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Abstract

This paper proposes a framework for recognizing com-
plex human activities in videos. Our method describes hu-
man activities in a hierarchical discriminative model that
operates at three semantic levels. At the lower level, body
poses are encoded in a representative but discriminative
pose dictionary. At the intermediate level, encoded poses
span a space where simple human actions are composed.
At the highest level, our model captures temporal and spa-
tial compositions of actions into complex human activities.
Our human activity classifier simultaneously models which
body parts are relevant to the action of interest as well
as their appearance and composition using a discrimina-
tive approach. By formulating model learning in a max-
margin framework, our approach achieves powerful multi-
class discrimination while providing useful annotations at
the intermediate semantic level. We show how our hier-
archical compositional model provides natural handling of
occlusions. To evaluate the effectiveness of our proposed
framework, we introduce a new dataset of composed human
activities. We provide empirical evidence that our method
achieves state-of-the-art activity classification performance
on several benchmark datasets.

1. Introduction
Humans are capable of performing multiple simple tasks

simultaneously. In particular, humans can control the mo-
tion of their limbs and torso with tremendous precision, and
can associate subsets of their limbs to different tasks. Peo-
ple can, for example, text while walking, or wave one hand
while holding a phone to their ear with the other (Fig. 1).
It is interesting to note that different compositional arrange-
ments of simple body motions can yield different semantics
at a higher level. Compositions can occur spatially and/or
temporally; for example, in a particular sport, the referee
can signal different events by raising the left hand instead
of the right hand (spatial composition) or by executing a
specific sequence of gestures (temporal composition).

Figure 1. People perform complex activities that can be character-
ized as spatial and/or temporal compositions of simpler actions.
Top-left: A person simultaneously waves and walks by assigning
subsets of body parts to different actions. Top-right: A person
sequencially talks on the phone and runs away to attend an urgent
matter. Bottom: A person walks in a room, picks a book up, walks
while reading a book, etc. In this paper, we propose a novel for-
mulation that is able to capture these spatio-temporal compositions
for complex activity recognition using RBGD data.

This paper proposes a computational framework for
modeling complex activities by capturing their spatio-
temporal composition. We achieve this by introducing a
unified hierarchical model that operates at three semantic
levels: at the bottom level, our model builds a discriminative
dictionary of body pose primitives; at the mid-level, these
poses are combined to compose atomic actions; finally, at
the top-level, atomic actions are combined to compose com-
plex activities.

In our model, we formulate learning as an energy min-
imization problem, where structural hierarchical relations
are modeled by sub-energy terms that model and connect
the different abstraction levels: poses, actions, and activi-
ties. By using a multi-class max-margin approach and cou-
pling learning of all abstraction levels, we are able to obtain
discriminative and functional mid-level representations that
foster pose sharing among action classes and action shar-
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ing among target activities. This allows us to use small
diccionary sizes, to reduce overfitting problems, and to im-
prove the computational efficiency.

From a machine learning perspective, the use of mid-
level representations based on body poses and atomic ac-
tions with clear semantic meaning, facilitates the acquisi-
tion of labeled trained data. In particular, at training time
high level semantic information at the level of activities and
atomic actions is propagated down the hierarchy to guide
the otherwise unsupervised search for relevant primitives at
the level of body poses. We believe this is a powerful learn-
ing framework that provides a rich hypothesis space to build
visual compositional schemes [4]. This also marks a notable
difference with respect to current popular compositional hi-
erarchical models based on deep learning techniques [3],
where the lack of easy interpretation of the resulting mid-
level representations complicates the training process.

In fact, the spatio-temporal compositional abilities of
our model also bring other conceptual advantages. First,
our framework is capable of identifying the active body
parts when different actions are executed, while also cap-
turing their spatial appearance and temporal evolution. Sec-
ond, our model can naturally handle scenarios of partial
occlusions and pose estimation failures by inferring an ap-
propiate spatial composition that assigns higher weight to
the visible/relevant body parts while dismissing the oc-
cluded/irrelevant ones. We show empirical evidence of
these properties in our experiments.

