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Abstract

Video event detection allows intelligent indexing of video
content based on events. Traditional approaches extract
features from video frames or shots, then quantize and pool
the features to form a single vector representation for the
entire video. Though simple and efficient, the final pooling
step may lead to loss of temporally local information, which
is important in indicating which part in a long video signi-
fies presence of the event. In this work, we propose a novel
instance-based video event detection approach. We repre-
sent each video as multiple “instances”, defined as video
segments of different temporal intervals. The objective is
to learn an instance-level event detection model based on
only video-level labels. To solve this problem, we propose a
large-margin formulation which treats the instance labels
as hidden latent variables, and simultaneously infers the
instance labels as well as the instance-level classification
model. Our framework infers optimal solutions that assume
positive videos have a large number of positive instances
while negative videos have the fewest ones. Extensive ex-
periments on large-scale video event datasets demonstrate
significant performance gains. The proposed method is also
useful in explaining the detection results by localizing the
temporal segments in a video which is responsible for the
positive detection.

1. Introduction

Video event detection is useful in many applications
such as video search, consumer video analysis, personal-
ized advertising, and video surveillance, to name a few
[15]. Many methods has been proposed for detecting video
events, including large margin based method, graphical
model, knowledge-based techniques, etc. [9]. The most
commonly used approach is to represent a video as a global
Bag-of-Word (BoW) vector [18]. The BoW method can be
divided into three stages: First, the local features (visual,

Figure 1. Illustration of the proposed framework. The event “birth-
day party” can be recognized by instances containing “birthday
cake” and “blowing candles”. Our method simultaneously infers
hidden instance labels and instance-level classification model (the
separating hyperplane) based on only video-level labels.

audio or attributes) are extracted from frames or segments of
a video. The features are then quantized based on a learned
codebook, or dictionary [24]. Finally, the quantized fea-
tures are pooled on the whole video to form a global vector
representation.

Representing a video as a single vector is simple and ef-
ficient. Unfortunately, much information may be lost in the
final pooling step, leading to unsatisfactory performance.
In fact, a video is comprised of multiple “instance”, such as
frames and shots. Some instances contain key evidences
of the event being considered. For example, event like
“birthday party” may be well detected by frames contain-
ing cakes, and candles, and “parkour” may be well detected
by shots of person jumping up and down on the street. As
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shown in recent research, human can well exploit key evi-
dences and recognize events by only short video clips [2].
Pooling the features of the video into a single aggregate
form may fail to take advantage of such rich cues over mul-
tiple instances. Intuitively, by considering the instances of
the videos, more distinctive event patterns can be learned,
and therefore better event recognition can be achieved.

Motivated by the above facts, we study instance-based
video classification, as illustrated in Fig. 1. Each video
contains multiple “instances”, defined as video segments of
different temporal lengths. The definitions of the instances
may be flexible - they can be video frames, fixed-length
videos, video shots detected based on content changes, and
the whole video. In this paper, we propose to consider in-
stances of multiple granularities, i.e. diverse instances of
various lengths in videos. This gives us the flexibility in
modeling video events of different temporal scales: some
may be of short durations while others may involve long
intervals. Figure 2 shows the multiple granularities of the
instances in a video. Our goal is to learn an instance-level
event detection model, while assuming instance labels are
not available due to the prohibitive cost in annotating the
instances. The conventional method based on Multiple-
Instance Learning (MIL) may appear to be a natural choice.
But due to its over simplified model in transferring instance
prediction to bags, it is not a satisfactory solution, as will be
shown and evaluated later in the paper.

To solve this challenging problem, we propose a large-
margin framework. It treats the instance labels as latent
variables, and simultaneously infers the hidden instance-
labels as well as the instance-level classification model. Our
key assumption is that the positive videos usually have a
large portion of positive instances, while the negative videos
have few positive instances. The proposed method not
only leads to more accurate event detection results, but also
learns the instance-level detector, explaining when and why
certain event happens in the video.

