
Minimal Solvers for Relative Pose with a Single Unknown Radial Distortion

Yubin Kuang1,3 Jan Erik Solem1,3 Fredrik Kahl1,2 Kalle Åström1
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Abstract

In this paper, we study the problems of estimating rela-
tive pose between two cameras in the presence of radial dis-
tortion. Specifically, we consider minimal problems where
one of the cameras has no or known radial distortion. There
are three useful cases for this setup with a single unknown
distortion: (i) fundamental matrix estimation where the two
cameras are uncalibrated, (ii) essential matrix estimation
for a partially calibrated camera pair, (iii) essential ma-
trix estimation for one calibrated camera and one camera
with unknown focal length. We study the parameterization
of these three problems and derive fast polynomial solvers
based on Gröbner basis methods. We demonstrate the nu-
merical stability of the solvers on synthetic data. The min-
imal solvers have also been applied to real imagery with
convincing results1.

1. Introduction

Taking radial distortion into account is important in pose
estimation and structure from motion problems. Problems
for relative poses with unknown radial distortion have been
studied extensively in the past [9, 1, 10, 15, 16, 14]. For
all these cases, either constant or varying radial distortion is
assumed on the cameras. Such settings are useful for self-
calibrating cameras with no prior knowledge on the camera
intrinsics. Estimating relative pose and the radial distortion
simultaneously is achieved by solving either a linear system
or a polynomial system. Due to the difficulty of these prob-
lems, they either require many point correspondences or
dedicated polynomial solvers. In fact, some minimal prob-

1This work was supported by the Swedish Research Council (grant no.
2012-4215 and grant no. 621-2009-4625) and the Swedish Foundation for
Strategic Research, within the programmes RIT08-0043, ELLIIT and Fu-
ture Research Leaders.

Figure 1. Example of modeling one-sided radial distortion for es-
timating relative pose. Left: an image taken with an GoPro-Hero3
with unknown radial distortion. Right: an image taken with a
Nikon D60 camera which has known radial distortion. Yellow di-
amonds are the common inliers for fundamental matrix estimation
obtained by both the standard 7-point method [12] and our min-
imal one-sided 8-point method. By considering radial distortion,
our method obtains many extra inliers (red circles) while misses
only a few inliers (cyan crosses) compared to the 7-point method.

lems of importance have still not been solved due to their
difficulty, like estimating the relative pose with unknown fo-
cal length and radial distortion (both constant). In a general
structure from motion pipeline, however, it is common that
certain seed images have pre-calibrated or already known
radial distortion. For these cases, the prior on the calibra-
tion of one of the cameras can reduce the complexity of the
problem. In [5], a similar strategy has been applied in fo-
cal length estimation where the focal length of one camera
is assumed to be known. This motivates us to study the
problem of relative pose estimation with a single unknown
radial distortion (sometimes referred to as one-sided prob-
lem). We are particularly interested in solving their related
minimal problems for robust estimation purposes.

Related Work. To model radial distortion, we have
followed the one-parameter division model proposed by
Fitzgibbon [9] and assumed that the radial distortion cen-
ter is known. For fundamental matrix and constant radial
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distortion on both cameras, Fitzgibbon proposed an overde-
termined 9-point solver which involves solving a quadratic
eigenvalue problem that has two solutions. The minimal
case of this problem was solved in [15], and has in general
12 solutions. For a fundamental matrix with varying radial
distortion, a linear solution using 13 point correspondences
was proposed in [1]. An efficient and stable 9-point mini-
mal solver was later derived in [14] with 24 solutions. For
an essential matrix with constant radial distortion, which
requires minimally 6 point correspondences, there are in
general 56 solutions. It was also solved in [14]. The most
related work to this paper is [4], which considered the one-
sided fundamental matrix estimation problem. In that paper,
instead of solving the minimal case with 8 point correspon-
dences, 9 point correspondences are used to simplify the
problem into that of solving a cubic equation. While ob-
taining a simple overdetermined solver is useful, the study
of the minimal cases is of both of theoretical interest and of
great practical importance in robust estimation, for example
using RANSAC [8]. Non-iterative solvers for estimating the
radial distortion center (both one-sided and two-sided cases)
were also studied in [17, 3, 2]. Even though the additional
modeling of radial distortion center is useful, it has been
shown that the estimation can be very sensitive to noise [3].