The rest of the paper is organized as follows. First, we re-
view some of the relevant prior work in Sec. 2. In Sec. 3 we
introduce the details of our model and discuss the learning
and inference algorithms. Sec. 4 presents empirical evalua-
tions of our method in a new benchmark dataset and Sec. 5
presents our main conclusions.

2. Related Work
There is a large body of literature related to human ac-

tivity recognition as, it is one of the most active topics in
computer vision. We refer the reader to [1] for an extensive
review of recent advances in the field. Here, we discuss
some of the most relevant prior work related to our paper.

A number of researchers have tackled the problem
of temporal composition of actions using representations
based on local interest points [12, 19] by modeling their
temporal arrangement. Some researchers have extended
image representations, such as correlatons [28] and spatial
pyramids [21] to videos [20], and have applied them to the
problem of simple human action categorization. Other re-
searchers have proposed models for decomposing actions
into short temporal motion segments [14, 25], but can-
not capture spatial composition of actions. Recently, sev-
eral graph-based models have been proposed to account for
spatio-temporal composition of low-level features [2, 7, 8].

Instead of focusing on low level video features, our
model builds on a pose-based representation, by first ex-
tracting information about the pose of the actor. There is a
significant amount of pose-based action recognition meth-
ods in the literature. However, traditional methods have sev-
eral limitations: sillouhette based recognition assumes the
camera is static [5, 31]; methods based on 2D body configu-
rations require expensive body part detections to obtain ini-
tial input; etc. Usually, even if accurate body pose estima-
tion is available, these methods are tremendously affected
by body part occlusions and by unrelated limb postures and
motions that are not involved in the action. In [15], the au-
thors propose a search engine for composed actions based
on HMMs, but its application to activity classification is not
discussed. Other line of work looks at annotating novel ac-
tion videos by recognizing single actions [27], but ignor-
ing the composition of those single actions into meaningful
complex activities.

Related to our work, some propose pose-based action
recognition models that leverage action compositions. In
[17], a Markov Random Field is trained over small tempo-
ral segments, and includes object affordance labels and ob-
ject detectors. In [36], wavelet features are computed over
temporal segments in each body joint, and the model infers
the underlying temporal structure of sequences of actions.

In this work, we avoid the difficulty and high compu-
tational expense of human pose estimation from color im-
ages and we rely on human body poses extracted from
color+depth sequences. In particular, we employ the pose
estimation algorithm from [29, 24]. Other researchers
have also addressed the problem of activity recognition on
color+depth data, but they usually focus on categorizing
non-composed activities [30, 34, 38].

From a learning perspective, our work is related to meth-
ods for learning visual dictionaries from data. Early ap-
proaches were based on vector quantization, using k-means
to cluster low-level keypoint descriptors [11]. These ap-
proaches spawned algorithmic variations that use alterna-
tive quantization methods, discriminative dictionaries, or
pooling schemes [16, 21]. Recently, sparse coding methods
have emerged as a powerful alternative to vector quantiza-
tion providing dictionaries that achieve low reconstruction
errors and attractive computational properties. For example,
[9] achieves state-of-the-art performance when tested on
several human action datasets. Discriminative sparse rep-
resentations have also been proposed [6, 23], mostly build-
ing specific dictionaries for each class. In contrast to our
approach, the literature focuses on non-hierarchical cases,
where the dictionary construction considers only a specific
abstraction level usually using a generative approach. Even
in the case of learning a discriminative dictionary, there is
usually only a weak conection between the dictionary con-
struction and the implementation of top level classifiers.



