
Scanline Sampler without Detailed Balance:
An Efficient MCMC for MRF Optimization

Wonsik Kim∗ and Kyoung Mu Lee
Department of ECE, ASRI, Seoul National University, 151-742, Seoul, Korea

{ultra16, kyoungmu}@snu.ac.kr, http://cv.snu.ac.kr

Abstract

Markov chain Monte Carlo (MCMC) is an elegant tool,
widely used in variety of areas. In computer vision, it has
been used for the inference on the Markov random field
model (MRF). However, MCMC less concerned than other
deterministic approaches although it converges to global
optimal solution in theory. The major obstacle is its slow
convergence. To come up with faster sampling method, we
investigate two ideas: breaking detailed balance and up-
dating multiple nodes at a time. Although detailed balance
is considered to be essential element of MCMC, it actually
is not the necessary condition for the convergence. In ad-
dition, exploiting the structure of MRF, we introduce a new
kernel which updates multiple nodes in a scanline rather
than a single node. Those two ideas are integrated in a
novel way to develop an efficient method called scanline
sampler without detailed balance. In experimental section,
we apply our method to the OpenGM2 benchmark of MRF
optimization and show the proposed method achieves faster
convergence than the conventional approaches.

1. Introduction

Markov random field (MRF) has been used in numerous
areas in computer vision [18]. MRFs are generally formu-
lated as follows. Given a graph G = (V, E), the joint prob-
ability function of the pairwise MRF is given by

P (x) ∝
∏
i∈V

φi(xi) ·
∏

(i,j)∈E

φi,j(xi, xj), (1)

where V is the set of nodes, E is the set of edges, and xi ∈
{1, 2, · · · , L} is the label assigned on node i. Obtaining
maximum a posteriori (MAP) solution of probability (1) is
NP-hard in general cases. To achieve better approximation
solutions, many different optimization methods have been
developed.
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The Markov chain Monte Carlo (MCMC) is one of
the methods used to solve the aforementioned problem.
MCMC has been used on many different areas because
it is applicable to general posterior models and can find
the global optimal solution in theory. The MCMC design
has become convenient since the advent of the Metropolis–
Hastings (MH) method. MCMC provides a simple scheme
to design the kernel that converges to the desired stationary
distribution. However, despite its simplicity and theoretical
elegance, MCMC is not widely used in the MRF optimiza-
tion because sampling-based methods are said to be much
slower than deterministic-based methods are. In this pa-
per, we investigate two ideas to accelerate MCMC. Section
3 introduces a non-reversible transition kernel that breaks
detailed balance. Section 4 presents a method of updating
multiple nodes at a time. Finally, Section 5 integrates those
two ideas to develop a novel and efficient algorithm called
scanline sampler without detailed balance.

2. Background

In 1984, Geman and Geman [7] developed a general
Bayesian framework for vision problems where MRF is
used to model the prior distribution of the image. Since
then, MRF has become one of the most well-formulated
models in the entire computer vision field. This model has
been used in variety of applications, from low- to high-level
vision. In their work, they used Gibbsian simulated anneal-
ing (SA) to obtain the MAP solution.

In 2001, Boykov et al. [6] proposed the algorithms α-
expansion and αβ-swap, which are considered faster than
SA. The proposed algorithms solve multi-label problems in
an iterative manner by using graph cuts. They showed that
their methods outperformed SA both in terms of speed and
quality of the solution.

Many studies have focused on deterministic approaches,
such as graph cutbased algorithms [14, 5, 1, 12] and
message-passing algorithms [19, 16, 21, 13]. These two al-
gorithms are considered the major approaches in this field.
The graph cutbased algorithm was applied to a limited class
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of energy functions. Nevertheless, the solvable class of this
algorithm has increased; thus, many existing energy func-
tions are known to be solvable these days.

The message-passing algorithm was applied without a
theoretical guarantee to converge at the beginning (e.g.
loopy belief propagation). By adopting the dual decompo-
sition framework, message-passing algorithms such as tree-
reweighted message passing (TRW), can provide the lower
bound of the optimal solution. Recently, this lower bound
has become increasingly tighter.