Contributions. In this paper, we study the three un-
solved minimal cases for relative pose estimation with a
single unknown radial distortion: (i) 8-point fundamental
matrix and radial distortion, (ii) 7-point essential matrix,
focal length and radial distortion, and (iii) 6 point essen-
tial matrix and radial distortion. For each of these cases, we
derive a parameterization and a linear elimination scheme
to simplify the polynomial systems. We study the polyno-
mial systems and verify the number of solutions. We then
develop fast and stable polynomial solvers for all these min-
imal cases. These solvers are minimal, fast and more ac-
curate than previous non-minimal solvers, for example [4].
The availability of these fast solvers enables the possibility
of initializing a large-scale structure from motion pipeline
with radial distortion taken into account. We demonstrate
the benefits of modeling radial distortion by using our pro-
posed solvers.

2. Problem Formulation
We use the pinhole camera model and assume a one-

parameter division model for radial distortion as in [9]. Un-
der radial distortion, the relation between undistorted point
coordinates pu =

[
xu yu 1

]T
and radially distorted

point coordinates pd =
[
xd yd 1

]T
can be written as:xuyu

1

 ∼
 xd

yd
1 + λr2d

 (1)

where λ is the distortion coefficient and rd is the distance of
pd to the distortion center. Here we assume that the distor-
tion center is known and at the center of the image. We fur-
ther assume that the cameras have centered principal points
and square pixels. Therefore, the two unknown calibration
parameters we consider here are focal length f and radial
distortion λ. The calibration matrix K can be expressed as:

K =

1 0 0
0 1 0
0 0 w

 (2)

where w = 1/f . Then we have the undistorted image point
coordinates

pn ∼ Kpu. (3)

In two-view geometry, it is well known that for uncal-
ibrated cameras, the fundamental matrix F has 7 degrees
of freedom, and for calibrated cameras, the essential ma-
trix E has 5 degrees of freedom [12]. On the other hand,
we know that each image point correspondence gives one
constraint. We consider here the one-sided case where cal-
ibration matrix K′ and radial distortion λ′ is fully known
for the second camera. Note that the prior knowledge on
the calibration of the second camera does not reduce the de-
grees of freedom of the epipolar geometry. In Table 1, we
summarize the related minimal problems on relative pose
with radial distortion for both two-sided as well as the one-
sided cases. We also show the number of solutions to these
minimal problems in general.

Points Case Two-sided One-sided

9 F + λ + λ′ 24 [14] -
8 F + λ 16 [15] 8 (this paper)
7 E + λ +f 68∗ 19 (this paper)
6 E + λ 52 [14] 26 (this paper)

Table 1. Minimal problems and number of solutions for relative
pose with unknown radial distortion on both cameras (two-sided)
and a single camera (one-sided). (∗) To the best of our knowledge,
this minimal problem has not been solved. The number of solu-
tions for the E + λ + f case is based on our own initial calculation
using Macaulay2 [7].

In the following sections, we describe the geometric
constraints for these problems including the epipolar con-
straints from the point correspondences and the intrinsic
constraints on the fundamental matrix and the essential ma-
trix.

2.1. Fundamental Matrix and Radial Distortion

Given n point correspondences, the epipolar constraints
on the fundamental matrix are:

pT
ni
(λ)Fp′ni

= 0, i = 1, . . . , n. (4)



where pn and p′n are corresponding undistorted image
points in the first and the second image, respectively.

The singularity of the fundamental matrix F is enforced
as:

det(F) = 0. (5)

2.2. Essential Matrix and Radial Distortion

Depending on whether the focal length f is known for
the first camera, we have two minimal cases as follows.

