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Abstract

This paper describes a framework for modeling human
activities as temporally structured processes. Our approach
is motivated by the inherently hierarchical nature of hu-
man activities and the close correspondence between hu-
man actions and speech: We model action units using Hid-
den Markov Models, much like words in speech. These ac-
tion units then form the building blocks to model complex
human activities as sentences using an action grammar.

To evaluate our approach, we collected a large dataset
of daily cooking activities: The dataset includes a total of
52 participants, each performing a total of 10 cooking ac-
tivities in multiple real-life kitchens, resulting in over 77
hours of video footage. We evaluate the HTK toolkit, a state-
of-the-art speech recognition engine, in combination with
multiple video feature descriptors, for both the recognition
of cooking activities (e.g., making pancakes) as well as the
semantic parsing of videos into action units (e.g., cracking
eggs). Our results demonstrate the benefits of structured
temporal generative approaches over existing discrimina-
tive approaches in coping with the complexity of human
daily life activities.

1. Introduction

Human activity recognition has been the subject of ex-
tensive research. In recent years, popular topics have
emerged from video monitoring and surveillance to activity
detection and behavioral analysis. One of the main chal-
lenges associated with the recognition of purposeful human
actions is their inherent variability. One good measure of
the productivity of the field is the sheer number and variety
of datasets that have been produced by researchers in the
last few years: A recent survey [3] lists no less than twenty-
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Figure 1. Sample images from the proposed breakfast dataset.

three common benchmarks. However, these rapid advances
also demand an increased level of scrutiny.

Rohrbach et al. describe several common shortcomings
of present datasets [|7]: Existing datasets tend to focus on
coarse grained activities, they often exhibit artificially high
inter-class variability, and videos tend to be (manually) pre-
segmented. We recognize these shortcomings and offer ad-
ditional points of consideration. First, many human activ-
ities are goal-directed, sequential, and require the use of
tools. This is only partly reflected in current datasets. Sec-
ond, most datasets have been collected in highly controlled
setups using scripted actions recorded from one single en-
vironment under a limited set of viewpoints. Overall, this
limits greatly the ability of these systems to generalize to
more real-life environments, actors or objects.

To overcome these issues, we collected a new dataset,
composed of video recordings of unscripted actions in com-
pletely natural settings. This allows the formulation of a
number of novel research questions and, as we will show,
this novel dataset addresses several of the points mentioned
above. The video dataset consists of 10 cooking activities



performed by 52 different actors in multiple kitchen loca-
tions (see Fig. 1 for sample frames). One focus of the pro-
posed dataset is on the levels of granularity of human activ-
ities.

Research in cognitive psychology has shown that human
participants do not perceive events as flat, but instead as
hierarchical structures: It is possible to segment a continu-
ous stream into distinct meaningful events at multiple levels
of granularity starting from individual motor commands to
composite sub-goals. In addition, studies, e.g. by Hard et al.
[8], have shown that the amount of information contained in
a video sequence around breakpoints depends on the action
granularity of the corresponding breakpoints, with break-
points associated with coarser action units carrying more
information than breakpoints associated with finer units. In-
terestingly, the concept of granularity has received little at-
tention in the context of video annotations [17, 19] despite
their high significance for visual cognition.

To overcome the natural challenges that may arise when
modeling human activities, we propose to model action
recognition as a structured temporal process. We use an
open source automated speech recognition engine, the Hid-
den Markov Model Tool Kit (HTK) [25]. Concepts from
speech recognition can be naturally transposed to activity
recognition: Coarsely labeled action units, modeled by Hid-
den Markov Models (HMMs), much like words in speech,
form the building blocks for longer activity sequences.
Units are combined into sequences using an action gram-
mar. Beside action recognition, this approach enables the
semantic parsing as well as the segmentation of videos at
the level of single frames. An overview of this approach is
shown in Fig. 2.