Although many studies on deterministic optimization al-
gorithms are available, few studies have focused on MCMC
because of its slow convergence. Nevertheless, several at-
tempts have been made to improve the convergence speed
of MCMC in MRF optimization context. We will introduce
some examples in the following subsection.

2.1. Previous MCMC approaches

One method to increase the convergence speed of
MCMC is to sample multiple nodes at a time. On the basis
of this aspect, Barbu and Zhu adopted Swendsen–Wang cuts
(SWC) [3, 4]. In SWC, a set of nodes with the same label
is stochastically chosen at each iteration, and the labels of
nodes are stochastically flipped by using MH method. How-
ever, SWC is restricted to a specific class of applications
because of the inherent characteristics of the SWC kernel.
SWC is suitable only for Potts-like energy function, which
favors piece-wise constant solutions.

Another method of increasing the convergence speed of
MCMC is to adopt population-based framework and paral-
lelize the annealing schedule. To this end, population-based
MCMC [11] was proposed. Three different kernels were de-
signed: mutation kernel for the single-chain update, and the
crossover and exchange kernels for the interaction between
chains. Given that the mutation kernel was designed in the
same way as SWC, this approach has the same limitation as
that of SWC, but with significant improvement.

MCMC was combined with deterministic algorithms to
further improve its performance [7]. In this framework,
deterministic methods, such as graph cuts, belief propaga-
tion (BP) , and TRW, were used for the transition kernel.
This approach achieved lower energy solution than other
sampling-based and deterministic methods. However, the
performance of MCMC depends on the deterministic meth-
ods to be combined.

3. Non-reversible kernel (Suwa–Todo method)
Recent studies have shown that MCMC can be accel-

erated by breaking the detailed balance [17, 20], which
has often been considered one of the essential elements of
MCMC. Given that detailed balance is not a necessary con-
dition, stationary distribution is achievable even without de-
tailed balance. However, designing MCMC kernel without
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Figure 1. Example of landfill for the transition kernel of Gibbs
sampler and Suwa–Todo method. Upper row depicts current distri-
bution and lower row depicts the distribution after applying kernel.
The transition kernel is visualized as moving boxes. Unlike Gibbs
sampler, the kernel of Suwa–Todo method has the zero rejection
rate in this example. (best viewed in color)

detailed balance is not trivial. Recently, Suwa and Todo [17]
proposed a generic framework to build a non-reversible ker-
nel without detailed balance. This method updates a single
node at a time, similar to the single-site Gibbs sampler.

The single-site Gibbs sampler updates a single node
from its conditional distribution P (xi|x \ xi). Given that
we are dealing with the process of updating a single node,
let us omit (xi|x\xi) and denote the probability as Pa when
xi is assigned with the label a. We denote a transition ker-
nel as Ka→b where a is the current label of the node i and b
is the next label. The detailed balance condition is given by
the following equation.

PaKa→b = PbKb→a. (2)

A transition kernel can be visually understood as a land-
fill model. The kernel for Gibbs sampler is depicted in Fig.
1(a). In the landfill model, the probabilities are represented
as boxes with size proportional to the probability values.
These boxes move according to the transition kernel Ka→b

while preserving the size of the probability boxes.
The design of the transition kernel is an important deter-

minant of how fast the MCMC converges. By adopting the
MH method, we can obtain a transition kernel with a more
general form than that of the conditional distribution. How-
ever, the Gibbs and MH methods are limited because they
design kernel while satisfying the detailed balance. There-
fore, this paper aims to determine whether a better kernel
can be designed and aims to identify the conditions required
to achieve a better kernel.

Although defining the optimal kernel is a non-trivial
task, a guideline is available in achieving a good kernel.
For instance, this kernel should minimize rejection rate.
The rejection rate of the Gibbs sampler can be calculated
by

∑
iKi→i. The Suwa-Todo method proposes a non-

reversible kernel that minimizes the rejection rate.
The Suwa–Todo method can be easily understood by em-

ploying the landfill model. The transition kernel for the
Suwa–Todo method is illustrated in Fig. 1(b) and Alg. 1.