Our model also builds on ideas related to learning classi-
fiers using a discriminative framework and latent variables.
In particular, [13] uses a latent SVM scheme to develop
an object recognition approach based on mixtures of multi-
scale deformable part models. This model is later extended
to the case of action recognition [25]. In contrast to our
approach, the model in [13] is limited to binary classifica-
tion problems. Recently, [35] proposes a hierarchical latent
variable approach to action recognition that directly consid-
ers the multiclass classification case. The layered model in
[35] incorporates information about patches, hidden-parts,
and action class, where the meaning of the hidden layers is
not clear. In contrast, our hierarchical model integrates se-
mantically meaningful information at all layers: poses, ac-
tions and activities. Unlike [35], our model can account for
compositions of actions into activities and, as a byproduct,
outputs per-body-part and per-frame action classification,
so it has the appealing property that mid-level semantics
are produced in addition to the final activity classification
decision. [34] proposes a model for action recognition in
static images, so it solves a different problem. It is not clear
if an extension to spatio-temporal compositions is possible.
Similarly to our approach, [35] and [34] also use a latent
svm machinery for model learning and inference, but details
of the formulations are distinct to our framework. Further-
more, the novelty of our work is the proposed model, not
the actual learning/inference algorithms.

In terms of hierarchical compositional models, our work
is related to recent recognition approaches based on deep
learning (DL) [3, 18], where the training process usually in-
corporates hierarchical estimation of latent variables, spatial
pooling schemes, and intermediate representations based on
linear filters. DL is usually applied over raw image repre-
sentation using several layers of generic structures. As a
consequence, DL architectures have many parameters and
they are usually difficult to train. In contrast, we embed
semantic knowledge to our model by explicitly exploiting
compositional relations among poses, actions, and activi-
ties. This leads to simpler architectures and allows us to in-
corporate labeled data at intermediate layers. Furthermore,
our max-margin approach is based on a Hinge loss, and not
quadratic or logistic functions commonly used to train DL
architectures leading to different optimization problems.

Our method tackles some limitations of previous work
with a new framework that models spatio-temporal compo-
sitions of activities using a hierarchy of three sematic lev-
els. The compositional properties of our model enable it
to provide meaningful annotations and to handle occlusions
naturally.

3. Model Description
We now introduce the details of our model. Fig. 2 sum-

marizes our model graphically.
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Figure 2. Overview of our discriminative hierarchical model for
recognition of composable human activities. At the top level, ac-
tivities are compositions of actions that are inferred at the inter-
medite level. These actions are in turn compositions of poses at
the lower level, where pose dictionaries are learnt from data. Our
model also divides each pose into R spatial regions to capture re-
gions that are relevant to each activity. This figure illustrates the
case when R = 2. Best viewed in color.

3.1. Video Representation

We represent actions as a sequence of human body poses
estimated at each frame. Our algorithm extracts from RGB-
D videos, a feature vector representing body poses using
the methods in [29, 10]. Specifically, given a video D with
T frames, we extract a feature vector X = {x1, . . . , xT },
where xt is a set of pose features extracted from the 3D
body configuration estimated at frame t. Our pose features
inspired by [10] include relative location between body
joints, angles between limbs and angles between limbs and
planes spanned by body parts.

3.2. Hierarchical Model
To recognize human activities and actions we propose a

3-level compositional hierarchical model. At the top level,
our model assumes that each human activity is composed
by a temporal and spatial arrangement of atomic actions.
At the intermediate level, our model assumes that each
atomic action is composed by a temporal arrangement of
body poses. Finally, at the bottom level of the hierarchy,
our model assumes that each body pose is composed by a
spatial arrangement of features derived from RGB-D data.
Given a video D, composed of T frames, where each frame
t is described by a feature vector xt, we define a video clas-
sification score, or energy function, for D as:

E(D) = Eactivity +Eactions +Eposes +Eaction transition +Epose transition.
(1)

In Equation (1), energy E is expressed in terms of poten-
tials associated to the activity present in video D and its
related actions and poses. We also consider two energy po-
tentials that encode information related to temporal transi-
tions between pairs of consecutive actions and body poses.
Next, we specify models for these energy terms.