Our paper includes the following major contributions:
• We propose a novel instance-based video event detec-

tion method (Section 3).
• Based on a large-margin learning framework, we de-

velop an algorithm which can simultaneously infer the
instance labels and the instance-level event detection
model from only video-level labels (Section 3 and 4).
• Extensive experiment evaluations demonstrate the su-

perior performance of our method on large-scale video
datasets (Section 6).

2. Related Works
2.1. Video Event Detection

Video event detection is a widely studied topic in com-
puter vision. A good survey of state-of-the-arts was made

in [9]. Generally speaking, video event detection system
can be divided into three stages: feature extraction, feature
quantization and pooling, training/recognition.

One focus of previous research is on designing new fea-
tures, including low-level features of visual features [6, 12],
action features [22], audio features [14], and mid-level rep-
resentation including concept feature, attributes [20] etc.
There are also significant efforts on improving the event
recognition modeling, such as max-margin based methods,
graphical models and some knowledge based techniques, as
reviewed in [9]. However, most former approaches rely on
a global vector to represent one video. The global approach
neglects important local information of the events. Re-
cently some researchers attempted to address this problem
and proposed several new algorithms. Tang et al. [19] treat
video segments as latent variables and adopted variable-
duration hidden Markov model to represent events. Cao
et al. [3] proposed scene aligned pooling, which divides
videos into shots with different scenes, and pooling local
features under each scene. Li et al. [11] proposed dynamic
pooling, which employs various strategies to split videos
into segments based on temporal structures. Different from
their methods, which focus on exploiting temporal struc-
tures for pooling, our framework focuses on learning “in-
stance” labels. The proposed approach can also be seen as
complementary to the above pooling strategies, for which
the video instances can be formed by dynamic pooling or
scene aligned pooling.

2.2. Multiple-Instance Learning

In order to use local patterns in a video, one readily avail-
able learning method is Multiple-Instance Learning (MIL)
[7]. In MIL, the training data is provided in “bags”. And
the labels are only provided on the bag-level. A bag is la-
beled as positive iff. one or more instances inside the bag
are positive. In computer vision, MIL has been applied in
scene classification [13], content-based image retrieval [27],
and image classification [5]. The two most popular algo-
rithms for MIL are mi-SVM and MI-SVM [1]. The first
algorithm emphasizes searching max-margin hyperplanes
to separate positive and negative instances, while the sec-
ond algorithm selects the most representative positive in-
stance for each positive bag during optimization iterations,
and concentrates on bag classification.

In event detection, a video can be seen as a bag con-
taining multiple instances. The labels are only provided on
video-level. Therefore, algorithms of MIL can be directly
applied. However, existing algorithms of MIL are not suit-
able for video event classification. One restriction is that
MIL relies on a single instance (often computed based on
the max function) in prediction, making the method very
sensitive to false alarm outliers; another drawback is that it
assumes that negative bags have no positive instances, lead-
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Figure 2. Illustration of multiple-granular instances with different time lengths. In our framework, the instance of minimum granularity is
a frame, and instance of maximum granularity is the whole video. Each instance is represented by pooling the included frame-level BoWs.

ing to unstable results for complicated events.

2.3. Learning with Label Proportions

Several methods have been proposed to address the limi-
tations of MIL. Chen et al. [4] proposed to embed bags into
instance space via instance similarity measure; Zhang et al.
[26] proposed a new method which considers both local (in-
stance) and global (bag) feature vectors. Another general-
ization of MIL is Learning with Label Proportions (LLP).
In LLP, the learner has access to the proportion of positive
instances of each bag. Compared to MIL, LLP can produce
more stable results, as the model does not rely on just a sin-
gle instance per bag. Several methods have been studied for
LLP [16, 25].

Our video recognition algorithm is inspired by propor-
tion SVM (p-SVM or∝SVM) [25], which explicitly models
the latent unknown instance labels together with the known
label proportions in a large-margin framework. The ∝SVM
was shown to outperform other alternatives. Different from
∝SVM, in video classification, the exact label proportion is
unknown. Our key assumption is that a large portion of in-
stances in a positive video should be positive, whereas few
instances in the negative videos may be positive. We also
consider multiple time granularities to form the instances,
leading to significant performance improvement in video
classification.