The system is evaluated both on the proposed dataset
as well as a standard benchmark dataset, the Activities of
Daily Living (ADL) [15]. Our results show the benefits of
structured temporal approaches compared to standard dis-
criminative approaches in coping with increasingly com-
plex human behaviors.

2. Related work

Action recognition has benefited from an overwhelming
variety of techniques. Specifically, an approach that has re-
cently been made popular is the re-purposing of tools used
in language and speech research. An early approach to
model activities via hierarchical models (which also uses
an early version of HTK) was proposed by Ivanov and Bo-
bick [9]. The authors use trajectories gained from different
visual tracking systems to evaluate different human activ-
ities from basic hand gestures to music conducting to un-
derstanding patterns of traffic in a parking lot. In recent
years, sequence modeling tools have received an increasing
amount of attention, as shown, for instance, in the survey
by Weinland er al. [24], in part because of their ability to
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Figure 2. Overview of the proposed hierarchical approach for the
recognition and parsing of human activities using the open source
speech recognition framework HTK.

model the temporal structure of actions at multiple levels of
granularity. HMMs are a particularly popular framework as
they have been shown to work well not only for the recog-
nition of events but also for the parsing and segmentation of
videos [10] with applications ranging from sign language
understanding[6, 14] to the evaluation of motor skills in-
cluding the training of surgeons [26].

In the context of the recognition of human actions in
video, Chen and Aggarval [5] use the output of an SVM to
classify complete activities with HMMs, reaching a recog-
nition accuracy of 90.9% on the KTH dataset. Other at-
tempts also demonstrated the capability of HMMs [1, 22],
but so far, HMMs have not reached state-of-the-art accuracy
and lag behind discriminative approaches.

One limitation for scaling up HMMs to more complex
scenarios is the use of Gaussian Mixture Models (GMMs),
which require a dense low dimensional input representation
in order to work well. As a result, behavioral analysis with
HMMs is often done with motion capture data or other sen-
sors [10] or, in the case of video-based action recognition,
with object, hand and head trajectories [0, 26]. This has
typically forced researchers working with HMMs to work
in controlled environments with restrictive setups.

Another challenge associated with the use of HMMs
for action recognition is that they require large amounts of
training data. In speech recognition, where HMMs proved
to be most successful, even an outdated corpus like TIDIG-
ITS [12] for speech-based recognition of connected digits
comprises 326 speakers uttering 77 digit sequences each,
resulting in nearly 9,000 voice samples. More recent cor-
pora like the Quearo Corpus have now reached over one
million words [21]. These corpora are orders of magnitude
larger than present video datasets for action recognition.
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Figure 3. Comparison of different action recognition datasets
based on the number of subjects, classes, action units and clips.

Another limitation of existing datasets is that many lack
annotations for basic atomic entities within individual se-
quences, which are needed to train temporal models like
HMMs. However, the annotation of those atomic entities is
extremely time consuming and, therefore, it is only avail-
able for a small number of datasets. Some of the most re-
cent action recognition datasets with this level of annotation
include the CMU-MMAC dataset [19], the ICPR-KSCGR
dataset [18], the GTEA Gaze+Dataset [7], the MPII Cook-
ing dataset [17] as well as the 50 Salads dataset [20]. A
comparison between the largest of these datasets and the
proposed one is shown on Fig. 3.

3. Breakfast dataset

Data collection and pre-processing: The proposed
dataset is to date one of the largest fully annotated datasets
available. Overall, we recorded 52 unique participants, each
conducting 10 distinct cooking activities captured in 18 dif-
ferent kitchens'. One of the main motivations for the pro-
posed recording setup “in the wild” as opposed to a sin-
gle controlled lab environment [17, 19], is for the dataset to
more closely reflect real-world conditions as it pertains to
the monitoring and analysis of daily activities.