At the lowest level of the hierarchy, the goal is to learn
a dictionary of body poses using feature vectors xt, t ∈
[1, . . . , T ]. To achieve this, we introduce a latent vector
Z = (z1 . . . zT ), where component zt indicates the entry
assigned to frame t from the dictionary of body poses. Let
w = (w1 . . . wK) beK coefficient vectors corresponding to
a set of linear classifiers that define the entries of a dictio-
nary of K visual poses. We define the energy term Eposes in
Equation (1) as:

Eposes =

T∑
t=1

w>ztxt =

T∑
t=1

K∑
k=1

w>k xtδ(zt = k) (2)

where δ(`) = 1 if ` is true and δ(`) = 0 if ` is false.
At the second level of the hierarchy, we use the dic-

tionary of body poses to describe atomic actions using
a bag-of-words (BoW) representation (average pooling).
Specifically, ha(Z, V ) is the histogram over the pose dic-
tionary at those frames assigned to action a, where V > =
(v1 . . . vt . . . vT ) is a vector of action labels for each frame.
Also, let βa = (βa,1, . . . βa,K) be the K coefficients of a
linear classifier associated to action a, a ∈ [1, . . . , A]. Each
entry k in ha(Z, V ) is given by:

hak(Z, V ) =

T∑
t=1

δ(zt = k)δ(vt = a) (3)

Then, the energy potential of the action labels V for all
frames of video D is given by:

Eaction =

A∑
a=1

β>a h
a(Z, V ) =

∑
a,t,k

βa,kδ(zt = k)δ(vt = a) (4)

Notice Equation (3) assumes available labeled data V for
the atomic actions present in each frame of D during train-
ing time. Nevertheless, similarly to Equation (2), it is possi-
ble to introduce latent variables and extend our model to the
case that a dictionary of atomic actions needs to be learned.

At the third level of the hierarchy, we use the action vo-
cabulary accumulated over all T frames to build a BoW
representation for the underlying activity. Specifically, let
hc(D) be the histogram corresponding to activity c in video
D. Each entry a in hc(D) is given by:

hca(D) =

T∑
t=1

δ(vt = a) (5)

Eactivity = α>c h
c(D) =

A∑
a=1

T∑
t=1

αc,aδ(vt = a) (6)

In terms of the energy terms associated to action and pose
transitions in Equation (1), we depart from BoW represen-
tations and we introduce energy potentials that take into
account temporal co-occurrences between poses and ac-
tions in neighboring frames. Specifically, let coefficients
γa,a′ ∈ R and ηk,k′ ∈ R quantify co-ocurrence strength
between neighboring pair of actions (a, a′) or pair of poses

(k, k′), respectively. Action and pose transitions energy po-
tentials in Equation (1) are given by:

Eaction transition =

A∑
a=1

A∑
a′=1

γa,a′
T−1∑
t=1

δ(vt = a)δ(vt+1 = a′) (7)

Epose transition =

K∑
k=1

K∑
k′=1

ηk,k′
T−1∑
t=1

δ(zt = k)δ(zt+1 = k′) (8)

At the frame level, the previous model relies only on
global image representations extracted at each frame. How-
ever, several works have shown the relevance of including
local spatial information to boost recognition results [21].
Consequently, we account for local information by dividing
each body pose at frame t intoR spatial regions. Therefore,
Equations (2), (4), (7), and (8) become, respectively:

Epose =

R∑
r=1

T∑
t=1

w>zt,rxt,r (9)

Eaction =

R∑
r=1

A∑
a=1

β>a,rh
a,r(Z, V ) (10)

Eaction transition =
∑
a,a′,r

γa,a′,r

T−1∑
t=1

δ(vt,r = a)δ(vt+1,r = a′)

(11)

