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Abstract

Recovering a non-rigid 3D structure from a series of

2D observations is still a difficult problem to solve accu-

rately. Many constraints have been proposed to facilitate

the recovery, and one of the most successful constraints

is smoothness due to the fact that most real-world ob-

jects change continuously. However, many existing meth-

ods require to determine the degree of smoothness before-

hand, which is not viable in practical situations. In this

paper, we propose a new probabilistic model that incor-

porates the smoothness constraint without requiring any

prior knowledge. Our approach regards the sequence of

3D shapes as a simple stationary Markov process with Pro-

crustes alignment, whose parameters are learned during

the fitting process. The Markov process is assumed to be

stationary because deformation is finite and recurrent in

general, and the 3D shapes are assumed to be Procrustes

aligned in order to discriminate deformation from motion.

The proposed method outperforms the state-of-the-art meth-

ods, even though the computation time is rather moderate

compared to the other existing methods.

1. Introduction

Non-rigid structure from motion (NRSfM) [14] is a fun-

damental problem in computer vision to recover 3D shapes

of a deforming object from a set of 2D observations. It

is a non-rigid counterpart of structure from motion (SfM)

problem [12], which deals with a stationary object. SfM

can be efficiently solved using the Tomasi-Kanade factor-

ization method [12], because the rank assumption in this

approach is fairly accurate. Extending this method to non-

rigid cases [4,9,13,14] were successful for simple deforma-

tions but not for stronger deformations, even though the so-

lution was proven to be unique [1]. This is mainly because

the fixed rank assumption is not quite adequate for non-rigid

cases, which eventually makes the estimation poor.

An alternative is to use a trajectory-based approach

[2, 5]. This ‘dual’ approach focuses on the trajectories of

points, which is modeled using DCT bases. Trajectory-

based approaches basically impose a smoothness constraint

on the motion or deformation of objects. Since real ob-

jects deform and move continuously, it is a good assump-

tion to make in NRSfM, and indeed these approaches per-

form better for the tested data sets in [2, 5]. However, these

approaches require the number of DCT bases to be prede-

termined, which is not practical.

Meanwhile, Cho et al. [3] proposed an approach that ex-

tended generalized Procrustes analysis (GPA) for NRSfM.

Later, Lee et al. [8] proposed the Procrustean normal distri-

bution (PND) to solve NRSfM without requiring any prior

information. The PND, which is a special case of the nor-

mal distribution, represents the distribution of Procrustes

aligned shapes, i.e., the distribution of shape deformations.

The PND excludes any changes in 3D coordinates due to

similarity transform to separate motion and deformation,

which helps to accurately reconstruct a 3D structure. Con-

sequently, EM-PND, an EM algorithm based on the PND,

provides better reconstruction results without any additional

constraints such as the rank restriction. This method gives

de facto state-of-the-art performance for most cases, but not

when there are drastic changes in shape. In these cases,

trajectory-based methods can give better reconstructions

thanks to the smoothness assumption, but of course, with

an appropriate choice of the number of DCT bases.

Large deformations are common in most video se-

quences, so the capability to handle large deformation is

very important for the practicality of an NRSfM scheme.

To handle large shape changes in NRSfM, the smoothness

assumption is vital. Large changes in data imply that the

shape goes through a large variation as the video sequence

progresses, so it is better to give more weights to near-

by frames than far-away ones in speculating a specific 3D

shape. However, to make the smoothness assumption really

useful, it should not require predetermined parameters, such

as the number of DCT bases.

Using a Markov-type model and learning the degree of

smoothness in the recovery process can be a solution to

this. In fact, there was an attempt to apply a Markov model

to NRSfM in the literature. Torresani et al. [13] proposed

EM-LDS that used a first-order linear Markov model to in-



corporate the smoothness assumption, in conjunction with

two other schemes. According to our experimental results

in Section 4, however, it is difficult to say that EM-LDS

is better than their main scheme, EM-PPCA, because EM-

LDS often gave much worse results than EM-PPCA. This

means that we may need to impose additional constraints to

the Markov model.

In this paper, we show that a simple Markov model can

still be effective for NRSfM. With appropriate assumptions,

we can make the model sufficiently powerful without in-

creasing the model order. To demonstrate this, we pro-

pose a simple Markov process, which will be called as the

Procrustean Markov processs (PMP) hereafter, that can ef-

fectively model shape deformation. The PMP is a first-

order stationary Markov process with Procrustes alignment,

whose steady-state distribution is a PND. The most impor-

tant contribution of this paper is to incorporate a stationarity

assumption for this Markov model, which was not utilized

in EM-LDS. This is an important assumption, because the

deformation of an object is usually finite and recurrent. For

example, arms do not elongate infinitely and jaws do not

drop to the ground, but constantly go back to their original

positions in human motion. Hence, restricting the overall

deformation using the stationarity constraint can make the

model focus only on likely deformations.