Algorithm 1 The transition kernel for Suwa–Todo method
1: Consider a node i currently labeled as a
2: δ ← 0.5
3: if a = 1 then γ ∼ U(0, Ca);
4: else γ ∼ U(Ca−1, Ca);
5: T ← γ + δ;
6: if T > 1 then T ← T − 1;
7: for k ← 1 to L do
8: if T < Ck then b← K; break;
9: end for

10: Assign b to xi

Let us consider how the transition kernel updates a single
node. First, γ is randomly chosen from the uniform distri-
bution between Ca−1 and Ca, where Ca =

∑a
k=1 Pk. The

node i is updated to the label b s.t.

Pb−1 < γ + δ ≤ Pb (3)

or

Pb−1 < γ + δ − 1 ≤ Pb. (4)

In Fig. 1(a), For example, if the current label is 1, the
next label is assigned to be 2, 3, or 4 with the probability
in proportion to the box sizes. If the current label is 2, the
next label is assigned to be 4 or 1. If the current label is 3,
the next label is always 1. If the current label is 4, the next
label is 1 or 2.

The transition kernel can be written as

Ka→b = max(0,min(Pa, Pb,

Ca − Cb−1 + δ, Cb − Ca−1 − δ)),
(5)

In the original version of the Suwa–Todo method, δ was
chosen as maxk Pk. We fixed δ to be 0.5 and it is straight-
forward to show that the rejection rate remains the same.
The rejection rate is 0 when maxk Pk < 0.5 and is
(maxk Pk − 0.5) otherwise. This rate is an optimum for a
single-node-update MCMC. This rate is not achievable with
the detailed balance condition.

The Markov chain from Suwa–Todo method converges
to the target distribution by satisfying the following balance
condition:

L∑
j=1

(PiKi→j − PjKj→i) = 0, (6)

which is much relaxed than the detailed balance condition
is.

4. Scanline Gibbs sampler

In the single-site Gibbs sampler, only one variable is up-
dated at a time according to its conditional distribution. This
is the main reason for the slow convergence of the method.
Therefore, instead of updating a single node, we update a
multiple number of nodes at a time. This strategy is called
the blocked Gibbs sampler.

The blocked Gibbs sampler updates a block Bi from its
conditional distribution P (Bi|x \ Bi). The union of blocks
should be the same as the set of all nodes (

⋃
i Bi = {xi}).

The blocks do not need to form the disjoint set. To sam-
ple from the conditional distribution P (Bi|x \ Bi), a block
Bi, which is conditioned on other variables, should be in its
specific form. The structure of the blocks is usually limited
to a tree so that the calculation of marginal distribution is
available in polynomial time.

There are several guidelines on how to determine the
blocks. A typical trend is to choose as many nodes as pos-
sible. However, this strategy was shown to be inappropri-
ate for grid graph optimization. We rather determine the
blocks that are denoted as the disjoint set of each row. We
experimentally found that the scanline blocks outperforms
tree blocks, which can expand to whole images and contain
about 50% of the total nodes. When a single-site update
method, such as the single-site Gibbs sampler or iterated
conditional modes (ICM), is applied to the grid graph, we
should choose the visiting order of each node. The node
maybe ordered as either a raster scan order or a random or-
der. The raster scan order strategy outperforms the random
order. Scanline blocks work in a way similar to that of the
raster scan order scheme.