Epose transition =
∑
k,k′,r

ηk,k′,r

T−1∑
t=1

δ(zt−1,r = k)δ(zt,r = k′)

(12)

3.3. Learning
We cast our formulation as an energy minimization prob-

lem. In particular, rather than first learning a dictionary of
body poses and then learning classifiers for actions and ac-
tivities, our goal is to learn all relevant parameters simulta-
neously using a multiclass max-margin approach. The in-
put to our training algorithm is a set of M video sequences,
where each video Di containts annotations at the activity
yi and action Vi levels, and its set of T video frames is de-
scribed by the set of feature vectorsXi = (x1, . . . , xT ). We
aim to find optimal values for parameter sets α, β, W , γ ,
and η, as well as, slack variables ξ and latent variables Z,
by solving the following max-margin learning problem:

min
{α,β,w,γ,η,ξ,Z}

λ1

2RC
||α||2F +

λ2

2RA
||β||2F +

λ3

2RK
||w||2F

+
λ4

2R
||γ||2F +

λ5

2R
||η||2F +

λ6

M

M∑
i=1

ξi (13)

subject to the restrictions:

max
Zi

E(Xi, Zi, Vi, yi)− E(Xi, Z, V, y) ≥ ∆((yi, Vi), (y, V ))− ξi,

∀y ∈ Y, Z ∈ Z, V ∈ V, i ∈ [1...M ] (14)



A loss function that favors predicting the correct labels for
each activity and set of atomic actions is given by:

∆((yi, Vi), (y, V )) = λ7δ(y 6= yi) +

λ8

RT

R∑
r=1

T∑
t=1

δ(vt,r 6= v(t,r)i)(15)

By selecting a large value of λ7, we give a large penalty
when the activity is not predicted correctly. The second
term adds a penalty proportional to the number of regions
that are not labeled with the correct action according to Vi.

Given the loss function in Equation (15), the constrained
optimization problem in Equation (13) is similar to a latent
structural SVM case [39], therefore it can be solved using a
Concave-Convex Procedure (CCCP) [40] which guarantees
convergence to a local minimum. The CCCP algorithm al-
ternates between maximizing Equation (13) with respect to
the latent variables, and solving a structural SVM optimiza-
tion problem [32] that treats latent variables as completely
observed. Given space constraints we defer the details of
this optimization to the supplementary material.

3.4. Inference
The input to the inference algorithm is a new video se-

quence with featuresX . The task is to infer the best activity
label y∗ and the best action labels V ∗. Additionally, we also
need to estimate latent variables Z.

y∗, V ∗, Z∗ = argmax
y,V,Z

E(X,Z, V, y) (16)

We can solve this by exhaustively enumerating all values
of y, and solving the following at each step:

V ∗y , Z
∗
y = argmax

V,Z
E(X,Z, V, y) (17)

Therefore, for each possible activity-class y, we must
find V ∗y and Z∗y frame-wise using:

v∗(t,r)y , z
∗
(t,r)y

= argmax
vt,zt

αy,r,vt + βvt,r,zt + w>zt,rxt,r

+ γvt−1,vt,r + ηzt−1,zt,r (18)

See the supplementary material for further details.

4. Experiments
We validate our model with a series of evaluations using

several activity datasets acquired with RGB-D cameras. We
first report results on two previously released and publicly
available datasets: MSR Action3D [22] and CAD120 [17].
Then, we use a new benchmark dataset with Composable
Activities that we make available to the community.

Implementation details: In all experiments, we divide
the body intoR = 4 spatial regions: right arm, right leg, left
arm, and left leg. Inspired by [10], at the lowest level, each

body region r is represented by a feature vector xr of 21 di-
mensions: 15 corresponding to line-to-line angles between
body joints, and 6 corresponding to line-to-plane angles. In
the case of MSR Action3D dataset that includes actions in-
volving fine motions of hands and feet, we also incorporate
to our descriptor the temporal derivative (velocity) of body
joints associated to wrists and ankles.