Each state of the PMP satisfies the 7-dimensional PND

constraint [8] in order for all the individual shapes to be

Procrustes aligned. This makes the motion and deforma-

tion well separated as in the PND. Hence, the PMP has the

same advantages of the PND while satisfying the smooth-

ness constraint. As a result, the PMP has most of the de-

sired characteristics discussed in the literature of NRSfM.

The proposed scheme, EM-PMP, is an EM algorithm that

learns the parameters of the PMP, including the smoothness

parameter of the Markov process, from a sequence of given

2D observations. Experimental results show that EM-PMP

not only gives much better result than EM-PND for data

with large deformation, but also gives much smaller errors

for many of the cases in the experiments.

Another thing to mention is that, the first-order linear

model of the PMP is much simpler than that of EM-LDS

if we do not take the Procrustes and stationarity constraints

into account: It has only one parameter in the model, which

makes the optimization tractable with the stationarity con-

straint. We actually tested several variant Markov models

with the Procrustes constraint but without the stationarity

constraint, and these models did not give superb perfor-

mance as EM-PMP. This suggests that the stationarity con-

straint is essential in solving this problem.

The remainder of this paper is organized as follows: We

present a brief review of the PND and the definition of the

PMP in Section 2. Based on the PMP, the proposed EM-

PMP is introduced in Section 3. The experiments are fol-

lowed in Section 4, and finally, we conclude the paper in

Section 5.

2. Procrustean Markov process

A Markov model for NRSfM must be designed carefully

to capture the characteristics of real data. Deformation in

the model needs to be well separated from motion in order

to correctly infer the dependency between shapes, and un-

likely shape changes during deformation should be avoided

as much as possible. We propose the Procrustean Markov

process (PMP) to meet these criteria. The PMP is a sta-

tionary Markov process whose steady-state distribution is a

PND. Since the PMP is assumed to be a stationary Markov

process, it prevents shapes to undergo potentially infinite

deformation, which is unlikely in the real world. More-

over, the change between sequential frames of the PMP is

assumed to have a PND-like distribution that satisfies the

same PND constraints as the steady-state distribution. In

this way, the whole sequence of 3D shapes will be aligned

as in the generalized Procrustes analysis (GPA) [6], result-

ing in an accurate separation of motion and deformation.

In this section, we first briefly review the PND, which is

the steady-state distribution of the PMP, and then formally

define the PMP.

2.1. A brief review of the PND

The PND [8] is a probability distribution of shape de-

formation that does not contain any changes due to rigid

motion. It only considers variations of GPA-aligned shapes

in its distribution to distinguish deformation changes from

rigid changes, which makes it very useful in non-rigid struc-

ture recovery. The PND is a special case of the normal dis-

tribution, whose null space is closely related to the similar-

ity transforms of its mean shape. Let Y ∈ R
3×np be a PND

shape where np is the number of points, then

vec(Y) = vec
(
Y
)
+Qv,

v ∼ N (0,Σ) , Q = PN

(
Y
)⊥

,
(1)

where vec(·) is the vectorization operator, Y is the mean

shape with unit norm, and v ∈ R
3np−7 is a zero-mean

Gaussian random vector with covariance Σ. Q is a 3np ×
(3np − 7) dimensional orthogonal matrix, and PN

(
Y
)

is a

3np× 7 matrix. The rank of PN is 7, which corresponds to

the degrees of freedom of a 3D similarity transform (1 for

scale, 3 for rotation, and 3 for translation). It can be shown

that the columns of PN form the basis for the shape changes

of Y due to infinitesimal variations of similarity transforms.

This distribution is denoted as Y ∼ NP

(
Y,QΣQT

)
.

PN

(
Y
)

in the above equation can be described as [8]

PN =
[
vec

(
Y
)

K
(
Y
)

(1⊗ I)
]
,

K
(
Y
)
=

[[
y1

]
×
· · ·

[
ynp

]
×

]T
,

(2)



where yi is the ith column vector of Y, ⊗ is the Kronecker

product, and
[
y
]
×
∈ R

3×3 is the matrix equivalent of the

cross product of y with another vector [8] and is given as

[
y
]
×
=




0 −y3 y2
y3 0 −y1
−y2 y1 0


 . (3)

Each column of PN represents different motion changes by

similarity transform, i.e., the first column is related to scale

changes, the second to fourth columns to rotation changes,

and the others to translation changes. Since PN is related

to the similarity transform of the mean shape, the no-rigid-

motion state of an individual sample in a PND is determined

with respect to (w.r.t.) the mean shape. The conceptual dia-

gram of the PND is depicted in Fig. 1.