The number of cameras used varied from location to lo-
cation (n = 3 — 5). The cameras were uncalibrated and
the position of the cameras changes based on the loca-
tion. Overall we recorded ~77 hours of video (> 4 million
frames). The cameras used were webcams, standard indus-
try cameras (Prosilica GE680C) as well as a stereo camera
(BumbleBee®), Pointgrey, Inc). To balance out viewpoints,
we also mirrored videos recorded from laterally-positioned
cameras. To reduce the overall amount of data, all videos
were down-sampled to a resolution of 320 x 240 pixels with
a frame rate of 15 fps.

http://serre-lab.clps.brown.edu/resource/
breakfast—actions—dataset
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Figure 4. Number of samples per action unit in the dataset.

Number of samples

Cooking activities included the preparation of coffee
(n=200 samples), orange juice (n=187), chocolate milk
(n=224), tea (n=223), a bowl of cereals (n=214), fried eggs
(n=198), pancakes (n=173), a fruit salad (n=185), a sand-
wich (n=197) and scrambled eggs (n=188). This set of
goal-directed activities that people commonly perform in
kitchens include both very distinct (e.g. tea and fried egg
preparation) as well as very similar activities (e.g. fried egg
vs. scrambled egg preparation) to allow for a comprehen-
sive assessment of the recognition system. Unlike most ex-
isting datasets, the actor performance here was completely
unscripted, unrehearsed and undirected. The actors were
only handed a recipe and were instructed to prepare the
corresponding food item. The resulting activities are thus
highly variable both in terms of the choice of individual ac-
tion units by the actors as well as in their relative ordering.

Data annotation: We asked two sets of annotators to
manually label the corresponding videos at two different
levels of granularity: One group of three annotators was
asked to annotate action units at a coarse level, like ‘pour
milk’ or ‘take plate’. Another group of fifteen annotators
was asked to provide annotations at a finer level of gran-
ularity by decomposing coarse actions such as ‘pour milk’
into finer chunks such as ‘grab milk” — ‘twist cap’ — ‘open
cap.” In the present work, we only consider the coarse
level of annotations. Analysis using finer action units will
be published elsewhere. Overall we identified 48 different
coarse action units with 11,267 samples in total including
~3,600 ‘silence’ samples (see Fig. 4 for labels used and the
corresponding number of samples and Tab. 1 for the break-
down of action units for individual activities). The order the
units can appear in is defined by a grammar (Fig. 5) built in
a bottom-up manner using the original labels.

Data splits: For evaluation purpose, we organized the 52
participants in four groups, and permuted each of these four
groups as splits for training and test. Because of the very
large size of the dataset we found that using larger and/or
more numerous splits became rapidly unpractical for any
kind of extensive empirical evaluation.
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Coffee

take cup - pour coffee - pour milk - pour sugar - spoon sugar - stir coffee

(Chocolate) Milk take cup - spoon powder - pour milk - stir milk

Juice take squeezer - take glass - take plate - take knife - cut orange - squeeze orange - pour juice

Tea take cup - add teabag - pour water - spoon sugar - pour sugar - stir tea

Cereals take bowl - pour cereals - pour milk - stir cereals

Fried Egg pour oil - butter pan - take egg - crack egg - fry egg - take plate - add salt and pepper - put egg onto plate
Pancakes take bowl - crack egg - spoon flour - pour flour - pour milk - stir dough - pour oil - butter pan - pour dough into

pan - fry pancake - take plate - put pancake onto plate

(Fruit) Salad

take plate - take knife - peel fruit - cut fruit - take bowl - put fruit to bowl - stir fruit

Sandwich

take plate - take knife - cut bun - take butter - smear butter - take topping - add topping - put bun together

Scrambled Egg

take plate - put egg onto plate

pour oil - butter pan - take bowl - crack egg - stir egg - pour egg into pan - stir fry egg - add salt and pepper -

Table 1. Breakdown of action units for individual activities. The ordering of action units for each activity is defined separately using a

grammar.