To initialize latent variables Z, we obtain an initial dic-
tionary of body poses by clustering low level descriptors
X using the standard k-means algorithm. Using this initial
dictionary, the value of each latent variable is obtained by
associating the corresponding descriptor to its closest cen-
troid. Afterwards, the pose dicctionary is estimated using a
set of linear SVM classifiers, as in Eq. (2).

It is important to note that during training, our algorithm
takes a global annotation for each video at the activity level,
as well as per-frame annotations of the actions associated to
each body region. At test time, these labels are not avail-
able and it is the task of our algorithm to infer them using
the learned model. Furthermore, for training and evalua-
tion purposes, we augment the annotations in each dataset
with an additional idle or background action, at each frame
where the subject is not executing any action.

4.1. MSR Action3D Dataset

The MSR Action 3D dataset consists of 7 subjects per-
forming 20 possible actions. For more details about this
dataset please refer to [22]. In our experiments, we use 552
sequences, and we test our model using cross-subject val-
idation. We omit some videos as they have missing joints
in the last half of the sequence. This dataset only includes
annotations at a single complexity level, and each video is
associated with a single global action label. In order to bet-
ter showcase the hierarchical capabilities of our model, we
keep the global activity label but also annotate all frames
with the given action class, except those frames where the
subject is standing still, which we label as background.

Our model achieves an action classification accuracy of
89.5%, a recognition performance that is on par with the
state-of-the-art. Although this dataset does not provide a
rich hierarchy of complex activities composed by atomic
actions, this result allow us to validate that our model per-
forms well on the task of single action recognition.

As in the case of alternative techniques, most of the ac-
tions can be recognized with almost perfect accuracy, but
some actions are still dificult to discriminate, such as hand
catch and high throw, due to highly similar movements. Ta-
ble 1 shows the accuracy of our method in comparison to
state-of-the-art approaches.

4.2. CAD120 Dataset

The CAD120 dataset is introduced in [17]. It is com-
posed of 124 videos that contain activities in 10 clases per-



Algorithm Accuracy
Our method 89.46%

J. Wang et al. [34] 88.20%
C. Wang et al.[33] 90.22%

Oreifej and Liu [26] 88.89%
Xia and Aggarwal [37] 89.30%

Table 1. Recognition accuracy of our method compared to state-
of-the-art methods using MSR Action3D dataset.

Algorithm Average precision Average recall
Our method 32.6% 34.58%

[17] 27.4% 31.2%
[30] 23.7% 23.7%

Table 2. Recognition accuracy of our method compared to state-
of-the-art methods using CAD120 dataset.

formed by 4 actors. Activities are related to daily living:
making cereal, stacking objects, or taking a meal. Each ac-
tivity is composed of simpler actions like reaching, moving,
or eating. In this database, human-object interactions are
an important cue to identify the actions, so object locations
and object affordances are provided as annotations. Per-
formance evaluation is made through leave-one-subject-out
cross-validation. Given that our method does not consider
objects, we use only the data corresponding to 3D joints
of the skeletons. As shown in Table 2, our method outper-
forms the results reported in [17] using the same experimen-
tal setup. It is clear that using only 3D joints is not enough
to characterize each action or activity in this dataset. As
part of our future work, we expect that adding information
related to objects will further improve accuracy.

