
Dirichlet-based Histogram Feature Transform for Image Classification

Takumi Kobayashi
National Institute of Advanced Industrial Science and Technology

Umezono 1-1-1, Tsukuba, Japan
takumi.kobayashi@aist.go.jp

Abstract

Histogram-based features have significantly contributed
to recent development of image classifications, such as by
SIFT local descriptors. In this paper, we propose a method
to efficiently transform those histogram features for improv-
ing the classification performance. The (L1-normalized)
histogram feature is regarded as a probability mass func-
tion, which is modeled by Dirichlet distribution. Based on
the probabilistic modeling, we induce the Dirichlet Fisher
kernel for transforming the histogram feature vector. The
method works on the individual histogram feature to en-
hance the discriminative power at a low computational
cost. On the other hand, in the bag-of-feature (BoF) frame-
work, the Dirichlet mixture model can be extended to Gaus-
sian mixture by transforming histogram-based local de-
scriptors, e.g., SIFT, and thereby we propose the method
of Dirichlet-derived GMM Fisher kernel. In the experi-
ments on diverse image classification tasks including recog-
nition of subordinate objects and material textures, the pro-
posed methods improve the performance of the histogram-
based features and BoF-based Fisher kernel, being favor-
ably competitive with the state-of-the-arts.

1. Introduction
Histogram-based features are fundamental and play a

key role for recently developed methods especially for im-
age classification. For example, SIFT features are widely
used as a local descriptor [29], HOG features are for ob-
ject detection [6] and the bag-of-word (BoW) methods, i.e.,
visual word histograms, encourage the image classification
in the last decade [5]. In the bag-of-feature (BoF) frame-
work, the SIFT local descriptors are also fed into the Fisher
kernel [36] to significantly improve the performance.

The histogram captures the statistical feature basically
by counting the certain types of symbol. Besides, it is also
used to measure the significance of those symbols by vot-
ing uncountable weights. In SIFT/HOG, the histogram of
gradient orientations is constructed by voting the weight

derived from the gradient magnitude into the orientation
bins. And, soft weights are effectively employed to de-
scribe (quantize) a continuous input space in the form of
the histogram, such as in soft coding for BoW [40]. Such
soft weighting degrades the nature of countable histogram,
while BoW in document texts is inherently a histogram of
countable words. Thus, the histogram-based feature re-
quires appropriate transformation such as normalization to
form an effective feature vector for image classifications.

In order to transform the feature into the form favorable
for classification, the statistical methods such as PCA, ICA
and LDA have been widely applied. Those methods pro-
duce the projection of the feature vectors into a (sub)space
based on the statistical criterion which is specific to the ob-
jective task. On the other hand, various types of normaliza-
tion are also applicable to the histogram-based features for
the feature transform. Those methods generally work on the
features apart from the tasks. The L1 normalization x

‖x‖1
provides histogram-based features with probabilistic per-
spective, that is, theL1-normalized histogram is regarded as
the probability mass function over the histogram bins. For
general image features, the L2 normalization x

‖x‖2 is one
of the most frequently used feature transform and in recent
years, L2-Hellinger normalization

√
x

‖
√
x‖2

=
√

x
‖x‖1 is inten-

sively applied [1, 36].1 In this work, we focus on the latter
feature transform that is generally applicable to histogram-
based features, followed by the classification methods spe-
cific to the recognition tasks.

The feature transform is also addressed in a form of a
kernel function for kernel-based methods [37]. While Gaus-
sian kernel is generally applied to feature vectors, there
are some kernels specialized for the histogram-based fea-
tures; e.g., χ2 kernel [47] and intersection kernel [23].
However, the kernel function inevitably requires the kernel-
based methods that is computationally expensive. Thus, the
kernel feature map is proposed in [41, 31] to circumvent
that issue by representing the (additive) kernel in an explicit

1The SIFT descriptor with L2-Hellinger normalization is known as
RootSIFT [1].
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linear feature form. The mapping enables us to leverage the
kernel’s discriminative power in the linear features, but it
drastically augments the feature dimensionality to approxi-
mate the non-linear kernel function, requiring more compu-
tational cost compared to the original features.