An important property of the PND is that its instances are

aligned shapes obtained by the modified GPA problem [8].

GPA, which is a standard algorithm for aligning shapes, su-

perimposes multiple landmark shapes to a common refer-

ence using rigid transforms. Let us consider the following

GPA problem with a modified scale constraint [8]:

min
si,Ri,ti,Y

∑∥∥siRiYi + ti1
T −Y

∥∥2

subject to
∥∥Y

∥∥ = 1, RT
i Ri = I,

si tr
(
RiYiY

T
)
= 1.

(4)

Here, si, Ri, and ti are the scale, rotation, and translation

of the ith shape Yi. If {Yi} are all the possible samples

of a PND, then si = 1, Ri = I, and ti = 0 is very close1

to a local optimum of this problem, i.e., PND samples no

longer needs translation, rotation, and scaling in solving this

modified GPA problem. This means that a PND only con-

tains aligned shapes as samples, excluding any rigid mo-

tion changes. Due to this property, the PND can accurately

model the deformation of a shape, which helps to effectively

separate deformation from motion in NRSfM.

The modified scale constraint in this GPA problem (the

last constraint in (4)) makes each individual shape lie on

a linear subspace which is tangent to the mean shape [8],

whereas the original scale constraint in GPA makes the

aligned shapes lie on a unit-ball, which requires more effort

in modeling a probability distribution. It is this property of

the modified scale constraint that makes the PND possible

to be defined as a normal distribution. The probability den-

sity function (pdf) of a PND is given as follows:

p(Y) ∝
1

|Σ|
1

2

exp

(
−
1

2
v′TQΣ−1QTv′

)
δ
(
QT

Nv′
)
,

v′ = vec
(
Y −Y

)
,

(5)

1This trivial solution is not a local optimum, because the domain of

the PND excludes all rigid transformed shapes, but some of reflected ones.

However, the probability of the shapes with these reflections are usually

very small in a PND.

PN(Y)

Yi-1

Yi Yi+1

Yi+2

p(Y)=c3

p(Y)=c2

p(Y)=c1

Figure 1. The conceptual diagrams of the PND and PMP. The PND

(blue) is orthogonal to the subspace PN

(

Y
)

, which is related to

similarity transforms of its mean shape Y. The PMP (red) is a sta-

tionary Markov process whose steady-state distribution is a PND.

where QN is an orthogonal matrix that spans the same

space as PN . Samples Y that satisfy QT
Nv′ 6= 0 consti-

tute the null space of the PND. Therefore, when Y is not in

the null space, δ
(
QT

Nv′
)

becomes 1 and p(Y) becomes a

Gaussian distribution.

2.2. Definition of the PMP

Although the PND has demonstrated promising results

in NRSfM [8], it does not incorporate the smoothness as-

sumption which can be useful for data with large changes.

The PMP is a Markov process version of the PND to handle

large changes during deformation.

Let us define a first-order linear Markov process as

vec(Yi) = α vec
(
Yi−1 −Y

)
+ vec

(
Y
)
+ ωi, (6)

where α is a smoothness parameter and ωi is an i.i.d. Gaus-

sian random vector. The physical meaning of this model

is that a shape’s deformation from the mean shape is ad-

ditively changed from that of its previous shape, which is

multiplied by the smoothness parameter. Let us also assume

that this Markov process is stationary and the steady-state

distribution of Yi is a PND, i.e.,

Yi ∼ NP

(
Y,QΣQT

)
. (7)

Then, in order to make this assumption valid, ωi must be of

the form,

ωi ∼ N
(
0,QHQT

)
, (8)

and the following condition can be derived from computing

the steady-state covariance matrices in both sides of (6):

Σ = α2Σ+H. (9)

The condition, ‖α‖ ≤ 1, follows from the positive definite-

ness of Σ and H. This is a very simple case of Lyapunov

equation [7]. Since this condition ensures the stationarity

of the Markov process, we call this as the stationarity con-

straint of the PMP. The reason we define the transition α



as a scalar rather than a matrix is to make the optimization

problem solvable with the stationarity constraint in NRSfM.