Radial Distortion Only. If two cameras are calibrated up
to an unknown radial distortion on the first camera, given n
point correspondences, the epipolar constraints on the es-
sential matrix E are:

pT
ui
(λ)Ep′ui

= 0, i = 1, . . . , n. (6)

Radial Distortion and Focal Length. Here we study the
case where the first camera is calibrated up to an unknown
focal length and an unknown radial distortion. Based on
(1) and the calibration matrix K, we can parameterize the
undistorted case and normalize points as a function of λ and
w. Similarly, the constraints on the essential matrix are:

pT
ui
(λ,w)Ep′ui

= 0, i = 1, . . . , n. (7)

We then use the intrinsic constraints on essential matri-
ces. The singularity of the essential matrix is enforced as:

det(E) = 0. (8)

The trace constraint, that says that the two singular values
are equal, is expressed as the following constraints:

2EETE− trace(EET )E = 0. (9)

3. Polynomial Solvers
In this section, we describe the numerical schemes for

solving the polynomial systems in detail. For all of these
problems, the solution involves the following steps: (i) a lin-
ear elimination step [15] to reduce the number of unknowns
in the polynomial system, (ii) solving the reduced polyno-
mial system using Gröbner basis methods [6]. The methods
in [6] are general, fast and stable for small-size polynomial
problems. To achieve a good trade-off between speed and
accuracy, we choose the basis selection strategy based on
column-pivoting (instead of the more accurate but slower
SVD-based scheme).

3.1. 8 Point Case: F + λ

We parameterize the fundamental matrix F as

F =

f1 f4 f7
f2 f5 f8
f3 f6 f9

 . (10)

To fix the scale of the fundamental matrix, we assume that
f9 6= 0 and choose f9 = 1.

Linear Elimination. We first look at the 8 equations in
(4) given by 8 point correspondences. This gives a polyno-
mial system in matrix form as follows:

Gx = 0, (11)

where G is a 8× 12 coefficient matrix, and x is a vector of
monomials

[
λf3, λf6, f1, f2, f3, f4, f5, f6, f7, f8, λ, 1

]T
.

Given that {f1, f2, f4, f5, f7, f8} are linear in (11), we can
eliminate these 6 unknowns using 6 of the 8 equations.
We can further choose to eliminate one more unknown f3
or f6 using the remaining 2 equations. Here we choose to
eliminate f3. To achieve this, we use the two last equations
to eliminate f3 and λf3. To this end, we can rewrite the two
equations as f3 = g1(f6, λ) and λf3 = g2(f6, λ). Thus, we
obtain a new polynomial system with only 2 unknowns i.e.
f6 and λ. With the singularity constraint on F in (5), we
can then obtain a bivariate polynomial system:

λg1(f6, λ)− g2(f6, λ) = 0, (12)
det (F(f6, λ)) = 0. (13)

The two equations are of degree 3 and 6, respectively.

Polynomial System. By expressing the resulting poly-
nomial system with coefficients in Zp, and using algebraic
geometry tools [7], we find that there are in general 8 so-
lutions for this problem. This size of the solution set is
much smaller than two-sided cases with varying (24 solu-
tions) and constant (16 solutions) radial distortion. To solve
the polynomial system, we use the method in [6] which is
based on Gröbner basis methods. First, we generate the so-
called elimination template by multiplying the two equa-
tions with a set of multiplication monomials. The multipli-
cation monomials are chosen in such a way that (i) the max-
imum monomial degree in the resulting polynomial equa-
tions is 7, and (ii) the highest degree of any of the two un-
knowns in the multiplication monomials is 4. We then arrive
at an elimination template of 12 equations and 24 monomi-
als. Then we use a column-pivoting scheme to select the
monomial basis for the 8 × 8 action matrix. For this prob-
lem, we find that choosing the last 9 monomials (in grevlex
order) as permissible set (see [6]) gives good stability. After
we construct the action matrix, solutions to the polynomial
system can be extracted from the eigenvectors of the trans-
pose of the action matrix. Once we have found solutions for
λ and f6, the solutions of the other unknowns can be cal-
culated linearly. Given that the polynomial system has only
two unknowns, one can also solve the problem using hidden
variable method.

3.2. 7 Point Case: E + λ + f

For this problem, instead of parameterizing the essential
matrix directly, we choose to parameterize F and solve for
E implicitly. The reason is that, with this implicit parame-
terization, we achieve a simpler elimination step.



Linear Elimination. Similar to Section 3.1, we first
use point equations in (4) given by 7 point correspon-
dences. We use 6 of the equations to linearly eliminate
{f1, f2, f4, f5, f7, f8}. With the remaining equation, we
can rewrite λf6 as a quadratic function h(f3, f6, λ) of f3, f6
and λ such that :

λf6 − h(f3, f6, λ) = 0. (14)

Now we can write the fundamental matrix F as a function
of f3, f6 and λ.