In this paper, we propose a method to efficiently trans-
form the histogram-based features. From the probabilis-
tic viewpoint, the (L1-normalized) histogram feature is re-
garded as a probability mass function, which can be mod-
eled by Dirichlet distribution. Based on the probabilis-
tic model, we induce the Dirichlet Fisher kernel to trans-
form the histogram-based features, enhancing the discrimi-
native power without augmenting the feature dimensional-
ity. Thus, the transformed features are favorably fed into the
linear classifier. And, the method does not require cumber-
some parameter tuning; instead, it is generally determined
based on the statistics of the histogram features, e.g., nat-
ural SIFT statistics. Note that the proposed method is ap-
plicable to any types of histogram-based features including
those of countable symbols, e.g., BoW, as well as those con-
structed by voting weights, e.g., SIFT, whereas the Pólya
model [4] only accepts the former type of histograms.

On the other hand, in the BoF framework, a plenty of
histogram-based local descriptors, e.g., SIFT, are modeled
by the Dirichlet mixture model. We extend it to the Gaus-
sian mixture model via the feature transform and thereby
propose the method of Dirichlet-derived GMM Fisher ker-
nel. The method produces effective image features at a low
extra computational cost for generic image classification,
improving the classification performance.

Our main contributions are 1) Dirichlet Fisher kernel
with the parameter determined by natural statistics of the
target histogram features, such as natural SIFT statistics,
2) Dirichlet-derived GMM Fisher kernel for generic im-
age classifications, and 3) the thorough comparative exper-
iments on a variety of image classification tasks.

2. Dirichlet Fisher kernel
We propose Dirichlet Fisher kernel to transform a his-

togram feature into a discriminative (linear) form of the
same dimensionality, which is suitable for the subsequent
linear classifier.

2.1. Definition

The L1-normalized histogram feature x ∈ RD (x ≥ 0,
‖x‖1 = 1) is supposed to be drawn from the Dirichlet dis-
tribution which is defined by

p(x;θ) =
1

B(θ)

D∏
i=1

xθi−1
i , (1)

where θ ∈ RD+ is the parameter vector and B is the beta

function, B(θ) =
∏D

i=1 Γ(θi)

Γ(θ0) using the gamma function Γ
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Figure 1. Digamma and trigamma functions.

with θ0 =
∑D
i=1 θi. Note that the Dirichlet distribution (1)

is defined over the simplex domain of the discrete probabil-
ity distributionx as shown in Fig. 4a. The Fisher kernel [15]
of the Dirichlet distribution is given by the derivatives of the
log probabilities w.r.t θ,

∇θ log p(x;θ) = log(x)−
{
ψ(θ)− ψ(θ0)1

}
= log(x)−µθ,

(2)
where 1∈RD is the vector whose components are all 1, ψ
is the digamma function (Fig. 1a), and the underlined func-
tions log and ψ act on respective components of the input
vector. The Fisher information matrix is then written by

H =

∫
p(x;θ)∇θ log p(x;θ)∇>θ log p(x;θ)dx

= diag
{
ψ′(θ)

}
− ψ′(θ0)11>, (3)

where ψ′ indicates the trigamma function which is the first
derivative of ψ (Fig. 1b), and diag(·) produces the diago-
nal matrix from the input vector. Thus, the Dirichlet Fisher
kernel is obtained by the following linear feature form;

H−
1
2∇θ log p(x;θ) = H−

1
2 [log(x)− µθ]. (4)

It should be noted that the Dirichlet Fisher kernel results in
the same dimensionality D as the original feature x.