If a matrix is used instead of α in (6), the Lyapunov equa-

tion derived from the steady-state covariance of (6) becomes

more complex and the optimization becomes very difficult

to solve. As mentioned in Section 1, the stationarity as-

sumption is important to prevent unlikely situations such as

infinitely extending arms.

Since Yi −Y = QQT
(
Yi −Y

)
and QTY = 0 from

(1) and (2), the Markov process (6) can also be expressed as

vec(Yi) = αQQT vec(Yi−1) + vec
(
Y
)
+ ωi, (10)

and the conditional distribution is given as

p(Yi|Yi−1) ∝ exp

(
−
1

2
v′′TQH−1QTv′′

)
δ
(
QT

Nv′′
)
,

v′′ = vec
(
Yi −Y

)
− αQQT vec(Yi−1) .

(11)

The smoothness parameter α determines the degree of

smoothness in a PMP. A PMP is identical to a series of i.i.d.

PND random shapes when α = 0, and to a (non-deforming)

static shape when α = 1. The conceptual diagram of the

PMP is also shown in Fig. 1.

The probability of a PMP sequence {Yi} , 1 ≤ i ≤ ns,

is given as

p({Yi}) = p(Y1)
∏

p(Yj |Yj−1) . (12)

Interestingly, by manipulating this equation, we can find out

that a PMP sequence in reverse order has the same proba-

bility:

p(Y0, . . . ,Yns
) = p(Yns

, . . . ,Y0) . (13)

This means that the PMP is a reversible Markov process. In-

deed, the PMP can be shown to satisfy the detailed balance

equation, i.e., p(Yi|Yi−1) p(Yi−1) = p(Yi−1|Yi) p(Yi).
Because of this property, many solutions of the optimization

process in Section 3 are found in symmetric forms. The fact

that the PMP is reversible means that any deformation can

occur in reverse order. Most deformations in the real world

are reversible, which makes the PMP more appropriate for

practical shape deformations.

3. The proposed algorithm: EM-PMP

The proposed algorithm, EM-PMP, learns the parame-

ters of the PMP including α from a given 2D observations

using EM algorithm. Let Di ∈ R
nd×np be the input land-

mark data, observed by an orthographic camera, of the ith
frame, and Wi ∈ R

nd×np be the weight matrix of ones and

zeros that indicates whether the corresponding elements are

observed or missing. In the case of NRSfM, the last row

of Wi is filled with zeros because the z coordinates are un-

known. We also assume that the translation component is

initially removed from each Di as

dijk ←

{
dijk −

∑
l
wijldijl∑
l
wijl

if wijk = 1

0 otherwise
, (14)

where dijk and wijk are the (j, k)th elements of Di and

Wi, respectively. After this initialization, Di satisfies

Di1 = 0. In the following subsections, we will explain

the detailed procedure of EM-PMP.

3.1. Objective function

Let us define the parameter set Φ as Φ ={
σ, si,Ri,Y,Σ,H, α

}
where σ is the standard deviation

of the Gaussian noise for each element of Di. Given that

Xi is the set of hidden parameters representing the true 3D

shape of the ith frame, the objective function is given as

log(p({Di,Xi}|Φ)) =

log(p({Xi}|Φ)) +
∑

log(p(Di|Xi,Φ)) .
(15)

The likelihood of Di is defined as

p(Di|Xi,Φ) ∝
1

σnW
i

exp

(
−

1

2σ2
g2i

)
,

g2i = min
ti

‖Di −Wi ⊙ (Xi − ti)‖
2
,

nW
i =

∑

j

max
{
0,
(∑

k

wijk

)
− 1

}
,

(16)

where ⊙ is the Hadamard product. This means that Di

is represented as a combination of Gaussian noise and the

remnant of Wi⊙Xi after removing the translation compo-

nent. gi can be alternatively expressed as

g2i = ‖vec(Di)− Fi vec(Xi)‖
2
,

Fi = Ŵi − Ŵi

(
11T ⊗ diag(ci)

)
Ŵi,

Ŵi = diag(vec(Wi)) ,

(17)

where ci is an nd-dimensional vector whose jth element

is 1∑
l
wijl

(0 if the jth row of Wi is filled with zeros), and

diag(a) denotes a diagonal matrix with the elements of vec-

tor a on the main diagonal. Note that Fi is a projection ma-

trix, i.e., F2
i = Fi, and multiplying Fi to vec(Xi) removes

the translation component in Xi as in (14).