With the parameterization of K as in (2), we can express
the essential matrix E with respect to the fundamental ma-
trix:

E = K(w)TF(f3, f6, λ)K
′. (15)

By substituting (15) into (8) and (9), along with (14), we
obtain in total 11 equations in 4 unknowns f3, f6, w and λ.

Polynomial System. Before verifying the number of so-
lutions, we need to simplify the equation system further.
The first observation is that there are 4 equations where w
is the common multiplier. This will potentially introduce
a set of false solutions corresponding to w = 0. To cope
with this, we simply divide all these 4 equations by w (this
is done implicitly by changing the monomials in the equa-
tions). Secondly, we find that after this division step, mono-
mials involving w only appear in the 9 equations from (9)
in quadratic form i.e. w2. We therefore substitute w2 with
a new variable z = w2. To this end, we have one quadratic
equation (14), one 5th degree equation (8) and 9 equations
from (9) (3 equations of 5th degree and 6 equations of 6th

degree).
With these simplification and using [7], we verify that in

general there are 19 solutions for this system. We generate
the elimination template by multiplying a set of multipli-
cation monomials such that (i) the maximum degree of the
monomials in the resulting equations is 8, and (ii) the high-
est degrees of the unknowns in the multiplication monomi-
als are [3, 4, 2, 4], respectively. The resulting elimination
template is of 200 equations and 231 monomials. We ob-
serve that further reducing the size of the template by lim-
iting the degrees in the multiplication monomials generally
deteriorate the numerical stability of the solver. More trim-
ming of the elimination template could be possible by us-
ing heuristics e.g. in [13]. To construct the action matrix,
we choose the last 40 monomials as the permissible set for
basis selection. Again, solutions to the polynomial system
can be extracted from the eigenvectors of the transpose of
the 19× 19 action matrix.

3.3. 6 Point Case: E + λ

Similar to the fundamental matrix, we parameterize the
essential matrix E as

E =

e1 e4 e7
e2 e5 e8
e3 e6 e9

 . (16)

and set e9 = 1 to fix the scale.

Linear Elimination. From point equations in (6) given
by 6 point correspondences, we have a polynomial system
in matrix form as follows:

Hx = 0, (17)

where H is a 6 × 12 coefficient matrix, and x is a vector
of monomials

[
λe3, λe6, e1, e2, e3, e4, e5, e6, e7, e8, λ, 1

]T
.

Again, since {e1, e2, e4, e5, e7, e8} are linear in (17), we
can eliminate these 6 unknowns using the 6 point equations.

With the two intrinsic constraints (8) and (9), we arrive
at a well-defined polynomial system of 10 equations (one
from (8) and 9 from (9)) in 3 unknowns e3, e6 and λ. These
equations are of degree 5 or 6.

Polynomial System. We find that there are in general 26
solutions for this problem using [7]. In contrast, the two-
sided case with constant unknown radial distortion [14] has
in general 52 solutions and is much more difficult to solve.
To generate the elimination template, we choose the set of
multiplication monomials such that (i) the maximum mono-
mial degree in the resulting equations are up to degree 8, and
(ii) the highest degrees of the unknowns in the multiplica-
tion monomial set are [3, 4, 4] respectively. We then obtain
an elimination template of 48 equations and 70 monomials.
For the basis selection step, we have chosen the permissible
set to be the last 32 monomials. Solutions of e3, e6 and λ
can be extracted from the eigenvectors of the transpose of
the 26× 26 action matrix.

3.4. Alternative Parameterization

In this section, we discuss the advantage of presented
parameterization over an alternative parameterization. In
[1, 4], another way to form polynomial systems for these
minimal problems is described. Let us consider the exam-
ple of estimating fundamental matrix and a single radial
distortion. Instead of parameterizing λ and F directly, in
[4], the points are lifted to 4D space with the correspond-
ing 4 by 3 radial distortion matrix which has 11 parame-
ters (after fixing the scale). In this way, the point equations
in (4) can be written as linear equations. By parameter-
izing the solutions as the null space of the n linear equa-
tions, we can eliminate n unknowns. Thus, for the one-
sided 8-point case, we will have a polynomial system of 3



unknowns. Recall that in Section 3.1, using the linear elimi-
nation scheme, we obtain a polynomial system of only 2 un-
knowns which facilitates the subsequent polynomial solv-
ing step. And for the other two cases with even fewer cor-
respondences, straightforward adaption of such lifting tech-
nique yields much more involved polynomial systems than
the linear elimination scheme used in this paper.