Let us consider a set of nodes x = {x1, · · · , xm} in the
form of a chain. The joint distribution of x can be formu-
lated as follows:

P (x) =

m∏
i=1

φi(xi)

m−1∏
i=1

φi,i+1(xi, xi+1). (7)

We first apply forward message passing by using the fol-
lowing equation:

µi→i+1(xi+1) =

L∑
xi=1

φi(xi)φi,i+1(xi, xi+1)µi−1→i(xi)

(8)
The conditional distribution for a node i conditioned only
on xi+1 can be derived as follows:

p(xi|xi+1) ∝ φi(xi)φi,i+1(xi, xi+1)µi−1→i(xi). (9)

Once the joint disribution is decomposed in the form of
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Figure 2. Example of landfill for the transition kernel of scanline
sampler without detailed balance. The joint distribution is two di-
mensional in this example. Upper two rows depicts the process of
sampling the second variable from its marginal distribution. Lower
two rows depicts the process of sampling the first variable from
its conditional distribution. The transition kernel is visualized as
moving boxes. (best viewed in color)

P (x) = P (x1|x2)P (x2|x3) · · ·P (xm−1|xm)P (xm),
(10)

exact sampling is available starting from node xn to x1.
Note that this form of sampling significantly differs from
the single-site Gibbs sampler.

To apply exact sampling from a chain, which is chosen
from grid MRF model, we performed the following pro-
cess. First, a whole graph is divided into disjoint set, in
which each row becomes each block. Each row is then
sampled from its conditional distribution given the remain-
ing variables. To sample a given row of nodes, we first
modified the unary potential for each node to be φ̃i(xi) =
φi(xi)

∏
j∈Nout(i)

φi,j(xi, xj), where Nout(i) is the neigh-
bor of the node i outside the chosen row. Aforementioned
exact sampling is subsequently applied to the set of nodes.

5. Scanline sampler without detailed balance
We have introduced two ideas to accelerate the conver-

gence of MCMC. In this section, we integrate those two
ideas to propose a novel method called scanline sampler
without detailed balance. In our knowledge, this is the first
versatile algorithm that designs a transition kernel that can
update multiple nodes without detailed balance.

The proposed method extends the Suwa-Todo method to
update multiple nodes. An example is illustrated in Fig. 2.
This example shows the sample from the joint distribution
with two variables. The proposed method can be general-
ized in cases with more than two variables.

Let us consider a scanline block defined in the previous

Algorithm 2 Scanline sampler without detailed balance
1: Consider a set of node B = {x1, · · · , xm}

currently labeled as (a1, · · · , am)
2: δ ← 0.5
3: Draw bn from the marginal Pxm using the Alg. 1.
4: for k ← (m− 1) to 1 do
5: ¡Draw bk from Pxk|x(k+1)

as following¿
6: if ak = 1 then γ ∼ U(0, Cak|b(k+1)

);
7: else γ ∼ U(C(ak−1)|a(k+1)

, Cak|b(k+1)
);

8: T ← γ + δ;
9: if T > 1 then T ← T − 1;

10: for l← 1 to L do
11: if T < Cl|b(k+1)

then bk ← l; break;
12: end for
13: Assign bk to xk
14: end for

section. The algorithm begins with having the joint distri-
bution P (x) decomposed into the form of Equation (10). In
the two-variable case, we can denote the joint distribution
as P (x1, x2) = P (x1|x2)P (x2).

The first step is applying the Suwa–Todo method to sam-
ple x2 from its marginal distribution P (x2). Let us say that
the label of x2 has changed from a2 to b2. In the second
step, we shift the probability boxes, which are in propor-
tion with the conditional distribution P (x1|x2 = a2). The
shifted probability boxes are divided according to the con-
ditional distribution P (x1|x2 = b2). In Fig. 2, for example,
if the current label is (1, 3) (blue boxes in Fig. 2), the next
label of x2 is always 1. Subsequently, x1 is updated to be 2,
3 or 4 with proportional to divided box sizes.

The entire procedure is illustrated in Alg. 2. For brevity,
we denote P (x1 = a1) as Pa1 , P (x1 = a1, x2 = a2) as
Pa1,a2 , and P (x2 = a2|x1 = a1) as Pa2|a1

. Cav|bw is
defined as

∑av

k=1 Pk|bw . Unlike in the Suwa–Todo method,
in this case, obtaining the optimal δ, which minimizes the
rejection rate, is non-trivial. However, setting δ = 0.5 gives
satisfying results in our experiments.