4. Modeling actions as speech

As Chen and Aggarval pointed out, there is an inher-
ent similarity between the temporal structure of actions and
speech [5]. Fine-level actions can be combined into coarser
action units much like phonemes for words in speech recog-
nition. Longer activities can be further constructed using
a grammar over action units. This analogy between ac-
tion and speech processing suggests that the tools and tech-
niques from automatic speech recognition could, in prin-
ciple, be applicable to action video data. Here we use
the HTK [25], an open source toolbox mainly dedicated to
speech recognition and adapt it for the recognition and pars-
ing of human activities. HTK provides the tools for evalua-
tion and decoding of sequences and also supports data for-
mats and vocabularies that are not based on audio input.

4.1. Modeling action units

We start modeling human activities at the level of ac-
tion units, corresponding to the coarser labels of the dataset.
Each action unit is modeled by a single HMM following the
modeling of phonemes as described in [25]. To initialize the
HMMs, training units are equally divided by the predefined
number of states. The initial Gaussian components are com-
puted from the training samples and initial transition proba-
bilities set to constant values for self-loops as well as transi-
tions to the next state. Special cases, namely the transitions
from the start and end state, are treated separately by setting
the start state transition to 1 and the end state transition to
0. The parameters are optimized separately for each HMM
using Baum-Welch re-estimation. For recognition and de-
coding of HMMs, HTK features the Viterbi algorithm to
compute the best path at each time step given an input se-
quence. This is done by summing up log transition prob-
abilities and log output probabilities of the most probable
states. For specific details of the training and decoding of
HMMs in HTK, we refer to [25].

take cup

Figure 5. Possible transitions between action units for the activity
“preparing coffee”.
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4.2. Modeling of complex activities

At the higher level, activities are modeled as sequences
of action units using a context-free grammar. This two-
stage approach has several benefits: First, breaking down
the complete tasks into smaller units allows not only the
recognition of the activity as a whole, but also its parsing
at the level of action units. The result is a unit-level repre-
sentation and segmentation of an input sequence. Second,
the bottom-up construction of tasks from single indepen-
dent units allows a higher flexibility when dealing with un-
known combinations of units up to the recognition of new,
unseen activities.

Following the HTK convention, we use a grammar speci-
fied in the Extended Backus Naur Form (EBNF). The recog-
nition of sequences is based on the token passing concept
for connected speech recognition [25], augmenting the par-
tial log probability with word link records, or in the present
case, unit link records describing the transition from one
unit to the next. The Viterbi algorithm is used to compute
the most probable sequence. For any given time point, the
link records can be traced back to get the current most prob-
able path. This corresponds to the most probable combina-
tion of units, and the position of the related unit boundaries,
that is essentially the segmentation of the sequence.



5. Evaluation
5.1. Feature representation

To evaluate the performance of the proposed approach,
we consider two popular visual descriptors, the HOGHOF
proposed by Laptev [11] and Trajectons as described by
Matikainen et al. [13]. Here we apply a bag-of-words ap-
proach [11, 23]: To build the codebooks, 100k features
were randomly sampled from the training set and clus-
tered into K clusters using the K-means algorithm with
K = {30,50,100,200}. The resulting cluster centers were
used to build histograms over a sliding temporal window by
hard assignment of each feature to its cluster center.

5.2. Recognition with HTK

For training, an initial HMM is initialized for each ac-
tion unit specifying the number of stages, the topology (in
this case forward left-to-right), the initial transition proba-
bilities (0.6 - self, 0.4 - next) and the number of Gaussians
per state. The number of stages was determined by cross
validation using n = [3,5,10,15] fixed stages. We also
tested an adaptive number of stages depending on the mean
frame length of the related unit and linear scaling (factor
10). Overall linear scaling showed the best results for all
cases. Additionally, the number of Gaussians was evalu-
ated with m = [1,2,3,5,10] Gaussians. Here, the mod-
eling with a single Gaussian distribution outperformed the
other models. Given that an adaptive number of stages and
a single Gaussian consistently gave higher accuracy, these
were set as default parameters in all remaining experiments.