3.5. Degenerated Cases

It is well-known that for planar scenes, the problem of
determining the fundamental matrix from two views de-
generates [12]. Therefore, both one-sided 8-point and one-
sided 9-point for estimating fundamental matrix and radial
distortion degenerate for planar scenes. On the other hand,
there are two degeneracies related to our formulation. The
first one is the degeneracy for planar scenes for one-sided 7
point and one-side 6 point formulation. This is caused by
the rank-deficiency in the linear elimination step of our for-
mulation. The other degeneracy relates to fixing f33 or e33
to be 1, which leads to failures of the algorithms for pure
translation where f33 = 0 or e33 = 0. Using a different pa-
rameterization e.g. null space of the linear equations could
resolve these degenerates but will also lead to much more
involved polynomial systems. Further works are needed to
derive general and fast solvers that avoid these degenera-
cies.

4. Experiments

In this section, we first study numerical stability and
noise sensitivity of the proposed solvers with synthetic data.
Then, we demonstrate the usefulness of the solvers on real
image data.

4.1. Synthetic Experiments

To simulate synthetic scenes, we randomly generate 3D
points within a cube of width 1000 centered at the origin.
We place the two cameras to be around 1000 units away
from the origin with a random rotation pointing approx-
imately to the origin. The length of translation between
the cameras is chosen to be around 300 units. The fo-
cal lengths of the cameras are uniformly generated in the
range of [1000, 2000]. Then we generate image point cor-
respondences by projecting the 3D points onto the image
planes (1000 × 1000 pixels) of both cameras. The image
point coordinates are then distorted based on (1) with ra-
dial distortion coefficients chosen randomly from the inter-
val [−0.2, 0.2]. Note that we specify the radial distortion
with respect to normalized image point coordinates in the
range [-1, 1]. Outliers are simply image points randomly
generated with a uniform distribution.
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Figure 2. Left : Numerical stability of the different solvers (from
top to bottom: 8 point, 7 point and 6 point minimal cases for one-
sided radial distortion). Error distribution compared with ground-
truth radial distortion and focal length on synthetic experiments
with 5000 randomly generated problems. Right: Distribution of
the number of valid solutions.

Numerical Stability. We first look at the numerical sta-
bility of the solvers on noise-free data. We evaluate the
solvers with relative errors between the estimated f, λ and
the ground truth. The distributions of log10 of the relative
errors for different solvers are shown in Figure 2. We can
see that both λ and f are estimated with high accuracy. For
5000 random problems, the medians of the log10 relative
errors for λ are -11.58, -9.54 and -10.01 for 8-point, 7-point
and 6-point cases, respectively. The median of the log10
relative errors for f estimated in the 7-point algorithm is
-10.65.

Number of Solutions. It is of interest to investigate the
number of valid solutions for these minimal cases under
general settings. By valid solutions, here we mean real so-
lutions for the radial distortion λ and positive solutions for
f . For the 8-point problem, we see that (Figure 2, right)
that there can be up to 8 real solutions in general. On the
other hand, for the 7-point problem where there are in gen-
eral 19 solutions, most of the time only 3-8 of the solutions
are valid. As for the 6-point problem which has 26 solu-
tions, we observe that very often, only fewer or equal to
16 of those solutions are real. The small number of valid
solutions compared to the double-sided solvers further fa-
cilitates the solution verification step in RANSAC.