2.2. Diagonal approximation

In the Dirichlet Fisher kernel (4), it is computationally
exhaustive to apply (inverse of) the full Fisher information
matrix H . Therefore, we approximate H in the following
diagonal form;

H ≈ diag
(
ψ′(θ)− ψ′(θ0)1

)
= diag(σ2

θ). (5)

Since the trigamma function ψ′(θ0) approaches to zero at
larger θ0 as shown in Fig. 1b, ψ′(θ0) is negligible especially
in the case of large dimensionD, and the Fisher information
matrix H is dominated by the diagonal components σ2

θ ,
ψ′(θ)− ψ′(θ0)1 > 0. Thus, (4) reduces to

diag(σθ)
−1[log(x)− µθ], (6)

which consists only of component-wise operations.
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2.3. Empirical approximation

In the above formulations (4, 6), the parameter θ
could be estimated from the training samples by the EM
method [32]. However, the parameter θ fortunately appears
only in the forms ofµθ, σθ which are empirically estimated
as mean and standard deviation of log(x) as follows.

Since Ex[∇θlog p(x;θ)]=
∫
p(x;θ)∇θlog p(x;θ)dx =

0, the mean of log(x) is given by

Ex[log(x)] = ψ(θ)− ψ(
∑D
i θi)1 = µθ, (7)

and then the diagonal Fisher information matrix results in
the variance of log(x) as

σθi = Hii =

∫
p(x;θ) {log(xi)− Ex[log(xi)]}2 dx

= V arx[log(xi)]. (8)

Those mean and variance of log(x) are empirically esti-
mated from the training samples {xj}Nj=1 by

µ̂ = Ex[log(x)] =
1

N

N∑
j=1

log(xj), (9)

σ̂2
i = V arx[log(xi)] =

1

N

N∑
j=1

{
log(xji)− µ̂i

}2
, (10)

where xji denotes the i-th component of the j-th sample
vector xj . These statistics are efficiently and stably com-
puted in contrast to the model parameter estimation for θ
by the EM method. The Dirichlet Fisher kernel is finally
obtained via these empirical approximations (9, 10) by

diag(σ̂)−1
{

log(x)− µ̂
}
. (11)

This resultant formulation is quite simple and efficient with-
out augmenting the feature dimensionality unlike the kernel
map [41, 31]. This might also be regarded as standardiza-
tion for log(x), not for x. It should be noted that this stan-
dardization is theoretically derived from the Fisher kernel
of the Dirichlet model.

2.4. Modified log-function

The “log” function plays an important role in the Dirich-
let Fisher kernel (11). It, however, causes a numerical issue
at zero, approaching −∞ as x → 0, and some histogram
bins would practically result in empty. To prevent it, log(x)
is usually modified to log(x + ε) using small fraction pa-
rameter ε � 1. In this section, we address the effect of
the fraction ε from the viewpoint of probability distribution
over the logarithm of the variable, which has not been inten-
sively discussed so far; especially, we mention the natural
SIFT statistics.

0-10-20 log(x) 0-10-20 log(x+  )

(a) log(x) (b) log(x+ ε)
Figure 2. Empirical distribution of transformed SIFT features
marginalized over feature components. The gray region indicates
the deviations (between min and max) across the datasets and the
red solid curve is the mean distribution.
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Figure 3. Transform function. (a) modification of log by introduc-
ing ε, and (b) comparison to

√
x with scaling into [0, 1].

The marginal of the Dirichlet distribution is given by the
Beta distribution;

p(x;θ) =
xθi−1(1− x)θ0−θi−1

B(θi, θ0 − θi)
=
xα−1(1− x)β−1

B(α, β)
(12)

= p(x;α, β), (13)

where we consider the marginal across all feature compo-
nents under the assumption that the parameters θi are not so
drastically changed over i. Then, we transform the variable
x into v = log(x) to modify (13) into

p(v;α, β) =
exp(αv){1− exp(v)}β−1

B(α, β)
. (14)