To validate the proposed approach, we applied the sys-
tem to an independent benchmark dataset, the Activities of
Daily Living (ADL) [15], achieving a recognition accuracy
of 77.3 % for HOGHOF and 74.0% for Trajectons. As
the dataset is rather small for HMMs (only 5 test persons
and 150 clips in total), the results do not quiet outperform
the current state-of-the-art (82.7% [16]). Nevertheless, the
recognition still outperforms the originally reported 69%
accuracy for Laptev’s HOGHOF [15] and shows a compa-
rable level of accuracy with other approaches thus demon-
strating the potential of the proposed framework.

5.3. Accuracy measures for unit recognition

To compare the output of the unit recognition module to
the ground-truth we consider two different types of errors.

First, as a measure for the correct detection of a unit
within a sequence, we report the unit accuracy based on
the concept of word accuracy in speech. A direct compar-
ison between recognized units vs. ground-truth is usually
not possible, as the number of recognized units does not
necessarily match the number of units in the reference se-
quences. Therefore, we first align the recognized sequence
to the reference sequence by dynamic time warping (DTW)
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Figure 6. Evaluation methods used: Comparison between a) unit-
based vs. b) frame-based performance measurement.

as an evaluation preprocessing step. After alignment, as
shown in Fig. 6 a), three different types of errors, insertions,
deletions and misclassifications can occur. Different from
speech, where errors are reported in relation to the number
of units in the original sequence, we consider a more re-
laxed measurement by just considering all units after DTW
without distinguishing between insertions, deletions or mis-
classifications. Second, we report the frame-based accuracy
as a measure of the quality of segmentation. For frame-
based accuracy, we measure the number of frames labeled
incorrectly for the related sequence as shown in Fig. 6 b).

5.4. Evaluation of Breakfast dataset with HTK

Sequence recognition: First, we evaluate the overall se-
quence recognition accuracy for the 10-class activity recog-
nition problem. We tested the proposed system with differ-
ent codebook sizes K = {30, 50,100,200} for HOGHOF
and Trajectons (see Tab. 2). We found that HOGHOF per-
form best at 38.46% outperforming Trajectons with an ac-
curacy of 28.68%.

Looking at the confusion matrix for HOGHOF shown on
Fig. 7, it shows that related activities like the preparation of
drinks vs. food tend to be more often confused. We see
two reasons for that: First, related activities share a higher
number of similar action units compared to unrelated activi-
ties. Second, the combination of HMMs and grammar does
encode implicitly the possible length of a sequence. Much
like HMMs require a sufficient number of frames for each
state, grammars also define a minimum number of HMMs.
It is unlikely that very long activities, like the preparation
of pancakes, get mixed up with very short ones like prepar-
ing coffee. The only exception is the preparation of cere-
als. As Fig. 7 shows, the “cereals” sequences tend to be
confused with the activities involving drinking more than
with food-related activities. We attribute this to the fact
that, even though it does not fit the literal grouping, this
activity shares more units with drink-related activities like
stirring and pouring than with food-related activities. Also
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Sequence recognition for 10 activity classes
c30 c50 c100 c200
HOGHOF | 385% | 40.5% | 38.9% | 39.4%
Trajectons | 28.7% | 27.1% | 26.7% | 27.1%
Table 2. Activity recognition performance using HTK for different
codebook sizes.

the mean duration of this activity tends to be more similar
to drink-related than to food-related activities.

In addition, there also appears to be a trend towards bet-
ter recognizing longer activities. When looking at the best
activity of the food and drink group, both the preparation
of pancakes and chocolate milk also happened to be the
longest activities of their related groups. In general, drink-
related activities tend to be confused with the “chocolate
milk,” which is also the longest of all. In both cases, the
drink and the food preparation, longer activities are favored
over short ones.

Unit recognition: At the level of action units, we evalu-
ate the performance of the unit accuracy and frame-based
segmentation as described in Sec. 5.3. Obligatory lead-
ing and trailing silence units at the beginning and end of
each sequence are ignored as they are predefined by the
grammar and thus, can not be seen as result of the recog-
nition process. As shown in Tab. 3, for the case of the
HOGHOF-based recognition, 31.8% of all units and 28.8%
of all frames were correctly recognized.

