
It reveals that the unlabeled RGB videos in the auxiliary
dataset provide useful information for the regularization of
classifier training. The baselines Bor-DEP and Bor-SKE get
recognition rates of 51.2% and 82.6% in the LOAO setup,
respectively. As can be seen that the augmented skele-
ton features by the proposed mechanism are quite informa-
tive, and Bor-SKE is even superior to baseline RGB. Base-
line 1NN-Bor ignores the inter-database variations, and re-
sults in suboptimal performance. Instead, our approach can
make the most of the auxiliary database. It utilizes the aug-
mented depth and skeleton features, and leads to a satisfac-
tory recognition rate, 89.1%.

Similar observations can be found in the results on
i3DPost and UIUC-1 datasets. It is still worth mentioning



Method Ours: d+s Ours: d Ours: s RGB Bor-DEP Bor-SKE KSDA 1NN-Bor [26] [11]

Accuracy 98.7 93.6 98.7 92.1 74.2 95.0 94.3 92.4 98.3 99.6

Table 3. Recognition rates (%) by different approaches on UIUC-1 dataset.
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Figure 3. The recognition rates of various approaches with different numbers of training actors on (a) IXMAS, (b) i3DPost, and (c) UIUC-1.

some interesting observations. First, the augmented depth
features work better, and complement the original RGB fea-
tures in i3DPost dataset. This may result from that self-
occlusions frequently occur in i3DPost dataset, and depth
maps helps in this situation. Second, it can be observed in
Figure 3 that the introduction of the auxiliary database in-
deed compensates for the lack of training data. For instance,
our approach learned with 3 training actors in IXMAS is
still superior to baseline RGB with 7 training actors. Simi-
lar phenomena can be found in the other two datasets.

The performance gains of our approach over baseline
RGB are very significant. In the LOAO setup, it is 10.5%
(= 89.1%− 78.6%) in IXMAS, 6.3% (= 88.3%− 82.0%)
in i3DPost, and 6.6% (= 98.7% − 92.1%) in UIUC-1. It
points out that our approach can successfully retrieve the
corresponding depth and skeleton features for actions to be
recognized, and leverage the expanded features to achieve
much better performance. In addition, our approach with
the aid of cross-modal feature association, either consid-
erably outperforms or is comparable to the state-of-the-art
systems in each of the three benchmarks.

We investigate why the augmented depth and skeleton
features help to improve recognition rates. Recall that the
main difference between our approach and baseline RGB
is that the augmented features are taken into account by
the former, but ignored by the latter. To gain insight into
their quantitative results, the confusion tables by the two
approaches on the three benchmarks are shown in Figure 4.
By comparing their accuracies class by class, we find out
an interesting conclusion: The augmented depth and skele-
ton are particularly helpful in the actions that are char-
acterized by small, local parts of human bodies, such as
check-watch, cross-arms, wave, and clapping.
In these actions, information captured by the RGB videos is
limited, so borrowing features across modalities works.

7. Conclusions
The RGB-D cameras provide the opportunity for bet-

ter solving increasingly complex computer vision tasks.
However, the short effective distances are currently hinder-
ing their applicability. We have presented an approach to
addressing the problem in this work. Our approach can
borrow information from an offline collected, multi-modal
database, and online augment actions with addition depth
and skeleton features. Hence, it provides an alternative way
of using RGB-D cameras even when they are not online ac-
cessible. Promising experimental results demonstrate that
our approach can effectively adapt the variations between
different databases, associate features across video modal-
ities, and lead to remarkable boost in recognition perfor-
mance. The proposed approach performs cross-modal fea-
ture association in a general way. We will generalize and ap-
ply this work to dealing with new vision applications where
the emerging cameras are appreciated, such as borrowing
features from binocular cameras for stereo vision applica-
tions, or from infrared cameras for night vision applications.
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Figure 4. The confusion tables by two approaches, baseline RGB and ours, on the three benchmarks. (a) Baseline RGB on IXMAS. (b)
Baseline RGB on i3Dpost. (c) Baseline RGB on UIUC-1. (d) Ours on IXMAS. (e) Ours on i3DPost. (f) Ours on UIUC-1.
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