For example, Fig. 2a shows the empirical distributions of
SIFT extracted from various datasets used in Sec.4.3, omit-
ting the features of x=0. We can find that the marginal dis-
tributions actually result in almost the same form of the uni-
modal (modified) Beta distribution regardless of the dataset
sources. Thus, this is regarded as the natural SIFT statis-
tics, similarly to the natural image statistics [20]. Based on
this distribution, we give ε in a general form.2

Modifying log(x) into log(x+ε) corresponds to the vari-
able transform by ṽ = log{exp(v) + ε} (Fig. 3a), which
accordingly reformulates the probability distribution into

p(ṽ;α, β) =
{exp(ṽ)− ε}α−1{1 + ε− exp(ṽ)}β−1 exp(ṽ)

B(α, β)
.

(15)
2Here, we demonstrate the case of SIFT, but we empirically confirmed

that it holds for the other types of histogram features.
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The empirical distribution of so transformed SIFT is shown
in Fig. 2b. The function log(x + ε) works in the follow-
ing two aspects; First, it roughly rounds off the log(θ) of
θ < ε into log(ε) as shown in Fig. 3a. Tiny histogram
values are regarded as zeros, exhibiting the negative evi-
dence [16], while the differences of the moderately small
x are enhanced like a local contrast enhancement (Fig. 3b).
Second, by adequately determining ε, v̂ = log(x + ε) is
smoothly distributed above log(ε) (lower bound) while pre-
serving the behavior around the mode of distribution. Too
small ε pushes the lower bound log(ε) far away from the
mode, which emphasizes the negative evidence too much.
On the other hand, larger ε unfavorably merges the nega-
tive evidence and the mode. The appropriate ε renders the
smooth distribution between the mode and the lower bound
(negative evidence). For that purpose, we determine ε based
on the cumulative percentile of the empirical distribution;
for general setting, we suggest 25% percentile, e.g., pro-
ducing ε = P−1(0.25) ≈ 0.001 for SIFT descriptors where
P(ε) =

∫ ε
0
p(x)dx.

2.5. Discussion

The Dirichlet Fisher kernel is connected to tf-idf as fol-
lows. Roughly speaking, the digamma function ψ(θ) is ap-
proximated by log(θ) at large θ3, which further provides the
following approximations:

ψ(θ)− ψ(θ0)1 ≈ log(θ)− log(θ0)1 = log

(
θ

θ0

)
= log

(
Ex[x]

)
= log(x̄),

ψ′(θi)− ψ′(θ0) ≈ 1

θi
− 1

θ0
=

1

θ0

(
θ0

θi
− 1

)
=

1

θ0

(
1

x̄i
− 1

)
,

where we use x̄ , Ex[x] = θ
θ0

, the mean of x. Thus, the
i-th component in the Dirichlet Fisher kernel (6) is approx-
imately reformulated to

1

θ0

(
1

x̄i
− 1

)
log

(
xi
x̄i

)
. (16)

This is some sort of tf-idf [35]; apart from the constant
1
θ0

, the feature xi is first normalized by its mean and then
weighted by 1

x̄i
−1. Those weights emphasize the compo-

nents of low means x̄i which correspond to the rarely ob-
served symbols. Such weighting that prefers rare symbols
more than common ones is motivated in the same way as tf-
idf. Therefore, the Dirichlet Fisher kernel works similarly
to tf-idf for enhancing the discriminativity in the features.

The Dirichlet Fisher kernel is also related to the Pólya
Fisher kernel which has been first proposed in [7] for text

3ψ(θ) is usually approximated by log(θ − 0.5) for θ ≥ 1. However,
in order to give light on the connection to tf-idf, we roughly approximate
it by log(θ).

categorization and then presented in [4] for visual classifica-
tion. The Pólya model accounts for symbol (word) bursti-
ness, which is measured discretely, by means of the com-
pound of Dirichlet and multinomial models [30]. Thereby,
it is suitable for transforming the histogram composed of
countable symbols, e.g., BoW, but is inapplicable to those
of uncountable voting weights, e.g., SIFT/HOG. In contrast,
the proposed method deals with various types of features
into which those countable/uncountable histograms are L1-
normalized. In addition, the Pólya method [7, 4] inevitably
requires to learn hyper parameters, which is computation-
ally exhaustive in the case of large-scale high-dimensional
histogram features.