For the prior distribution of Xi, we assume that the

aligned shapes {Yi} = {siRiXi} are a PMP sequence

with the probability density function

p(Y1|Φ) ∼ NP

(
Y,QΣQT

)
,

p(Yi|Yi−1,Φ) ∼ N
(
α
(
Yi−1 −Y

)
+Y,QHQT

)
.

(18)

Note that p(Yi|Yi−1,Φ) is not a Procrustean distribution

but a Gaussian distribution as described in Section 2.2.



3.2. Estep

In E-step, we calculate the distribution of {Xi} given

{Di} and the current estimates of Φ. Since {Xi} is a first-

order linear Markov process, we can calculate its distribu-

tion using Kalman smoothing [11]. Kalman smoothing is

composed of forward and backward steps, and the forward

step is composed of predict and update steps. For ease of

explanation, we will describe the steps w.r.t. the aligned

shapes {Yi} = {siRiXi}.
Let µ1|1 and C1|1 be the mean and covariance, respec-

tively, of vec(Y1) estimated from the observation D1 and

its prior distribution. If we denote D′
i = 1

si
RT

i Di, R
′
i =

(I⊗Ri), and F′
i =

1
s2
i

R′
iFiR

′T
i , then they are

C1|1 =
( 1

σ2
F′

1 +QΣ−1QT
)−1

,

µ1|1 =
1

σ2
C1|1 vec(D

′
1) .

(19)

In the predict step, the distribution of a frame is predicted

based on that of its previous frame as

µi|i−1 = αsi−1QQTR′
i−1µi−1|i−1 + vec

(
Y
)
,

Ci|i−1 = Q
(
α2QTCi|i−1Q+H

)
QT .

(20)

In the update step, these estimates are updated based on the

observation Di:

Ci|i =
( 1

σ2
F′

i +Q
(
QTCi|i−1Q

)−1
QT

)−1

,

µi|i = µi|i−1 +
1

σ2
Ci|i

(
vec(D′

i)− F′
iµi|i−1

)
.

(21)

In the forward step, these predict and update steps are al-

ternated for all ns frames. The result of this forward step

is the distributions p(Yi|D1, . . . ,Di). We have not men-

tioned that we have ignored the Dirac-delta term in (11) for

deriving these update steps. It is because the Dirac-delta

term makes the updates of the parameters too small in M-

step [8], so we have ignored it to speed up the process.

In the backward step, we calculate the mean and covari-

ance of p(Yi|D1, . . . ,Dns
) from p(Yi|D1, . . . ,Di) and

p(Yi+1|D1, . . . ,Dns
) as

µi|ns
= µi|i + Li

(
µi+1|ns

− µi+1|i

)
,

Ci|ns
= Ci|i + Li

(
Ci+1|ns

−Ci+1|i

)
LT
i ,

(22)

where

Li = αCi|iQ
(
QTCi+1|iQ

)−1
QT . (23)

For the M-step of EM-PMP, the cross-covariance of

vec(Yi) and vec(Yi+1) is also required, which can be eas-

ily calculated as

Ci,i+1|ns
= LiCi+1|ns

. (24)

To simplify the notations, we denote µi = µi|ns
, Ci =

Ci|ns
, and Ci,i+1 = Ci,i+1|ns

if no confusion arises.

After finding the distribution of sequence {Yi}, we can

express the distributions of sequence {Xi} by

µ
′
i =

1

si
R′T

i µi, C′
i =

1

s2i
R′T

i CiR
′
i,

C′
i,i+1 =

1

sisi+1
R′T

i Ci,i+1R
′
i+1,

(25)

where µ
′
i and C′

i are the mean and covariance of vec(Xi),
respectively, and C′

i,i+1 is the cross-covariance of vec(Xi)
and vec(Xi+1).

3.3. Mstep

In M-step, parameter set Φ is updated so that it maxi-

mizes the expectation of (15) w.r.t. p({Xi}) estimated in

E-step. The cost function of M-step is given as follows:

J(Φ) = JD + JX,

JD =
∑
−nW

i log(σ)−
1

2σ2

(
‖vec(Di)− Fiµ

′
i‖

2

+ tr(FiC
′
i)
)
,

JX =
(
−
ns

2
log|H|+ (3np − 7)

∑
log(si)

)
+

3np − 7

2

log
(
1− α2

)
−

1− α2

2
tr
(
QH−1QT

(
h1h

T
1 +Ci

))

−
1

2

∑
tr
(
QH−1QT

(
h′
ih

′T
i +Ci + α2Ci−1

− 2αCi,i−1

))
,

(26)

where

hi = µi − vec
(
Y
)
,

h′
i = µi − vec

(
Y
)
− αQQT

µi−1, for i > 1.
(27)

Note that the stationarity constraint (9) is substituted to this

cost function to eliminate the term Σ. Based on this cost

function, the optimization problem is described as

max
Φ

J(Φ)

subject to RT
i Ri = I,

∥∥Y
∥∥2

= 1,

si tr
(
RiMiY

T
)
= 1, RiMiY

T
∈ Snd

+ ,

(28)

where vec(Mi) = µ
′
i. All the constraints in this problem

are the PND constraints except that Xi is replaced with its

expectation Mi.