0.0001 0.001 0.01 0.1 1 5
−8

−6

−4

−2

0

2

4

noise in pixels

lo
g

1
0
 r

e
la

ti
v
e
 e

rr
o
rs

 −
 λ

 

 

One−sided 9 point [4]

One−sided 8 point

One−sided 7 point

One−sided 6 point

0.0001 0.001 0.01 0.1 1 5
−8

−7

−6

−5

−4

−3

−2

−1

0

noise in pixels

lo
g

1
0
 r

e
la

ti
v
e
 e

rr
o
rs

 −
 f

 

 

One−sided 9 point [4]

One−sided 8 point

One−sided 7 point

0.01 0.1 0.5 1 2
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

relative errors in λ’

lo
g

1
0
 r

e
la

ti
v
e
 e

rr
o
rs

 −
 λ

 

 

One−sided 9 point [4]
One−sided 8 point

One−sided 7 point
One−sided 6 point

0.01 0.1 0.5 1 2
−8

−7

−6

−5

−4

−3

−2

−1

0

relative errors in λ’

lo
g

1
0
 r

e
la

ti
v
e
 e

rr
o
rs

 −
 f

 

 

One−sided 9 point [4]

One−sided 8 point

One−sided 7 point

Figure 3. Top - Noise sensitivity of different solvers in estimating radial distortion (left) and focal length (right) with varying noise levels.
Bottom - Sensitivity of the different solvers on calibration errors in radial distortion (λ′) of the second camera. Blue box specifies the 25
and 75 percentiles for the log10 relative errors.

Noise Sensitivity. To evaluate the solvers in the presence
of noise, we perturb the image points with Gaussian noise
of varying standard deviations σ. Here we are interested
in the noise sensitivity of estimating the radial distortion.
For small perturbations (σ = 0.01, 0.1, 0.5) on the image
point coordinates, we see that all solvers give fairly good
initial solutions to the radial distortion (Figure 3, top-left).
For larger perturbations, e.g. σ = 1, 2, the relative errors
become higher. This is similar to previous minimal solvers
with radial distortion [14, 4]. These solutions from minimal
configurations can be utilized in the kernel voting scheme
or serve as initial solutions (after RANSAC) for bundle ad-
justment. While one is not aiming for better noise tolerance,
the three minimal solvers proposed here perform marginally
better than the non-minimal 9-point solver in [4]2.

Estimating Focal Length. We also test and compare dif-
ferent solvers in estimating focal lengths with noisy mea-
surements. For the cases where only the fundamental ma-
trix is estimated i.e. 9-point [4] and our 8-point solver, we
have extracted the focal length from the fundamental ma-
trix using the method in [4]. We can see from Figure 3

2For all comparisons in this paper, the publicly available solvers
at http://www.cvg.ethz.ch/research/distortion-in-multiple-view-geometry/
are used.

(top-right) that all the solvers perform similarly under set-
tings with low noise levels. When the measurements are
perturbed by noise of higher or equal to 1 pixel, our pro-
posed solvers perform better, while requiring fewer corre-
spondences. This further justifies the usefulness of the new
minimal solvers in robust estimation settings. When com-
paring to the estimation of radial distortion, we observe that
the estimating focal length is less sensitive to the noise i.e.
the errors are lower for focal length than radial distortion
under the same noise level.

Effects of Calibration Errors. In this experiment, we
investigate how errors in calibrating radial distortion of the
second camera affects the estimation of λ and f . To study
this, we add uniform random noise to the true radial distor-
tion λ′ of the second camera. Here, we have chosen fixed
values for λ and λ′ such that λ = −0.2 and λ′ = −0.1. We
observe (Figure 3, bottom) that for all solvers, the errors of
estimating λ increase approximately linearly with respect
to the calibration errors in λ′. On the other hand, there is
no significant difference between the sensitivity of different
solvers to the calibration errors.

Speed. All minimal solvers have been implemented in
MATLAB. On a Macbook Air with 8GB memory and 1.8
GHz i5 CPU, the average runtime for the different solvers



Figure 4. Example on real image pairs. Left: images taken with
an GoPro-Hero3; Right: images taken with a Nikon D60 cam-
era. Yellow diamonds are inliers obtained by the standard 7-point
method. Cyan crosses are inliers only obtained by the 7-point
method. The others are extra inliers obtained by the specific one-
sided minimal solver from the 1st to the 3rd row: one-sided 8
point, one-sided 7 point, one-sided 6 point. The last row is the
comparison of inliers obtained by different one-side solvers where
yellow diamonds are the common inliers.

are: 1.0 ms (milliseconds) for the one-sided 8-point, 8.6
ms for the one-sided 7-point and 3.2 ms for the one-sided
6-point. The solvers can be further optimized in C or C++,
e.g. with a more efficient construction of the coefficient ma-
trix, which is one of the current bottleneck in MATLAB.
For comparison, the one-sided 9-point method in [4] solves
a cubic equation system that runs on average 0.5 ms.