3. Extension to BoF-based Fisher kernel
In Sec.2, we proposed the Dirichlet Fisher kernel that is

applied to individual histogram features. In this section, it is
extended in the bag-of-feature framework to the BoF-based
Fisher kernel which has exhibited promising performance
on image classifications [36].

BoF represents an image by plenty of local descriptors
extracted at various points (grid points) with various scales
in the image. Suppose we employ histogram-based local
descriptors, typically SIFT descriptors, the distribution of
which is modeled by the Dirichlet distribution as described
in the previous section.

3.1. Dirichlet mixture model (DMM)

It is straightforward to apply the Dirichlet mixture model
(DMM) to describe the bag of the local descriptors;

p(x; {θk}Kk=1) =

K∑
k=1

ωk
1

B(θk)

D∏
i=1

xθki−1
i , (17)

where ωk are the prior weights,
∑K
k ωk = 1, ωk ≥ 0 ∀k.

This modeling naturally derives the following DMM Fisher
kernel by using (6),

Gk =
1√
Nωk

N∑
i

p(k|xi)diag(σθk)−1
{

log(xi)− µθk},

(18)

µθk = ψ(θk)− ψ(θk0)1, σθk =
√
ψ′(θk)− ψ′(θk0)1.

Note that the k-th part of DMM Fisher kernel Gk is the D-
dimensional vector since the Dirichlet model contains only
the parameters θk ∈ RD.

3.2. Dirichlet-derived GMM

We rewrite the Dirichlet distribution (1) by using the es-
sential form of v = log(x) as

p(v;θ)=
exp{θ>v}

B(θ)
≈ exp{θ>ṽ}

B(θ)
= p(ṽ;θ), (19)
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‖log(x+ε)−log(ε)1‖2
Figure 4. Feature transform. (a) input histogram feature, (b) trans-
formed feature by modified log and (c) transformed feature so as
to be suitable for GMM. Pseudo colors show the correspondence
among three feature spaces. This figure is best viewed in color.

where ṽ = log(x + ε). Since x lies on the simplex in
RD (Fig. 4a), its transform ṽ is distributed on the convex
surface (

∑
i e
ṽi = 1) as shown in Fig. 4b. We roughly ap-

proximate the convex surface by using the sphere surface
in the positive orthant space (Fig. 4c). These two surfaces
are homeomorphic and furthermore similarly convex. This
approximation leads to

p(ṽ;θ) ∝ exp
[
θ>{ṽ − log(ε)1}

]
(20)

≈ exp

{
η>

ṽ − log(ε)1

‖ṽ − log(ε)1‖2

}
, (21)

where η is the parameter vector that scales θ to compen-
sate the difference in the radii of the two convex surfaces.
(21) implies the von Mises Fisher distribution [22] w.r.t
z = ṽ−log(ε)1

‖ṽ−log(ε)1‖2 which is often replaced with the Gaus-
sian distribution [12]4. As a result, we insist that GMM
is applicable to model the bag of the transformed local de-
scriptors which are L2-normalized log(x+ε)−log(ε)1

‖ log(x+ε)−log(ε)1‖2 , and
consequently the Dirichlet-derived GMM Fisher kernel is
proposed by applying the GMM Fisher kernel [36] to those
transformed local descriptors.