This is a difficult problem to solve because Q is a com-

plicated function of Y. Therefore, we regard Q and Y as

independent variables, and solve this problem alternatingly



for each parameter. By solving ∂J/∂Y = 0 and normaliz-

ing the solution, we obtain the update equations for Y:

Y
′
=

( ns∑

i=1

µi

)
− αQQT

( ns−1∑

i=2

µi

)
,

vec
(
Y
)
= Y

′
/
∥∥∥Y′

∥∥∥ .
(29)

Q is updated based on this new Y as follows: We first cal-

culate PN using (2) and then an orthogonal matrix perpen-

dicular to PN is computed using QR decomposition to find

Q. The scales and rotations are updated based on the PND

constraints because the feasible solutions are unique, given

that the frames are non-degenerate. Then the update equa-

tions become

MiY
T
= UiΛiV

T
i ,

Ri = ViU
T
i , si = 1/ tr(Λi) ,

(30)

where the first equation is calculated using SVD.

The equation ∂J/∂α = 0 can be rearranged as a cubic

equation, i.e.,

bα3 − cα2 − (b+ 3np − 7)α+ c = 0. (31)

where

b =

ns−1∑

i=2

tr
(
QH−1QT

(
hih

T
i +Ci

))
,

c =

ns∑

i=2

tr
(
QH−1QT

(
hi−1h

T
i +Ci−1,i

))
.

(32)

We can show that this equation always has one real solution

in the range of [−1, 1]. (see the supplementary material.)

Therefore, we can always find a unique α, which can be

easily found by solving this cubic equation.

H can be found by solving ∂J/∂H = 0, i.e.,

H =
1

ns

QT
(
(1− α2)h1h

T
1 + (1 − α2)C1 +

ns∑

i=2

h′
ih

′T
i

+Ci + α2Ci−1 − αCi−1,i − αCT
i−1,i

)
Q.

(33)

Accordingly, Σ is calculated from (9) as Σ = 1
1−α2H. σ

can also be similarly calculated, however, we have empir-

ically found out that σ decreases too fast to yield a good

solution in the EM iterations. This is because it is much

easier to decrease σ than to adjust the other parameters in

increasing J . Therefore, we introduce a constant β (> 1) to

compensate this behavior:

σ2 =
β∑
nW
i

∑
‖vec(Di)− Fimi‖

2
+ tr(FiCi) . (34)

For the experiments, we used β = 2.

This update procedure should be repeated until conver-

gence in each M-step, but we have found empirically that a

single iteration for each step is sufficient.

3.4. Initialization and 3D reconstruction

For the initialization of si, Ri, and Y, the initialization

scheme in [5] is used. We also use the pre-iteration stage of

EM-PND to speed up the overall process [8]. α is initialized

by solving the following problem:

min
α

1

1− α2

∑
‖Y′

i − αY′
i−1‖

2

subject to |α| ≤ 1,
(35)

where Y′
i = siRiXi−Y. This is equivalent to minimizing

the trace of the sample estimate of Σ. Here, we use the

results of the pre-iteration stage for the missing entries of

Xi. The solution to this problem can be easily found as

α = κ−
√
κ2 − 1,

κ =
‖Y′

1‖
2
+
∥∥Y′

ns

∥∥2 + 2
∑ns−1

i=2 ‖Y
′
i‖

2

2
∑ns

i=2 tr
(
Y′T

i−1Y
′
i

) .
(36)

Σ, H, and σ were initialized as 10−3I, 10−3

1−α2 I, and 10−2,

respectively, in the experiments of Section 4. The EM pro-

cedure was terminated when the change of 1
ns(3np−7)J be-

came less than 0.01. After performing the EM algorithm

until convergence, the final sequence {Mi} become the re-

constructed 3D shapes.

4. Experimental Results

We performed NRSfM experiments using EM-PMP for

various data sets. We used the well-known motion capture

data sets [2,13] and also the manually annotated data of the

Face Recognition Grand Challenge (FRGC) 2.0 Database

[10] used in [8]. The annotated data, having no temporal

dependence, was tested in order to see how EM-PMP per-

forms in such extreme cases.