3. The Proposed Method
Setting. Suppose we have the training dataset

{Vm}Mm=1. Considering a single event, in each video Vm,
there are Nm instances {xm

i , y
m
i }

Nm
i=1, in which xm

i is the
feature vector of the i-th instance in the m-th video, and
ymi ∈ {−1, 1} is corresponding event label. Here, ymi = 1
if the instance is positive for the event, and ymi = −1 other-
wise. As pointed out in Section 1, for most of the cases, the
instance labels are unknown, and the supervised informa-
tion is only provided on video-level. Therefore, we propose
to learn an instance-level classification model based on only
the video-level supervised information.

In Section 3.1 , we propose to use a formulation similar
to ∝SVM for a simple case in which the proportion of pos-
itive instances for each video is known. In Section 3.2, we

show how to extend the method to the real-world case, in
which only the binary video-level event label is given. In
Section 3.3, we propose to use multi-granular instances for
improved video classification.

3.1. Event Recognition by Instance Proportions

In this section, we consider a simple case that the pro-
portion of positive instances {Pm}Mm=1 for each video is
known. Here, Pm ∈ [0, 1] is the positive instance pro-
portion for the m-th video Vm. The target is to train an
instance-level classifier to classify individual instances. We
propose to learn a large margin event classification model
(w, b), such that an instance x is predicted to be positive
if (w>x + b) > 0, and negative if (w>x + b) ≤ 0. In
order to solve the problem, we propose to jointly inferring
the instance labels and the prediction model. Our formula-
tion is in parallel with the ∝SVM [25], which tries to find a
large-margin classifier, compatible with the given label pro-
portions. We note that, given the instance labels ym, the
positive instance proportion pm(ym) of the m-th video can
be expressed as:

pm(ym) =

∑Nm

i=1 I(ym
i =1)

Nm
, (1)

where ym = [ym1 , · · · , ymNm
]. I(··· ) is the indicator function

which is 1 when the argument is true or 0 otherwise. The
above is equivalent to the following:

pm(ym) =

∑Nm

i=1 y
m
i

2Nm
+

1

2
, (2)

The parameters of the classification model and unknown in-
stance labels are jointly learned by optimizing the following
objective function:

min
{ym}Mm=1,w,b

1

2
||w||2 + C

M∑
m=1

Nm∑
i=1

L
(
ymi , (w

>xm
i + b)

)
s.t. pm(ym) = Pm, m = 1, · · · ,M. (3)

The first term is the classic SVM term to find a max mar-
gin separating hyperplanes of the two classes. The second
term L(·) is the empirical loss function of instance labels
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and predictions. The proposed framework permits choos-
ing different loss functions for L(·). Throughout this paper,
the hinge loss function is used for L(·), where

L
(
ymi ,w

>xm
i + b

)
= max(0, 1− ymi (w>xm

i + b)). (4)

In summary, the framework tries to find a large margin
classifier, compatible with the given label proportions. As
a special case, if we known all the instance labels ymi ,m =
1, · · · ,M, i = i, · · · , Nm, the framework becomes classic
supervised SVM.

3.2. Dealing with the Unknown Proportion

In the previous section, we discussed the case when the
instance label proportion {Pm}Mm=1 are known. However,
in video event classification, we only know the video-level
binary labels {Ym}Mm=1, in which Ym ∈ {−1, 1} is the
video-level label of Vm.

To solve this problem, our key assumption is that each
positive video contains “many” positive instances, while
each negative video contains few or no positive instances.
Specifically, we propose the following modified formula-
tion to achieve the above assumption:

min
{ym}Mm=1,w,b

1

2
||w||2 + C

M∑
m=1

Nm∑
i=1

L
(
ymi , (w

>xm
i + b)

)
+ Cp

M∑
m=1

|pm(ym)− Pm| (5)

s.t. Pm =

{
1 if Ym = 1
0 if Ym = −1 ,m = 1, · · · ,M.