6. Experimental settings

6.1. Initialization

In the theoretical aspect, MCMC guarantees optimal so-
lution without regard to initialization. However, a long
convergence time is needed to obtain the optimal solution.
Given that the fast annealing schedule is usually applied in
practice, careful initialization of the solution is of crucial
importance when employing the sampling-based optimiza-
tion method. Although tailored application-specific initial-
izations can be employed, these initializations are usually
tricky and difficult to obtain. Therefore, we propose a sim-
ple and generic method to obtain good initial solutions with-



out having prior knowledge of the target application.
One of the most well-known generic initialization meth-

ods is the winner-takes-all (WTA), which was used as an
initialization method for the iterated conditional modes in
[18]. WTA ignores the pairwise penalty terms, and each
node is assigned to the label with the lowest data cost. Since
it only considers data costs, the initial solution from WTA
is not satisfactory. We need better initialization method.

When considering a scanline block updating scheme, the
natural extension of WTA would be from a single node to a
row of nodes. The proposed winner-takes-scanline (WTS)
algorithm ignores the pairwise penalty terms φi,j(xi, xj) if
nodes i or j is not in the row. The nodes in the row are
assigned to labels with the lowest cost. The unary terms
φi(xi) and the pairwise terms φi,j(xi, xj) are considered
only if nodes i and j are both in the row. Optimal labeling
can be achieved by dynamic programming in polynomial
time. In experimental section, we include initialization time
to the total running time.

6.2. Annealing schedule

Our main objective is not the sampling but rather max-
imum a posterior (MAP) estimation. To achieve MAP so-
lution with sampling method, we need to apply simulated
annealing (SA) scheme together with the proposed sampler.
In SA, the target distribution is changing for each iteration.
The target distribution at iteration k is given by

Pk(x) =
1

Zk
{P (x)}

1
Tk , (11)

where Zk is a normalizing constant and Tk is a temperature.
The temperature Tk at each iteration is determined by

Tk = Tkc
k−1, (12)

where c < 1.
The choice of initial temperature T1 and the decaying

factor c is important to achieve good solutions. There is
no method for finding a suitable annealing schedule for a
whole range of problems. Therefore, we consider following
process to determine T1 and c.

We first initialize the solution using the aforementioned
scheme. Having the initial solution, the average of pixel-
wise conditional log-probability are examined as following.

q = − 1

N

N∑
i=1

log P̂ (xi|x \ xi), (13)

where P̂ (xi|x \ xi) is unnormalized probability calculated
from unary and pairwise potential. The initial temperature
is determined as

T1 = qα, (14)
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Figure 3. Comparison results of the convergence speed of each
algorithm.

where α is a value in [0.5, 2]. α is experimentally chosen
for each dataset.

We terminate the algorithm if the probability of the solu-
tion does not increase over 200 iterations. Maximum itera-
tion is fixed to 2000.

7. Experiments

7.1. Convergence speed anaysis

The main objective of this research is to increase the con-
vergence speed of Markov chain. To analyze the perfor-
mance improvement, we evaluated different sampling algo-
rithms. They include Gibbs sampler, Suwa–Todo method,
scanline Gibbs sampler, and scanline sampler without de-
tailed balance.

There are two strategies for accelerating MCMC. Suwa–
Todo method improve convergence rate by breaking de-
tailed balance. Scanline Gibbs sampler updates multiple
nodes at a time. And scanline sampler without detailed bal-
ance exploits two advantages simultaneously.

For evaluation, we tested various methods on the stereo
matching problem. As an input, ‘Tsukuba’ images are used.
And we used energy model from the middlebury benchmark
[18].

To effectively observe the differences in convergence
speed, we did not used WTS scheme for the initialization
because WTS provides good initial solution with low en-



ergy. Instead, we initialize the solution with random num-
bers. For different algorithms, same initial solution was
used. Also, to maximize the difference, we start from low
initial temperature (α = 0.1).