We conducted experiments with/without noise and/or

missing points. The standard deviation of the Gaussian

noise was set as σnoise = 0.02maxi,j,k{|dijk|}. For the

missing data, we randomly set 30 percents of the land-

marks as missing. We compared the propose method with

other state-of-the-art schemes, which were EM-PPCA, EM-

LDS [13], CSF2 [5], SPM [4], and EM-PND [8]. The pa-

rameters of these methods were set in accordance with their

original paper, and we used the block matrix method for

SPM, which is known to be the best algorithm according

to [4]. The performance was evaluated in terms of normal-

ized reconstruction error, i.e.,

ei = ‖X̂i −X∗
i ‖/‖X

∗
i ‖, (37)



Table 1. Average errors w/o noise and missing data
data PPCA LDS CSF2 SPM PND PMP

dance 0.2325 0.3112 0.1349 0.1454 0.1834 0.1278

drink 0.1292 0.1463 0.0123 0.0216 0.0037 0.0018

pickup 0.5149 0.4422 0.0607 0.0356 0.0372 0.0127

stretch 0.5393 0.3948 0.0219 0.0288 0.0156 0.0124

yoga 0.6100 0.4643 0.0226 0.0224 0.0140 0.0128

face 0.0208 0.0331 0.0209 0.0233 0.0165 0.0166

shark 0.0688 0.1109 0.0551 0.5475 0.0134 0.0099

walking 0.1485 0.3318 0.0708 0.0861 0.0465 0.0424

FRGC 0.1469 0.1345 0.1926 0.1094 0.0727 0.0727

av. err. 0.2679 0.2632 0.0658 0.1133 0.0448 0.0343

rel. err. 15.5310 14.5405 2.0289 6.2956 1.0000 0.7656

Table 2. Average errors w/ noise and w/o missing data
data PPCA LDS CSF2 SPM PND PMP

dance 0.2229 0.3185 0.1544 0.1510 0.1806 0.1415

drink 0.1764 0.1507 0.0365 0.0407 0.0339 0.0244

pickup 0.5037 0.3979 0.0705 0.0581 0.0409 0.0304

stretch 0.5479 0.3872 0.0543 0.0652 0.0444 0.0341

yoga 0.5287 0.5162 0.0529 0.0822 0.0409 0.0306

face 0.0464 0.0598 0.0543 0.1054 0.0403 0.0405

shark 0.0486 0.0827 0.1043 0.1784 0.0600 0.0610

walking 0.1364 0.2474 0.0966 – 0.0770 0.0929

FRGC 0.1980 0.1228 0.2061 0.1840 0.0889 0.0887

av. err. 0.2677 0.2537 0.0922 0.1081 0.0674 0.0605

rel. err. 5.5533 4.9707 1.4256 1.8242 1.0000 0.8876

where X∗
i and X̂i is the ith ground truth and reconstructed

shapes, respectively. Since a reconstructed shape have re-

flection ambiguity, we also measured the error for the in-

verted shape and picked the smaller error. All the exper-

iments were repeated ten times and the results were aver-

aged.

Tables 1-4 show the reconstruction errors under various

conditions. Here, we dropped the prefix ‘EM-’ in the names

of the methods due to the space limitations. There are no

experimental results for missing data using SPM because

SPM does not provide a method to handle missing data.

When an algorithm does not converge, its result is denoted

as “–”. “av. err.” means the average error over all data set

and “rel. err.” means the average relative error compared to

EM-PND. Here, EM-PMP gives the best performance or at

least very close to the best performance except four cases.