Considering that this result also includes misclassified
activities, we evaluated the unit accuracy for correctly clas-
sified acticities leading to an overall unit accuracy of 65.7%
for HOGHOF and 64.0% for Trajectons and a frame-based
recognition rate of 58.5% for HOGHOF and 56.8% for Tra-
jectons.

Figure 8. Confusion matrix for unit recognition (HOGHOF).

Unit accuracy results for 48 unit classes

c30 c50 c100 c200
30.4% | 31.8% | 31.3% | 31.7%
23.0% | 21.6% | 21.8% | 21.5%

Frame-based accuracy results for 48 unit classes
c30 c50 c100 c200
HOGHOF | 28.8% | 28.8% | 26.6% | 26.6%
Trajectons | 24.5% | 24.2% | 22.5% | 24.5%
Table 3. Unit and frame-based recognition accuracy for all 48 ac-
tion units.

HOGHOF
Trajectons

5.5. Grammar-based recognition

As the proposed system has a hierarchical structure, the
grammar that guides the overall recognition plays an im-
portant role for the final sequence parsing and frame-based
recognition. To separate the influence of the grammar from
the simple HMM-based parsing, we evaluate the proposed
system by replacing the grammar describing complete se-
quences by a flat grammar, allowing transitions from each
HMM to any other. To limit the length of the sequences,
the minimum number of units that needs to be used is set
to 2 and the maximum number is set to 15. Overall, one
can see that the unit accuracy is at best 12.5% for HOGHOF
and 9.2% for Trajectons and frame-based accuracy is at best
12.4% for HOGHOF and 13.2% for Trajectons, but still out-
performs frame-based unit classification by SVM (see sec.
5.6). This may be due to the fact that even a flat grammar is
still more constrained by giving a minimum and maximum
number of possible unit transitions and that HMMs encode
the temporal evolution of different units, which is not the
case for a simple frame based SVM classification.



Unit accuracy for 48 units w/o grammar

c30 c50 c100 c200

HOGHOF | 109% | 11.9% | 12.3% | 12.5%
Trajectons | 8.4% 8.8% 8.1% 9.2%

Frame-based accuracy for 48 units w/o grammar
c30 c50 c100 c200
HOGHOF | 12.1% | 12.1% | 12.4% | 12.0%
Trajectons | 11.6% | 12.0% | 11.7% | 13.2%
Table 4. Unit and frame-based recognition accuracy for HTK with-
out grammar.

Results of SVM and REF classification for 10 activity classes
c30 c50 c100 c200

SVM HOGHOF | 25.1% | 26.0% | 21.5% | 21.0%
Trajectons | 22.3% | 21.7% | 23.2% | 26.0%

RF HOGHOF | 22.7% | 24.0% | 20.9% | 22.7%
Trajectons | 18.1% | 21.6% | 22.4% | 25.1%

Table 5. Recognition accuracy for SVM and RFs for overall activ-
ities.

5.6. Comparison with discriminative classification

To evaluate the performance of the proposed system
compared to state-of-the-art action recognition as described
in [11, 23], we consider a standard discriminative clas-
sification approach using SVMs with RBF kernels [2] as
well as random forests (RFs). To estimate the best param-
eters for C' and +, a five-fold cross-validation procedure
was used together with an all-pair multi-class classification
strategy. The Synthetic Minority Over-sampling Technique
(SMOTE) [4] was used whenever needed (i.e., for highly
imbalance unit- and frame-based classification problems).
To avoid oversampling with too many artificially generated
data, the maximum number of samples per class was limited
to 1,000 samples.