4.3. A New Dataset: Composable Activities

We introduce a new benchmark dataset, Composable
Activities, consisting of 693 videos that contain activities
in 16 classes performed by 14 actors. We capture RGB-
D data for each sequence using a Microsoft Kinect sensor
and estimate position of relevant body joints using [24]. We
only used body joint positions from the estimated skeleton
in each frame to compute our descriptors. Each activity in
this dataset is spatio-temporally composed by a number of
mid-level (atomic) actions. The total number of actions in
the videos is 26, while the number of actions that compose
each particular activity fluctuates between 3 to 11 actions.
For instance, the activity walk while hand waving has a
spatio-temporal composition of 3 single actions: walk, hand
wave, and idle; while the activity composed-activity-4 is
composed of 11 single actions: idle, walk, call a friend with
hands, hand wave, talking on cellphone, pick from the floor,
dial cellphone, put an object, pick cellphone from pocket,
and put cellphone in pocket (see Figure 1). The skeleton
data and annotations can be downloaded our project web-
page, http://web.ing.puc.cl/ialillo/ActionsCVPR2014.

In our leave-one-subject-out experimental setup, the ac-

.83 .17

1.0

.05 .95

.55 .40 .05

.89 .05 .05

1.0

1.0

.05 .05 .74 .11 .05

.94 .06

1.0

.11 .89

.17 .11 .22 .50

.05 .05 .89

.06 .28 .67

1.0

1.0

Walk while reading

Walk while calling with hands

Walk while claping

Walk while hand waving

Talk phone and drink

Talk phone and scratch head

Talk phone and pick up

Composed activity 1

Composed activity 2

Composed activity 3

Composed activity 4

Composed activity 5

Composed activity 6

Composed activity 7

Composed activity 8

Hand wave and drink
W. w. r.

W. w. c. w. h.

W. w. c.

W. w. h. w.

T. p. d.

T. p. s. h.

T. p. p. u.

C. A. 1
C. A. 2

C. A. 3
C. A. 4

C. A. 5
C. A. 6

C. A. 7
C. A. 8

H. w. d.

Figure 3. Confusion matrix for the activity classification task in
the new Composable Activities dataset.

curacy of our model is 85.7%, when using K = 50 poses
for each body part (a total of 200 poses), which provides a
good compromise between model complexity and accuracy.
We also set the model parameters λ7 to 500, λ8 to 100, and
λ9 to 20. In general, we use cross-validation to adjust the
value of all our main parameters.

We compare the performance of our method with re-
spect to three baselines techniques: a BoW representation
plus a lineal SVM classifier (BoW-approach), a version of
our model without learning the pose dictionary (H-BoW-
approach), and a Hidden Markov Model approach (HMM-
approach). In the case of BoW-approach we use k-means
to obtain a pose dictionary that is used to quantize the ob-
served poses. We build a global histogram of poses using
all frames of the sequence and enhance it with a version
of Spatial Pyramids (SPM). The accuracy of this baseline
is 67.2%. Our model demonstrates a substantial accuracy
improvement, exploiting the ability to model activities and
actions, and jointly learning a pose dictionary. A second
baseline consists of a simplified version of our hierarchical
model that does not learn the pose dictionary, but uses a
fixed pose quantization given by k-means. In this case, the
accuracy drops by 11%, which supports the inclusion of our
discriminative learning scheme to learn the pose dictionary.
The third baseline is an HMM model, which is learned us-
ing atomic actions as states and poses as observed variables.
A model is learned independently for each class. At test
time, we score a new sequence using all models, and select
the activity label that corresponds to the model with highest
log-likelihood. This baseline obtains an accuracy of 76.5%.
Recognition rates are summarized in Table 3.

Effects of size of pose dictionary: Our method is rela-
tively robust to the size of the pose dictionary. A low num-
ber of poses per body part (5 to 20) lacks reprensentativity,
and a high number increases the computational load. In our
experiments, we observe similar performance for the case
of 50, 100 and 150 poses per body part. When testing with



Algorithm Codebook size Accuracy
Our method 200 (learned) 85.7%
Our method 600 (learned) 82.9%

BoW 200 (fixed) 67.2%
BoW 600 (fixed) 62.3%

H-BoW 200 (fixed) 74.2%
H-BoW 600 (fixed) 71.5%
HMM 200 (fixed) 76.5%
HMM 600 (fixed) 72.3%

Table 3. Recognition accuracy of our method compared to three
baselines: Bag-of-Visual-Features (BoW), our method but without
learning pose dictionary (H-BoW), and a Hidden Markov Model
approach (HMM).