The performance gain of EM-PMP w.r.t. the second best

method, EM-PND, is over 20% for about half of the cases

and is up to 67%, which indicates the effectiveness of the

PMP model in NRSfM. For the case of the shark sequence

with noise, EM-PPCA gives better performance than EM-

PMP. This is because the sequence was artificially gener-

ated by superposing two shape bases [13]. Thus this data

satisfies the fixed-rank assumptions of EM-PPCA, giving

the best performance. However, the rank of shape bases in

not known in real cases and EM-PPCA shows poor perfor-

Table 3. Average errors w/ missing data and w/o noise
data PPCA LDS CSF2 PND PMP

dance 0.2632 1.1464 0.1415 0.1766 0.1410

drink 0.1692 0.0790 0.0357 0.0055 0.0018

pickup 0.4969 0.2954 0.0933 0.0149 0.0151

stretch 0.6735 0.3899 0.0597 0.0150 0.0123

yoga 0.1463 0.4051 0.0854 0.0181 0.0166

face 0.2978 0.6386 0.0412 0.0177 0.0174

shark 0.1374 63.3659 0.0653 0.0166 0.0116

walking 0.1361 12.0950 0.1033 0.0469 0.0507

FRGC 0.1764 0.1122 0.4505 0.0805 0.0802

av. err. 0.2774 8.7253 0.1195 0.0435 0.0385

rel. err. 16.5312 466.8489 4.0347 1.0000 0.8484

Table 4. Average errors w/ noise and missing data
data PPCA LDS CSF2 PND PMP

dance 0.2732 0.4292 0.1501 0.1601 0.1445

drink 0.1868 13.3213 0.0428 0.0408 0.0299

pickup 0.4931 0.3310 0.0948 0.0486 0.0362

stretch 0.6881 0.3379 0.0707 0.0535 0.0405

yoga 0.1401 0.4084 0.1583 0.0488 0.0357

face 0.2273 0.5889 0.0583 0.0464 0.0460

shark 0.1323 2.0375 0.0872 0.0672 0.0669

walking 0.1541 3.4281 0.1095 0.0842 0.0996

FRGC 0.2196 0.1171 0.4574 0.0968 0.0966

av. err. 0.2794 2.3333 0.1366 0.0718 0.0662

rel. err. 4.7922 48.4016 1.8980 1.0000 0.8930

mance for the other cases. For the cases of the walking se-

quence with noise and/or missing data, EM-PND gives bet-

ter performance than EM-PMP. This seems to be due to the

characteristics of the data where the view points in the walk-

ing sequence is static for the most of the time. Because of

the Markovian nature of the PMP, the z-coordinates tend to

converge to the mean shape, if there are not enough frames

of different view points. In these cases, EM-PND can be

a better choice. However, even in these cases, the perfor-

mance of EM-PMP is better than the other methods except

EM-PND.

Note that the performances of EM-PND and CSF2 de-

pend on the characteristics of data. CSF2 gives very good

performance for the dance sequence which has large defor-

mations, because it assumes temporal dependence between

frames. On the contrary, it performs poorly for the FRGC

sequence because it is an extreme case that does not have

any temporal dependence. EM-PND shows exactly the op-

posite trend compared to CSF2. On the other hand, EM-

PMP gives very good performance for both cases, because

the smoothness parameter is learned during the fitting pro-

cess. It is remarkable that EM-PMP performs as good as

EM-PND when there is no temporal dependence, which

means that EM-PMP can perform like EM-PND in such

cases. Hence, EM-PMP can be considered as a better so-

lution for most of the cases.



Another thing to note is the performance of EM-LDS.

EM-LDS also uses a Markov model as EM-PMP, but its

performance gain is not significant compared to its time-

independent version, EM-PPCA. As mentioned in Section

1, this is due to the lack of appropriate assumptions for

shape deformation. We used the stationarity assumption in

our model and achieved much better results, which suggest

that our assumption is very effective for NRSfM.

EM-PMP has no parameters to be determines by a user,

which makes it easy to use in practical applications. EM-

PMP takes around five minutes to reconstruct one of these

sequences, which is moderate compared to the other state-

of-the-art schemes (a few hours for SPM, around 40 sec-

onds for CSF2, and around one minute for EM-PND). Fig-

ure 2 compares the reconstructed points and the correspond-

ing ground truth for EM-PMP, EM-PND, and CSF2. Here,

we can see that EM-PMP gives better fits. The videos of re-

constructed shapes are also provided in the supplementary

material to confirm the performance of EM-PMP.

5. Conclusion

In this paper, we proposed EM-PMP to solve NRSfM

problems incorporating the smoothness constraint, without

requiring any prior information. The PMP is an extended

version of the PND to a first-order Markov process, which

is assumed to be stationary in order to avoid unlikely defor-

mation. The additive changes in the PMP is constrained to

satisfy the PND constraint, which forces a sequence of PMP

shapes to be constituted by only shape deformations. Ex-

perimental results show that EM-PMP outperforms all the

other schemes, which demonstrates that the PMP is a very

effective model for NRSfM. Even when there is no tem-

poral dependence in data, EM-PMP shows nearly the same

performance as EM-PND because EM-PMP automatically

learns the degree of smooth during the fitting process. One

of future work is to extend the Procrustean shape model to

dense trajectory cases to increase the resolution of 3D re-

construction. Another is to propose an incremental learning

method of the shape model so that it can be applied in real-

time for non-rigid 3D reconstruction.
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