It is advantageous to model the distribution of local de-
scriptors by using Gaussian (GMM) in the following points.
First, the von Mises Fisher distribution (21), getting back to
Dirichlet distribution, is circularly symmetric around η and
unable to characterize the anisotropic dispersity orthogonal
to η, while the Gaussian model can exploit it by variance;
the GMM Fisher kernel [36] produces two types of features
related to the variance and the mean, which doubles the
feature dimensionality of the DMM Fisher kernel (18). The
DMM Fisher kernel (18) is similar to the proposed Fisher
kernel derived from the mean,

1√
Nωk

N∑
i

p(k|xi)diag(σk)−1
[
zi − µk

]
, (22)

4Actually, although the SIFT descriptors [29] are L2-hysteresis nor-
malized, forming spherical distributions, the GMM is directly applied on
those distribution in the GMM Fisher kernel [36].

where ωk,µk,σk are the GMM parameters estimated by
applying EM method to the transformed descriptors z =

log(x+ε)−log(ε)1
‖ log(x+ε)−log(ε)1‖2 . Without applying L2 normalization in
z, (22) reduces to the DMM Fisher kernel (18). Thus, the
DMM Fisher kernel is regarded as the subset of the pro-
posed Dirichlet-derived GMM Fisher kernel.

From the viewpoint of transforming the SIFT descrip-
tors, our method is related to RootSIFT [1] which has also
been applied to Fisher kernel [18]. RootSIFT is the SIFT
descriptor that is transformed by L2-Hellinger normaliza-
tion,

√
x
‖x‖1 . In the RootSIFT, the deviations around the

smaller feature values are enhanced by means of the square
root, while the proposed transform further enlarges them
(Fig. 3b) with pushing the tiny values into the negative evi-
dence as described in Sec.2.4.

4. Experimental results
We evaluate the proposed methods5 on a variety of im-

age classification tasks by applying the linear SVM classi-
fier. Note that the fraction ε is determined based on the 25%
percentile of the marginal feature distribution (Sec.2.4).

4.1. Joint histogram of gradient orientation

The proposed Dirichlet Fisher kernel (Sec.2) is applied
to transform the gradient local auto-correlation (GLAC)
feature [19] for discriminating the pedestrian images on
Daimler-Chrysler dataset [33]. The feature is computed by
the joint (co-occurrence) histogram of local gradient orien-
tations with uncountable voting weights, to which the Pólya
model [4] is inapplicable.

Daimler-Chrysler pedestrian [33]. The task is to clas-
sify image patches of 18× 36 pixels into a pedestrian (pos-
itive) or clutter (negative). For details of the dataset and the
evaluation protocol, refer to [33]. The GLAC feature of the
setting in [19] is extracted respectively from 2 × 4 spatial
bins over the 18× 36 image, resulting in 2,592 dimensions.

As is the case with Sec.2.4, the empirical feature distri-
butions on the pedestrian and non-pedestrian sets result in
almost the same distribution with a small deviations, based
on which the fraction ε is determined; ε = P−1(0.25).

The performance results are shown in Fig. 5 with com-
parison to the other types of feature transforms; L1 nor-
malization x

‖x‖1 , L2
x
‖x‖2 , L2-hysteresis min[x/‖x‖2,τ ]

‖min[x/‖x‖2,τ ]‖2

with τ = 1√
D

6, L2-Hellinger
√
x

‖
√
x‖2

, standarization
diag(σX)−1(x−µX) with the mean µX and standard de-
viation σX estimated from x, and the explicit feature map
of χ2 kernel proposed in [41]. Fig. 5 shows the perfor-
mance results measured by ROC and equal error rate (EER).

5Codes are available at https://staff.aist.go.jp/
takumi.kobayashi/codes.html#DirFT

6In the case of SIFT, τ = 0.2 as suggested in [29].
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Figure 5. Performance result (ROC) on Daimler Chrysler pedes-
trian dataset [33].

The proposed method outperforms the other normalization
methods and is competitive with [41]. It should be noted
that, while the method [41] augments the feature dimen-
sionality D into 7D significantly increasing the computa-
tion time in classification, our method efficiently operates
on respective feature components at a low computational
cost without enlarging the dimensionality.

4.2. Bag-of-words histogram

We next apply the Dirichlet Fisher kernel to the bag-of-
word (BoW) feature which is composed of countable word
histogram. We test the method on PASCAL-VOC2007
dataset [8] in the following experimental setup.