The first modification is to move hard constraint of Eq. 3
to the objective function: the third term is a loss function to
penalize the difference between target positive instance pro-
portion Pm and estimated proportion pm(ym). Secondly,
we set the positive instance proportion of positive videos to
1 and negative videos to 0. Under this setup, the framework
encourages large proportions of positive instances in posi-
tive videos while penalizes the positive instances in negative
videos. Cp is the parameter to control the “strength” of our
assumption. In practice, Cp can be tuned based on cross
validation.

3.3. Instances with Multiple Granularities

One key question left unanswered is how to design the
instances for each video. The instances can be frames,
shots, video segments or even whole videos. Instances
with different temporal lengths can be useful for recogniz-
ing different events. For example, “birthday party” can be
identified by single frames containing cakes and candles,
whereas sport-like actions such as “attempting board trick”
and “parkour” are better detected by video segments char-
acterizing actions.

Motivated by the observation, we consider instances of
multiple granularities based on different length of time in-
tervals. The feature representation of multiple-granular
instances are obtained by pooling the local features into
segment-level BoW with specific time lengths. Note that
the video BoW is one special case in our framework.

The original ∝SVM framework treats all instances
equally and can not differentiate instances of multiple gran-
ularities. Therefore, we develop a new formula which can
assign weights to different granular instances. Our proposed
formula is introduced below.

Suppose we have K granularities. The number of total
instances for the k-th granularity of the m-th video is Nm

k .
We define a label vector ym

k = [(y1)
m
k , · · · , (yNm

k
)mk ]. The

component (yi)mk is the i-th instance label of k-th granu-
larity in m-th video. The weight for the k-th granularity is
defined as tk. Therefore, we write the new proportion func-
tion pm(ym

1 · · ·ym
K) as:

pm(ym
1 · · ·ym

K) =

∑K
k=1 tk(1

>ym
k )

2
∑K

k=1 tkN
m
k

+
1

2
. (6)

The total number of instances in m-th video Nm is now the
weighted sum of instances at all granularities

∑K
k=1 tkN

m
k .

In this paper, the feature of instances from the k-th granular-
ity is computed by averaging the BoW representation of the
included frames, and the weights are simply set as the num-
ber of frames included. We define the i-th feature vector
of k-th granularity and m-th video as (xi)

m
k . The weighted

version of Eq. (5) becomes

min
{ym}Mm=1,w,b

1

2
||w||2 + Cp

M∑
m=1

|pm(ym
1 · · ·ym

K)− Pm|

+ C

M∑
m=1

K∑
k=1

Nm
k∑

i=1

tkL
(
(yi)

m
k , (w

>(xi)
m
k + b)

)
s.t. Pm =

{
1 if Ym = 1
0 if Ym = −1 ,m = 1, · · · ,M. (7)

Solving the above equation is a challenging problem,
since it is NP-hard combinatorial optimization problem that
cannot be solved in polynomial time. In next section, we
will explain our strategy and elaborate each step of the op-
timization process.

4. Optimization Procedure
In order to “solve” Eq. (7), we apply the alternating op-

timization to to find a local suboptimal solution:
• First we fix instance labels {ym}Mm=1 and solve w and
b. By fixing {ym}Mm=1, the optimization problem be-
comes a classic weighted SVM

min
w,b

1

2
||w||2+C

M∑
m=1

K∑
k=1

Nm
k∑

i=1

tkL
(
(yi)

m
k , (w

>(xi)
m
k +b)

)
.
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• Second we fix w and b and update instance labels
{ym}Mm=1. The problem now becomes:

min
{ym}Mm=1

C

M∑
m=1

K∑
k=1

Nm
k∑

i=1

tkL
(
(yi)

m
k , (w

>(xi)
m
k + b)

)
+ Cp

M∑
m=1

|pm(ym
1 · · ·ym

K)− Pm|. (8)

Due to the fact that each video Vm contributes to the ob-
jective independently, we can optimize (8) one video at a
time. The procedures of optimizing video Vm are as fol-
lows. First, we set all instance labels (yi)mk in video Vm to
-1, and calculate each empirical loss increase (δi)

m
k by flip-

ping each (yi)
m
k to 1. The value of (δi)mk can be computed

as

(δi)
m
k =

(
1−(w>gk(xm

i )+b)
)
+
−
(
1+(w>gk(x

m
i )+b)