We designed two different situation, c = 0.9 and c =
0.99. The comparison results are illustrated in Fig. 3. The
energy decrease of each algorithm during the first 100 it-
eration is plotted. The running time for a single iteration
is approximately same for each method. So we choose to
present plots with iteration to exclude the effect from im-
plemental errors.

Fig. 3(a) shows the results of annealing schedule with
α = 0.1 and c = 0.9. The Markov chain starts from low
temperature and decrease fast. Since conventional Gibbs
sampler has slower than others, it ends up with being cap-
tured in local minima. Suwa–Todo method works better
than Gibbs sampler. It achieved lower state but it also ends
up with bad local minima. Two scanline-based samplers
achieved similarly good results. However, it shows that
scanline sampler without detailed balance decreases energy
faster than scanline Gibbs sampler does.

Fig. 3(b) shows the results of annealing schedule with
α = 0.1 and c = 0.99, where the decay of the tempera-
ture are slower than previous situation. In this figure, no
algorithm seems to be captured in bad local minima with
high energy costs. However, they are significantly different
in terms of convergence speed. For example, scanline sam-
pler without detailed balance obtains the energy lower than
(10)6 after 7 iterations, while Gibbs sampler obtains it after
69 iterations.

7.2. OpenGM2 benchmark

We evaluated the proposed method on OpenGM2 bench-
mark [8]. This benchmark includes various types of en-
ergy models for various applications. Among them, we ap-
plied our algorithm on 4-neighborhood grid graph models.
Specifically, the experiments were conducted on color seg-
mentation (color-seg-n4, 9 instances), object segmentation
(object-seg, 5 instances), and inpainting (inpainting-n4, 2
instances). For the detailed explanation of the energy mod-
els, please refer to [8]. All the experiments were performed
on the Intel i5-2500 3.3GHz CPU and 8 GB RAM.

We evaluated four MCMC based method: Gibbs sam-
pler, Suwa–Todo method, scanline Gibbs sampler, and
scanline sampler without detailed balance. For further com-
parison, we also report the results of other methods includ-
ing FastPD [15], belief propagation (LBP/BPS) [18], α-
expansion, αβ-swap [6, 14], TRW [13], bundle methods
(BUNDLE-A, BUNDLE-H) [9], multicut solver (MCA)
[10], TRBP [21], and lazy flipper (-LF2) [2]. Their results
are directly borrowed from [8].

The final results are summarized in Tab. 1–3. They con-
tain the running time and final energy which are averaged

Table 1. inpainting-n4
Algorithm mean run time mean value
Scanline w/o DB 18.01 sec 454.75
Scanline Gibbs 17.82 sec 454.75
Suwa–Todo 9.45 sec 454.75
Gibbs sampler 8.90 sec 459.07
FastPD 0.02 sec 454.75
FastPD-LF2 0.37 sec 454.75
mrf-LBP-LF2 5.33 sec 475.56
mrf-BPS 2.13 sec 454.35
mrf-EXPANSION 0.02 sec 454.35
mrf-SWAP 0.02 sec 454.75
mrf-TRWS 2.19 sec 490.48
ogm-BUNDLE-A 76.84 sec 455.25
ogm-BUNDLE-H 36.55 sec 455.25
ogm-SUBGRAD-A 47.20 sec 455.25
ogm-ILP 1816.11 sec 454.75
ogm-LBP 76.21 sec 480.27
MCA 1810.59 sec 4618.38
MCA (6h) 12262.31 sec 474.38
ogm-TRBP 90.46 sec 480.27
TRWS-LF2 4.68 sec 489.3

for each dataset.

Over all experiments, scanline sampler without de-
tailed balance outperforms all other MCMC methods.
Suwa–Todo method always outperforms Gibbs sampler.
It certainly reveals the advantage of using non-reversible
kernels. Scanline Gibbs sampler typically achieves better
results than both single-site Gibbs sampler and Suwa–Todo
method.