A lot of SIFT local descriptors [29] are densely extracted
at spatial grid points in 4 pixel step with three scales of
{16, 24, 32} pixels. To construct 16,384 visual words, we
apply k-means clustering to a million of (transformed) SIFT
descriptors randomly drawn from the training images. An
image is partitioned into sub-regions in three levels of spa-
tial pyramid as 1×1, 2×2 and 3×1; the BoW histogram fea-
tures are computed on the respective sub-regions and then
concatenated into the image feature vector which is finally
fed into the linear SVM classifier.

PASCAL-VOC2007 [8]. The dataset contains object
images of 20 categories with large variation regarding ap-
pearances and poses as well as complex backgrounds. We
follow the standard VOC evaluation protocol.

The performance results are shown in Table 1 with the
comparison similarly to Sec.4.1, demonstrating that the pro-
posed method is superior to the other normalization meth-
ods. It slightly outperforms the method of Pólya model [4],
even though our method is so general as to accept not only
this countable BoW histogram but also the other types of
histogram features as in Sec.4.1. For comparison, we also
applied the BoW method using LLC [44], and the proposed
method significantly outperforms it.

4.3. Fisher kernel in bag-of-feature framework

We finally apply the proposed Dirichlet-derived GMM
Fisher kernel (Sec.3.2) to various image classification tasks;
object recognition [8, 11], fine-grained object classifica-
tion [43], scene categorization [34, 45], event classifi-
cation [24], aerial image classification [46] and material

Table 1. Performance on VOC2007 using BoW.
Methods mAP (%)

ours 60.91
L1 norm 51.93
L2 norm 53.50

L2-hys. norm [36] 59.58
L2-Hel. norm [1] 59.10

Methods mAP (%)
Pólya [4] 60.58
standarize 58.16

kernel map [41] 60.67
BoW-LLC [44] 57.37

Table 2. Performance on
VOC2007 using BoF-based FK.

Methods mAP (%)
ours 63.83

DMM-FK 57.51
log(x+ ε) 63.48
L1 norm 59.63
L2 norm 60.03

L2-hys. norm [36] 61.40
L2-Hel. norm [1] 63.04
kernel map [41] 61.95
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Figure 6. Performance of various
ε on VOC2007.

recognition [38]. The experimental setup for the BoF-based
Fisher kernel is the same as in Sec.4.2 except that K = 256
GMM is obtained by EM method instead of visual words.

We analyze the performance of the proposed method
from various aspects by using the VOC2007 dataset [8].
The proposed method is compared to DMM Fisher kernel
(18) as well as the other types of transformation of SIFT
features. In this case, L2-hysteresis normalization results in
the baseline Fisher kernel [36] and L2-Hellinger normaliza-
tion produces RootSIFT [1]. The comparison results in Ta-
ble 2 show that the proposed method outperforms the others.
The method of DMM-FK is inferior since it corresponds to
only the one part (mean) of the proposed FK as described in
Sec.3.2. Its extension to GMM-FK using the transform of
log(x + ε) improves the performance by incorporating the
FK features derived from the variance. Nonetheless, the
proposed method is still better due to transforming SIFT
features in accordance with von Mieses Fisher which ac-
tually reduces to Gaussian. It should be noted again that
the method of [41] augments the SIFT dimensionality to
896 = 128× 7, increasing the computational cost.

We then investigate the effects of ε which is determined
based on the percentile of the distribution in Fig. 2a. Fig. 6
shows the performance of various ε with comparison to the
baseline FK of L2-hysteresis normalization [36]. The best
performance is obtained at the 25% percentile, though all
values of ε produces superior performance to the baseline.
By using ε of the 25% percentile, the distribution of the fea-
tures is transformed as shown in Fig. 2b; The smaller feature
values are favorably rounded-off into log(ε) (the negative
evidence) while the higher features are diversely distributed
to exploit the discriminative information. Throughout the
experiments, we apply the proposed method with ε fixed
to the value of 25% percentile, i.e., ε = 0.001 for SIFT,
though fine tuning such as by cross validation per dataset
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would further improve the performance.
The proposed method produces 63.83% which is supe-

rior to the VOC2007 winner (59.4%) and is favorably com-
pared to the state-of-the-art result (63.5%) in [13] that re-
sorts to time-consuming object detection.