)
+
,

where function (x)+ = max(x, 0).
Once all empirical loss increase (δi)

m
k are computed, all

weighted loss value tk(δi)mk are then sorted by descending
order. This part is the same as original ∝SVM. However,
searching minimum total loss is a different problem in our
formula. In ∝SVM the instance labels are flipped one by
one to calculate the proportion loss increases, and the num-
ber of labels with minimum total loss are selected to be
flipped. When instances have different weights, there are
more than one combination that can achieve certain propor-
tion. In our framework, we employ a greedy algorithm that
can search a sub-optimal solution in log-linear time.

The proposed optimization procedure is shown in Algo-
rithm 1. The objective function is non-increasing in our
optimization process. The algorithm stops when the re-
duction of objective function is less than certain threshold,
which is set to 10−2 in our experiments. Empirically, the
optimization process converges fast within just tens of it-
erations. Although the above method is based on linear
large-margin framework, it can be easily extended to ker-
nel scenario by applying kernel trick when solving (w, b)
with fixed instance labels.

5. Discussions
5.1. Event Detection at Video Level

In the previous section, we propose to learn an event de-
tection model on the instance level, based on video-level
labels. One intrinsic advantage of our method is that it
can naturally discover the key evidences which support the
existence of specific events. The top ranked 16 evidences
selected by our method are shown in Fig. 4 and Fig. 8.
Some selected single-frame instances are strong evidences,
by which human can confirm the existence of target event

Algorithm 1 Optimization Procedure
1: Input: k = 1 · · ·K,m = 1 · · ·M

video label Ym ∈ {1,−1}.
instance xm

k , instance weight tk ∈ R.
proportion Pm = 1 if Ym = 1, Pm = 0 if Ym = −1.
convergence threshold θ = 0.01.

2: Initialization:
(yi)

m
k ← Ym, i = 1 · · ·Nm

k , k = 1 · · ·K,m = 1 · · ·M .
3: repeat
4: fix ym

k and solve w and b.
5: set cost reduction CR ← 0.
6: for m = 1 · · ·M do
7: (yi)

m
k ← −1, k = 1 · · ·K, i = 1 · · ·Nm

k

8: compute all (δi)mk for (yi)mk (Eq. 9)
9: sort (yi)mk by tk(δi)mk in descending order

10: for sorted (yi)
m
k do

11: flip (yi)
m
k , calculate the loss reduction incrementally.

12: end for
13: select maximum loss reduction.
14: flip the labels to get max loss reduction, and update CR.
15: end for
16: until convergence (CR < θ)
17: Output: w, b,y

by seeing those frames. In order to perform event detection
on video level, we can first apply the instance classifier on
all instances of the test videos. The video-level detection
score can then be obtained by performing weighted aver-
age of all instance scores. Intuitively, a video containing
more positive instances tend to have higher probability of
being positive. We will later show by experiment that our
approach can lead to significant performance improvement
for video-level event detection.

5.2. Computational Cost

Because we are using a ∝SVM-like algorithm, the
computation complexity (with linear SVM solver) is
O(N logmaxm(Nm)), in which maxm(Nm) is the max-
imum number of instances in m-th video, and N is the
number of total instances. The formula can be written as
O(VT logmaxm(Nm)), in which V is the total number of
videos and T is the averaged number of instances per video.
As T logmaxm(Nm) can be seen as a constant, the compu-
tational complexity is the same as video-based event classi-
fication with linear SVM.

In practice, several techniques can be applied to improve
the computational time. For example, the framework can be
improved further by solving the SVM in their inner loops in-
crementally. One approach is to utilize warm start and par-
tial active-set methods proposed by Shilton et al. [17]. An-
other method is to employ non-linear kernels using explicit
feature maps [21], so that the complexity of our method can
become linear even with certain nonlinear kernels.
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5.3. Learning with Heterogeneous Instances

In the previous section, we are considering the multiple
granularities of instances with the same underlying feature
representation. In practice, the instances may come with
different representations. For example, we may have in-
stances represented by image/audio/action features respec-
tively. In such case, the proposed approach can be applied
with minor changes to learn a classification model for each
type of feature representation. We can also jointly learn
the classification models with a modified objective function.
We leave this task to our future work.