Inpainting ‘inpainting-n4’ dataset contains two
instances. Tab. 1 shows the results for ‘inpainting-n4’
dataset. The α value for the initial temperature was set to
0.5. c is fixed to 0.995 for every experiment in this section.
All the method except Gibbs sampler was able to find the
good solutions. All three methods converged in a first few
iterations, but they spend longer time only to wait for the
stopping condition.

Object segmentation ‘object-seg’ dataset contains
five instances. Tab. 2 shows the results for ‘object-seg’
dataset. The α value for the initial temperature was set
to 2. There is significant improvement over all other
sampling-based method.

Color segmentation ‘color-seg-n4’ dataset contains
nine instances.Tab. 3 shows the results for ‘color-seg-n4’
dataset. The α value for the initial temperature was set to
0.5. Our method achieved better results than other sampling
methods also in this dataset



Table 2. object-seg
Algorithm mean run time mean value
Scanline w/o DB 51.05 sec 32243.75
Scanline Gibbs 47.62 sec 32318.37
Suwa–Todo 77.31 sec 35623.84
Gibbs sampler 72.35 sec 35607.25
FastPD 0.17 sec 31317.60
FastPD-LF2 2.88 sec 31317.60
mrf-LBP-LF2 41.26 sec 32400.01
mrf-BPS 15.72 sec 35775.27
mrf-EXPANSION 0.43 sec 31317.23
mrf-SWAP 0.34 sec 31323.18
mrf-TRWS 16.21 sec 31317.23
ogm-BUNDLE-A 215.68 sec 31317.31
ogm-BUNDLE-H 346.56 sec 31317.23
ogm-SUBGRAD-A 365.16 sec 31424.55
ogm-ILP 788.71 sec 33884.39
ogm-LBP 445.85 sec 32663.86
MCA 278.51 sec 31317.23
ogm-TRBP 856.63 sec 32663.86
TRWS-LF2 28.43 sec 31317.23

Table 3. color-seg-n4
Algorithm mean run time mean value
Scanline w/o DB 80.62 sec 20044.44
Scanline Gibbs 67.95 sec 20050.93
Suwa–Todo 127.71 sec 20360.51
Gibbs sampler 127.27 sec 20368.35
FastPD 0.35 sec 20034.80
FastPD-LF2 13.61 sec 20033.21
mrf-LBP-LF2 63.82 sec 20053.25
mrf-BPS 32.92 sec 20094.03
mrf-EXPANSION 1.24 sec 20031.81
mrf-SWAP 0.86 sec 20049.90
mrf-TRWS 33.15 sec 20012.18
ogm-BUNDLE-A 692.39 sec 20024.78
ogm-BUNDLE-H 1212.24 sec 20012.44
ogm-SUBGRAD-A 1179.62 sec 20027.98
ogm-LBP 1887.89 sec 20054.26
MCA 982.36 sec 20527.37
MCA-6h 1244.30 sec 20012.14
ogm-TRBP 2516.54 sec 20054.06
TRWS-LF2 89.83 sec 20012.17

8. Conclusions

Markov chain Monte Carlo (MCMC) has been widely
used for the variety of areas. It has also been used for maxi-
mum a posteriori problems on Markov random field model.
Despite of its generality and elegancy, it has often been re-
garded as less powerful than deterministic algorithms. The
main reason is its slow convergence. In this paper, we intro-
duced two important ideas which significantly improve the
convergence speed of Markov chain. Those ideas are break-
ing detailed balance and updating multiple nodes at a time.

Although detailed balance condition provides us great sim-
plicity in designing a kernel, it is not a necessary condition
for MCMC. By breaking detailed balance, more efficient
kernel is to be available. Second idea of updating multiple
nodes has been pursued in the computer vision literature but
they are often restricted. We proposed most generic frame-
work for updating multiple nodes. Finally, we integrated
those two ideas to build a new efficient algorithm called
scanline sampler without detailed balance. We evaluated
different version of MCMC methods and showed our pro-
posed method outperform other sampling based algorithms.
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