In the following experiments on various datasets, the
proposed Dirichlet-derived GMM FK is compared with the
other types of normalization as well as the state-of-the-art
results reported in the referenced papers.

MIT-Scene [34]. This dataset contains 15,620 images in
67 indoor scene categories with the large within-class and
small between-class variability. We report the classification
accuracy according to the experimental setting in [34].

UIUC-Sports [24]. For image-based event classifica-
tion, Li and Fei-Fei [24] collected 1,792 images of eight
sport categories, each of which contains 137∼250 images
with large variations of poses and sizes across diverse cat-
egories in the cluttered backgrounds. Following the exper-
imental setup used in [24], we report the averaged classifi-
cation accuracies.

Land-Use [46]. Yand et al. [46] collected the dataset of
aerial orthoimagery downloaded from the United States Ge-
ological Survey (USGS) National Map in 21 land-use cat-
egories. Each category contains 100 images of 256×256
pixels in a resolution of one foot per pixel, including a va-
riety of spatial patterns. We follow the experimental and
evaluation protocol in [46].

Flickr Material [38]. There are 1,000 images of ten ma-
terial categories and human-labeled binary masks associ-
ated with images that describe the location of the object. We
extract local SIFT descriptors on the foreground indicated
by the binary mask for material recognition. According to
the evaluation protocol in [26], the averaged classification
accuracies are reported.

CUB200-2011 [43]. This is a challenging dataset of
200 bird species, including 11,788 images in total, for fine-
grained (subordinate) object recognition. We used full un-
cropped images and evaluated the methods by using the pro-
vided training/test split.

Caltech-256 [11]. This dataset is composed of 30,607
images in 256 object categories. There are large intra-
class variances regarding such as object locations, sizes and
poses in the images, which makes this dataset a challenging
benchmark dataset for object recognition. According to the
standard experimental setting, we randomly pick up 15, 30,
45, and 60 training images per category and (at most) 50 im-
ages for test. We report the averaged classification accuracy
over three trials.

SUN-397 [45]. This dataset contains roughly 100K im-
ages of 397 scene categories covering as many of visual
world scenes as possible. It is a challenging dataset since
even “good” human workers in AMT achieve the classifi-
cation performance of 68.5% on an average. Following the

protocol of [45], we used 50 training and 50 test samples
per category and measured the classification accuracies av-
eraged over the given 10 training/test partitions.

The performance results on these datasets are shown in
Table 3. The proposed method is favorably competitive with
the other feature transforms, outperforming the other meth-
ods; compared to the baseline of L2-hysteresis normaliza-
tion, the performance is improved by 2∼3%. The proposed
method surely improves the performance of the Fisher ker-
nel by effectively transforming the local descriptors at a low
extra computational cost.

5. Conclusion
We have proposed methods to transform histogram-

based features for improving classification performance.
The (L1-normalized) histogram features regarded as prob-
ability mass functions are modeled by using Dirichlet dis-
tribution from the probabilistic perspective. Based on the
probabilistic model, we induce the Dirichlet Fisher ker-
nel which transforms the individual histogram features, and
in the BoF framework, the Dirichlet mixture model is ex-
tended to GMM via the feature transform, which leads to
the Dirichlet-derived GMM Fisher kernel. The proposed
methods do not require cumbersome parameter tuning; it is
generally determined based on the statistics of the features,
e.g., natural SIFT statistics. In the experiments on a va-
riety of image classifications tasks, the proposed methods
favorably improve the performance of the histogram-based
features and the BoF-based Fisher kernel.
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