6. Experiments
Datasets. To evaluate our framework, we conducted ex-

periments on three large-scale video datasets: TRECVID
Multimedia Event Detection (MED) 2011, MED 2012 [15]
and Columbia Consumer Videos (CCV) [10] datasets. All
our experiments are based on SIFT feature and linear SVM.

Features. In this paper, we selected SIFT [12] as un-
derlying local features for initial evaluation. Note that our
method can be easily extended to include multiple features
by using fusion techniques. For example, we can train dif-
ferent instance-based detection models for each feature in-
dependently, and fuse detected scores of detectors using dif-
ferent features for final event detection. Additionally, by
employing multiple features, we can discover unique cues,
e.g. actions, colors, audio, for each video event.

Settings. For each video, we extract frames at every 2
seconds. Each frame is resized to 320 × 240, and SIFT
features are extracted densely with 10-pixel step by VLFeat
library. The frame features are then quantized into 5000
Bag-of-Word vector. The frame-level SIFT BoW is taken
as instance feature vector. The liblinear SVM tool [8] is
applied to solve w and b while instance labels y are fixed.
The cost parameters C and Cp are chosen from the scale of
{0.01, 0.1, 1, 10, 100} based on cross-validation.

Baselines. We evaluate four baseline algorithms on the
dataset: mi-SVM, MI-SVM [1], video BOW, and propor-
tional SVM (∝SVM or p-SVM) [25] with single frame in-
stance. The mi-SVM and MI-SVM both utilize Multiple
Instance Learning. As introduced in Section 2.2, the mi-
SVM focuses on instance-level while MI-SVM focuses on
bag-level classification. In practice, the mi-SVM infers the
instance labels iteratively while forcing all instances in neg-
ative videos to be negative. The MI-SVM selects one pos-
itive instance with the highest score in each positive video
during each iteration, and forces all instances in negative
videos to negative. We adopt the MILL library [23] and
modified it for better performance. For ∝SVM, we set un-
known proportions as in Section 3.2 and chose only single
frames as instances 1.

1https://github.com/felixyu/pSVM

ID MED 2011 Events ID MED 2012 Events
1 Attempting board trick 16 Attempting bike trick
2 Feeding animals 17 Cleaning appliance
3 Landing a fish 18 Dog show
4 Wedding ceremony 19 Give directions to location
5 Woodworking project 20 Marriage proposal
6 Birthday party 21 Renovating a home
7 Changing a tire 22 Rock climbing
8 Flash mob gathering 23 Town hall meeting
9 Getting vehicle unstuck 24 Win race without a vehicle
10 Grooming animal 25 Work on metal craft project
11 Making sandwich
12 Parade
13 Parkour
14 Repairing appliance
15 Sewing project

Table 1. The 25 events defined in TRECVID MED 2011 and 2012.

6.1. Columbia Consumer Videos (CCV)

The Columbia Consumer Video (CCV) benchmark de-
fines 20 events and contains 9,317 videos downloaded from
YouTube. The event names and train/test splits can be found
in the original paper [10].

In terms of selecting multi-granular instances, we eval-
uated combinations of various instances on CCV dataset.
Empirically, we found that more granularities lead to bet-
ter performance. For example, the result of using four
granularities (single frame, 3-frame shot, and 5-frame shot
and whole video) achieves best results with mAP 0.436.
However, increasing the number of granularities will cause
higher computation cost. Considering a trade-off between
time and performance, in this paper we only use two gran-
ularities: single-frame and whole video instances, in all the
experiments.

The experimental results are shown in Fig. 3. The
mi-SVM and MI-SVM are inferior to standard video-level
BoW method. It is due to the restrictive assumption of
MIL which focuses on searching one most representative
instance in each video and treats all instances in negative
video as negatives. On the contrary, the ∝SVM doesn’t
make this assumption and outperforms video BoW. Our
method further improves the performance by considering
multi-granular instances and relatively outperforms linear
video BoW and ∝SVM by 10.2% and 4.8%.