We classify the overall activity for each clip as well
as the action unit for each frame. For activity recogni-
tion, discriminative classifiers were trained with histograms
built from all features of the complete video clip. For the
frame-based unit classification, histograms were built over
a 10-frame sliding temporal window. Tab. 5 shows results
for the discriminative models for activity recognition: the
maximal accuracy was 26.0% for HOGHOF for K = 50
and Trajectons for K = 200, whereas recognition perfor-
mance with HTK lies at 38.46% (+12.42%) for HOGHOF
(K = 50) and 28.68% for Trajectons (+2.68%, K = 30).
We also extended the codebook size for activity recognition
to K = 2,000 words because this is closer to dictionary
sizes used by other authors [11, 23] but accuracy did not
improve (22.4% for HOGHOF and 24.0% for RFs).

Further, we also computed the unit accuracy per frame
which is at best at 6.09% for HOGHOF and 6.33% for
Trajectons. This is still a significant drop compared to
the recognition with HTK with and without grammar and
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Figure 9. Activity recognition with a reduced number of training
samples: A comparison between HTK, SVM and RFs (a) and ex-
trapolation to 100 training samples (b).

shows that a simple classification of time snippets is not
sufficient given the complexity of the data.

5.7. Number of training samples needed

One of the main limitations of the system is the need for
annotations at the level of individual action units, which is
a long and tedious task for annotators.

Reduced training samples: On Fig. 9, we evaluate how
the accuracy of HTK vs. discriminative approaches (SVM
and RFs) vary as a function of the number of video samples
used for training. We reduced the number of people used for
training from 40 down to 15 (i.e., 5 people per split). This is
the smallest training set that still includes all possible action
units. It corresponds to 500 clips (i.e., 50 training samples
per sequence).

As can be seen on Fig. 9 a), HTK outperforms discrim-
inative methods, even with a reduced number of training
samples. We also applied a linear fitting to the data as dis-
played in Fig. 9 b).

Embedded training and flat start: As a second option to
reduce the labeling workload, we explored the capabilities
of embedded training (see [25], chap. 8.5). For this boot-
strapping procedure, only part of the training data needs to
be labeled at the level of action units to initialize the HMMs
in a first training run. For the remaining data, only the tran-
scription of the occurring units is needed. The transcribed
data is used for a refinement of the initialized HMMs data
by embedded Baum-Welch re-estimation. Fig. 9 a) shows
the results of the embedded training using the indicated
number of persons for initialization and, in the second step,
using the transcripts of all 39 persons in the training split to
re-estimate the models.

In the case that no unit labels are available, this technique
also allows a so called “flat start”. Here, untrained HMMs
are used as prototypes and the re-estimation is applied for
an iterative segmentation and training based on transcribed
data. The flat start training showed a sequence accuracy of
25.34%.



6. Conclusion

We described an effort to advance the field of human
activity recognition by applying techniques borrowed from
speech recognition. To evaluate the approach, we collected
a novel activity dataset that is both objectively large and
challenging. We trained a hierarchical model based on
HMMs and a context-free grammar using the open source
HTK speech recognition toolbox. We evaluated the ap-
proach in the context of both video parsing and classifica-
tion for ten different kitchen activities. We demonstrated the
potential of temporally structured, generative models for ac-
tivity recognition, reiterating the need for copious amounts
of video data for these models to perform well. We hope
that this initial attempt and the resulting video dataset will
spur further research towards a large scale recognition of
complex, goal-directed, daily-life activities.

Acknowledgments

This work was supported by ONR grant
(N000141110743) and NSF early career award (IIS-
1252951) to TS. Additional support was provided by the
Robert J. and Nancy D. Carney Fund for Scientific Inno-
vation and the Center for Computation and Visualization
(CCV). HK was funded by the Quaero Programme and
OSEOQ, the French State agency for innovation.