25 poses the accuracy drops by 6%. We did not test larger
dictionaries due to the processing time, which is quadratic
with respect to dictionary size. We chose 50 poses per body
part in our experiments as a compromise between good ac-
curacy and processing speed.

Importance of transition terms in the model: When
we simplify our model by fixing the pose dictionary and
dropping the energy terms related to action and pose transi-
tions, we observe a drop in accuracy of 11.2%. If we learn
the pose dictionary, but ignore the temporal transition com-
ponents γ and η, accuracy drops by 4.8%. As expected,
learning temporal cooccurrence improves the accuracy of
our method, as it links poses and actions over time. In our
current model, we use a single frame correlation; this short-
term relation could be expanded to middle or long term cor-
relations, with the cost of an increased running time.

Action annotation: The hierarchical structure and com-
positional properties of our model enable it to perform per-
frame annotation of the atomic actions that compose each
activity, and to indicate which body parts are associated to
the atomic actions present in a frame, as well as the tempo-
ral span of each action. We illustrate this capability in Fig.4.
The accuracy of the mid-level action prediction can be eval-
uated as in [36]. We first get segments of the same predicted
action in each sequence, and then compare these segments
with ground truth action labels from annotated data. The in-
ferred label of the segment is assumed correct if a detected
segment is completely contained in a ground truth segment
with the same label, or if the Jaccard Index of the segment
and the ground truth of the same action label is greater than
0.6. Using these criteria, the accuracy of the mid-level ac-
tions is 70.2%. In many of the mistakes, the wrong action
label only affects a single part, and the model is still able to
correctly predict the activity label of the sequence.

Robustness to occlusion: Our method is also capable of
inferring action and activity labels even if some joints are
not observed. To illustrate this, we simulate an occluded
part by fixing it to the position observed in the first frame.
We select a part to be occluded in every sequence using
a uniform sampling. In this scenario, the accuracy of our

Gesticulate Write on whiteboard

Read magazine GesticulateRaise hand Being sitted

Jog JumpStand up Squat

Read magazine Put objectPick object Sit down Stand up

Being sitted Idle

Figure 4. Per-frame simple action annotation results. In these ex-
amples, our algorithm correctly classifies the overall activity cat-
egory. Furthermore, it is able to correctly predict the atomic ac-
tions that compose each activity and which body parts contribute
to those actions. Each body part is colored according to the pre-
dicted action label.

Walk Clap hands

Right arm occluded

Walk Read magazine Erase board Pick object
Put object Idle

Left leg occluded

Walk Pick objectRead magazine Sit down Stand up
Being sitted Idle

Left arm occluded

Figure 5. The occluded body parts are depicted in light blue. When
an arm or leg is occluded, our method still provides a good esti-
mation of actions in each frame.

model drops by 7.2%, while the drops in performance of
BoW is (12.5%) and HMM (10.3%). Also, Fig. 5 shows
some qualitative results.

5. Conclusions and Future Work

We present a novel hierarchical compositional model to
recognize human activities using RGB-D data. The pro-
posed method is able to jointly learn suitable representa-
tions at different abstraction levels leading to compact and
robust models, as shown by the experimental results. In par-
ticular, our model achieves powerful multi-class discrimina-
tion while providing useful annotations at the intermediate
semantic level. The compositional capabilities of our model
also bring robustness to partial body occlusions.



Ground truth: Walk while calling with hands
Prediction: Walk while hand waving

Ground truth: Composed activity 1
Prediction: Talk phone and drink

Ground truth: Hand wave and drink
Prediction: Talk phone and scratch head

Figure 6. Failure cases. Our algorithm tends to confuse activities
that share very similar body postures.
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