6.2. TRECVID MED12

The MED12 dataset contains 25 complex events and
5,816 videos. The names for both MED 11 and MED 12
are listed in Table 1. We split two-third of the data as train-
ing set (3,878 videos) and use the rest as test set (1,938
videos). The average number of extracted frames in each
video is 79.4, and the average learning time of one event on
a single Intel Xeon CPU @2.53GHz is around 40 minutes.
The experimental results are shown in Fig. 5. Compar-
isons of the results are found similar to those observed for
the CCV dataset. The mi-SVM and MI-SVM are inferior

4326

https://github.com/felixyu/pSVM


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 mean
0

0.2

0.4

0.6

0.8

CCV Event ID

A
v
e
ra

g
e
 P

re
c
is

io
n

 

 

mi−SVM MI−SVM Video BoW single−granular ∝SVM multi−granular ∝SVM

Figure 3. Experimental results of 20 complex events in Columbia Consumer Videos (CCV) dataset. The mean APs are 0.26 (mi-SVM),
0.25 (MI-SVM), 0.39 (Video BoW), 0.41 (single-granular ∝SVM) and 0.43 (multi-granular ∝SVM).

(a) attempting bike trick (b) dog show (c) rock climbing (d) town hall meeting (e) win race without vehicles

Figure 4. The top 16 key positive frames selected for the events in MED12. The proposed method can successfully detect important visual
cues for each event. For example, the top ranked instances of “winning race without vehicles” are about tracks and fields.
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Figure 6. The APs from Event 6 to Event 15 in MED 2011.

to the standard video-level BoW method. Our method rel-
atively outperform video BoW and ∝SVM by 21.4% and
9.68%, respectively. As mentioned earlier, our method also
offers great benefits in pinpointing the specific local seg-
ments that signify the events. Figure 4 shows the automati-
cally selected key frames in videos that is detected as posi-
tive, which can be used to explain the detection result.

6.3. TRECVID MED11

In this experiment, we follow the official data splits of
TRECVID MED contest. NIST provided three data splits of
MED11: event collection (EC), the development collection
(DEVT) and test collection (DEVO). The event collection
contains 2,680 training videos over 15 events. The DEVT
set with 10,403 videos was released for contestants to eval-
uate their systems. The final performance are evaluated on
DEVO set with 32,061 test videos. The average number of
extracted frames per video is 59.8, and the average learning
time of one event on a single Intel Xeon CPU @2.53GHz is
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Figure 7. The proportions of positive instances learned by our
method in positive training videos of MED11 events

around 6 hours. The experimental results are shown in Fig.
6. Because the DEVO set does not include any video of
Event 1 to Event 5, only results of Event 6 to Event 15 are
reported. The ∝SVM outperforms Video BOW on “Flash
mob gathering”, “Getting vehicle unstuck”, and “Parade”,
but produced worse results for other events. This is an in-
teresting finding as it confirms that instances of different
lengths are needed for representing different events. Our
method outperforms other methods by around 20% in this
experiment. Figure 7 illustrates the proportions of positive
instances learned for each event. The optimal positive in-
stance proportion can be as low as 42.6% despite the 100%
target set in Eq. (7). Some top-ranked frame instances learnt
by our method are shown in Fig. 8.

7. Conclusion
We propose a novel approach to conduct video event

detection by simultaneously inferring instance labels, and
learning the instance-level event detection model. The
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Figure 5. Evaluation results of 25 complex events in TRECVID MED 12 video dataset. The mean APs are 0.15 (mi-SVM), 0.16 (MI-SVM),
0.28 (Video BoW), 0.31 (∝SVM) and 0.34 (Our method).

(a) landing a fish (b) woodworking project

Figure 8. The top 16 key positive frames selected by our algorithm
for some events in TRECVID MED11.

proposed method considers multiple granularities of in-
stances, leveraging both local and global patterns to achieve
best results, as clearly demonstrated in extensive experi-
ments. The proposed methods also provide intuitive expla-
nation of detection results by localizing the specific tempo-
ral frames/segments that signify the presence of the event.
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