References

[1] A. Antonucci, R. de Rosa, and A. Giusti. Action recognition
by imprecise hidden markov models. In /PCV, 2011. 2

[2] C.-C. Chang and C.-J. Lin. Libsvm: A library for sup-
port vector machines. ACM Trans. Intell. Syst. Technol.,
2(3):27:1-27:27, May 2011. 7

[3] J. M. Chaquet, E. J. Carmona, and A. Fernndez-Caballero. A
survey of video datasets for human action and activity recog-
nition. CVIU, 117(6):633 — 659, 2013. 1

[4] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer. Smote: synthetic minority over-sampling tech-
nique. J. Artif. Int. Res., 16(1):321-357, 2002. 7

[5] C. Chen and J. Aggarwal.
speech. In CVPR, 2011. 2,4

[6] P. Dreuw, J. Forster, and H. Ney. Tracking benchmark
databases for video-based sign language recognition. In
ECCYV Int. Workshop on Sign, Gesture, and Activity, 2010.
2

[7]1 A. Fathi, Y. Li, and J. Rehg. Learning to recognize daily
actions using gaze. In ECCV, 2012. 3

[8] B.M. Hard, G. Recchia, and B. Tversky. The shape of action.
Journal of experimental psychology: General, 140(4):586—
604, Nov. 2011. 2

[9] Y.Ivanov and A. Bobick. Recognition of visual activities and
interactions by stochastic parsing. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 22(8):852-872,
2000. 2

Modeling human activities as

(10]

(1]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

D. Kulic and Y. Nakamura. Incremental learning of hu-
man behaviors using hierarchical hidden markov models. In
IROS, 2010. 2

I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. In CVPR,
2008. 5,7

R. G. Leonard and G. Doddington. TIDIGITS, Texas Instru-
ments, Inc., 1993. http://catalog.ldc.upenn.edu/LDC93S10.
2

P. Matikainen, M. Hebert, and R. Sukthankar. Representing
pairwise spatial and temporal relations for action recogni-
tion. In ECCV, 2010. 5

S. Mehdi and Y. Khan. Sign language recognition using sen-
sor gloves. In Int. Conf. on Neural Information Processing,
2002. 2

R. Messing, C. Pal, and H. Kautz. Activity recognition using
the velocity histories of tracked keypoints. In ICCV, 2009.
2,5

M. Raptis and S. Soatto. Tracklet descriptors for action mod-
eling and video analysis. In ECCV, 2010. 5

M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele. A
database for fine grained activity detection of cooking ac-
tivities. In CVPR, 2012. The dataset and relevant code is
available at http://www.d2.mpi-inf.mpg.de/mpii-cooking. 1,
2,3

A. Shimada, K. Kondo, D. Deguchi, G. Morin, and H. Stern.
Kitchen scene context based gesture recognition: A contest
in ICPR2012. In Advances in Depth Image Analysis and
Applications, LNCS 7854, 2013. 3

E. H. Spriggs, F. De la Torre Frade, and M. Hebert. Tempo-
ral segmentation and activity classification from first-person
sensing. In IEEE Workshop on Egocentric Vision, CVPR,
June 2009. 2, 3

S. Stein and S. J. McKenna. Combining embedded ac-
celerometers with computer vision for recognizing food
preparation activities. In ACM Int. Conf. on Pervasive and
Ubiquitous Computing, 2013. 3

S. Stiiker, K. Kilgour, and F. Kraft. Quaero 2010 speech-to-
text evaluation systems. In High Performance Computing in
Science and Engineering. 2012. 2

R. Vezzani, D. Baltieri, and R. Cucchiara. HMM based ac-
tion recognition with projection histogram features. In /CPR,
2010. 2

H. Wang, M. M. Ullah, A. Klaser, 1. Laptev, and C. Schmid.
Evaluation of local spatio-temporal features for action recog-
nition. In BMVC, 2009. 5,7

D. Weinland, R. Ronfard, and E. Boyer. A survey of vision-
based methods for action representation, segmentation and
recognition. CVIU, 115(2):224 — 241, 2011. 2

S. J. Young, G. Evermann, M. J. F. Gales, T. Hain, D. Ker-
shaw, G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev,
and P. C. Woodland. The HTK book, version 3.4. Techni-
cal report, Cambridge University Engineering Department,
Cambridge, UK, 2006. 2, 4,7

Q. Zhang and B. Li. Relative hidden markov models for
evaluating motion skills. In CVPR, 2013. 2