4.2. Real Experiments

In this section, we evaluate and validate the proposed
solvers on real images. We have used an Nikon D60 cam-
era as the fully calibrated camera in our setup. It has been
verified that the Nikon D60 has very small radial distortion
thus we assume that there is no radial distortion in it. We
have also captured images (of resolution 3000× 2292) with
a GoPro Hero3 camera which shows significant radial dis-
tortion. To evaluate the estimation of the essential matrix as
well as focal length, we calibrated the fixed focal length of
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Figure 5. Estimation of radial distortion and focal length for the
GoPro Hero3 camera from 25 image pairs.

the GoPro camera using the OpenCV calibration toolbox,
which then serves as ground truth. For the experiments, we
collected in total 25 pairs of images of different scenes with
the two cameras. For each image in the dataset, we detect
interest point and extract SIFT [18] features. Then for each
pair of images, we obtain tentative descriptor matches based
on Lowe’s criterion. Given these preliminary matches, we
estimate the fundamental matrix or the essential matrix us-
ing different solvers in the RANSAC loop.

In Figure 4, we show several example image pairs where
we compare inliers from our minimal solvers to those ob-
tained by the standard 7-point fundamental estimation. It
can be seen that, by modeling radial distortion, we obtain
more geometrically correct inliers for the image pairs. The
comparison with the standard 8-point method [11] for fun-
damental matrix is very similar and thus is not shown here.

We then look at the gain of inliers for different minimal
problems with the same number of RANSAC iterations. In
Table 2, we can see that all the one-sided radial methods
obtain around 60-70% more inliers than the baseline 7-point
method. Our proposed minimal solvers obtain slightly more
inliers (3-5%) than the non-minimal solver in [4]. We can
also see the the inlier set for different one-sided solvers are
consistent with each other (Figure 4, last row).

9 point [4] 8 point 7 point 6 point

1.67 1.71 1.72 1.70

Table 2. Average ratio of inliers obtained by different one-sided
radial solvers to inliers obtained by the standard 7-point algorithm.

We then study the noise sensitivity and consistency of the
one-sided solvers on real images. To mitigate the effects of
noise, we have also applied the kernel voting scheme of [17]
to obtain better estimates for focal length and radial distor-
tion. In Figure 5 (Left), the estimates of the radial distor-
tion for 25 GoPro-Nikon pairs are shown. We can see that
the estimates from all solvers are centered at approximately
−0.25. However, the variance of the estimates is fairly large
due to the presence of noise. For the focal length (5, right),
we again observe that the estimates for solvers are close to
the ground truth from the calibration. In Figure 6, we show



Figure 6. Example of corrected images based on the estimated λ
by different solvers. Top left: Original image. Top right, bottom
left and bottom right are images corrected according to 8-point,
7-point and 6-point one-sided method respectively.

an example of corrected images according to radial distor-
tion estimated from different one-sided methods. We can
see that most of the radial distortion are correctly reduced.

5. Conclusion
In this paper, we study and solve three novel minimal

problems for relative pose estimation with a single unknown
radial distortion. We demonstrate that all these solvers
are fast, numerically stable and accurate. These minimal
solvers enable calibration of a camera with unknown radial
distortion using another camera with known or no radial dis-
tortion. More importantly, these simpler one-sided solvers
enable robust estimation of radial distortion in large-scale
unordered structure from motion. In large-scale unordered
structure from motion, the proposed solvers can estimate
a fundamental or essential matrix robustly with respect to
seed images with known or no radial distortion. Such es-
timation can be readily integrated with both sequential and
non-sequential structure from motion methods. The study
of these one-sided cases could pave the way to a deeper un-
derstanding of the previous two-sided cases as well. In par-
ticular, our solution to the one-sided essential matrix with
unknown focal length and radial distortion shed light to
the unsolved two-sided minimal problem of essential matrix
with constant unknown focal length and radial distortion.

There are several interesting avenues for future research.
Of particular theoretical interest is the critical configuration
of these minimal problems. The minimal problems for es-
sential matrix for one-sided radial with unknown distortion
center is another direction to pursue.
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