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Abstract

In this paper, we introduce a novel technique to au-
tomatically detect salient regions of an image via high-
dimensional color transform. Our main idea is to repre-
sent a saliency map of an image as a linear combination
of high-dimensional color space where salient regions and
backgrounds can be distinctively separated. This is based
on an observation that salient regions often have distinctive
colors compared to the background in human perception,
but human perception is often complicated and highly non-
linear. By mapping a low dimensional RGB color to a fea-
ture vector in a high-dimensional color space, we show that
we can linearly separate the salient regions from the back-
ground by finding an optimal linear combination of color
coefficients in the high-dimensional color space. Our high
dimensional color space incorporates multiple color repre-
sentations including RGB, CIELab, HSV and with gamma
corrections to enrich its representative power. Our exper-
imental results on three benchmark datasets show that our
technique is effective, and it is computationally efficient in
comparison to previous state-of-the-art techniques.

1. Introduction
Salient region detection is important in image under-

standing and analysis. Its goal is to detect salient regions,
in terms of saliency map, from an image where the de-
tected regions would draw the attentions of humans at the
first sight of an image. As demonstrated in many previous
works, salient region detection is useful in many applica-
tions including segmentation [20], object recognition [22],
image retargetting [32], photo re-arrangement [25], image
quality assessment [23], image thumbnailing [21], video
compression [12], etc. The development of salient region
detection is often inspired by the human visual perception
concepts. One important concept is how “distinct to a cer-
tain extent” [9] the salient region is compared to other parts
of an image. Since color is a very important visual cue to
humans, many salient region detection techniques are built

(a) Inputs (b) Saliency maps (c) Salient regions
Figure 1. Examples of our salient region detection.

upon distinctive color detection from an image.
In this paper, exploring the power of different color

space representations, we propose high-dimensional color
transform which maps a low dimensional RGB color tu-
ple into a high-dimensional feature vector. Our high di-
mensional color transform combines several representative
color spaces such as RGB, CIELab, HSV, together with dif-
ferent gamma corrections to enrich the representative power
of our high-dimensional color transform space. Starting
from a few initial color examples of detected salient regions
and backgrounds, our technique estimates an optimal linear
combination of color values in the high-dimensional color
transform space that results in a per-pixel saliency map.
As demonstrated in our experimental results, our per-pixel
saliency map represents how distinctive the color of salient
regions is compared to the color of the background. Note
that a simple linear combination or transformation of the
color space cannot achieve results similar to ours. Figure 1
shows examples of our detected saliency map and salient
regions.

Assumptions Since our technique uses only color informa-
tion to separate salient regions from the background, our
technique shares a limitation when identically-colored ob-
jects are present in both the salient regions and the back-
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Figure 2. Overview of our method. Please refer to Section 3 for details.

ground. In such cases, utilizing high-level features, such
as texture, is the only way to resolve this ambiguity. Nev-
ertheless, we show that many salient regions can simply
be detected using only color information via our high-
dimensional color transform space, and we achieve high
detection accuracy and better performance compared with
many previous methods that utilizes multiple high-level fea-
tures.

2. Related Works

Representative works in salient region detection are re-
viewed in this section. We refer readers to [30] for a more
extensive comparative study of state-of-the-art salient re-
gion detection techniques.

There are many previous methods that utilize low-level
features such as color and texture for saliency detection. Itti
et al. [13] proposed a saliency detection method based on
color contrast called “center-surround difference.” Harel et
al. [11] suggested a graph-based visual saliency (GBVS)
model based on the Markovian approach. Achanta et
al. [1] viewed color and luminance in the frequency do-
main to compute an image’s saliency. Goferman et al. [10]
combined global and local contrast saliency to improve
the detection performance. Klein and Frintrop [18] ap-
plied Kullback-Leibler divergence to the center-surround
difference to combine different image features to compute
saliency. Jiang et al. [14] performed salient object segmen-
tation with multi-scale superpixel-based saliency and closed
boundary prior. Perazzi et al. [26] used the uniqueness and
distribution of the CIELab color to find the salient region.
Shen and Wu [27] divided an image into a low-rank matrix
and sparse noises to detect an object. Yan et al. [33] used
a hierarchical model by computing contrast features of dif-
ferent scales of an image, and fused them into a single map
using a graphical model.

Recently, statistical learning-based models have also
been examined for saliency detection. Wang et al. [31]
used a trained classifier called the auto-context model to
enhance an appearance-based optimization framework for
salient region detection. Jiang et al. [15] performed a
regional saliency regressor by using regional descriptors.
Borji and Itti [5] used patch-based dictionary learning for a
rarity-based saliency model. Yang et al. [34] considered the
foreground and background cues by using the graph-based

method. Siva et al. [28] used an unsupervised approach to
sample patches of an image which are salient by using patch
features.

3. Overview
Figure 2 shows the overview of our method. First, we

over-segment an image into super pixels and estimate an
initial saliency map using existing saliency detection tech-
niques. From the initial saliency map, we threshold it to
obtain a trimap where pixel colors within the definite fore-
ground and the definite background regions will be used as
initial color samples of the salient regions and background.
Then, we map the low-dimensional color into the high-
dimensional color transform space and estimate an optimal
linear combination of color channels subject to the color
samples’ constraints. Finally, we combine color values
in the high-dimensional color space to obtain our saliency
map.

4. Initial Salient Regions Detection

Superpixel Saliency Features As demonstrated in recent
works [15, 26, 27, 34], features from superpixels are ef-
fective and efficient for salient object detection. For an in-
put image I , we first perform an over-segmentation to form
superpixels X = {X1, ..., XN}. We use the SLIC super-
pixel [2] because of its low computational cost and high per-
formance and we set the number of superpixels atN = 500.

To build feature vectors for saliency detection, we
combine multiple information that are commonly used in
saliency detection. We first concatenate superpixels’ x- and
y-locations into our feature vector. The location feature is
used because humans tend to pay more attention to objects
that are located around the center of an image [16]. Sec-
ond, we concatenate the color features as this is one of the
most important cues in the human visual system and cer-
tain colors tend to draw more attention than the others [27].
We compute the average pixel color and represent the color
features using different color space representations.

Next, we concatenate the histogram feature since this is
one of the most effective measurements for the saliency fea-
ture as demonstrated in [15]. The histogram feature is mea-
sured by using the chi-square distance between histograms.
It is defined as DHi

=
∑N
j=1

∑b
k=1[

(hik−hjk)
2

(hik+hjk)
], where b



Feature Descriptions Dim
Location Features

The average normalized x coordinates 1
The average normalized y coordinates 1

Color Features
The average RGB values 3
The average CIELab values 3
The average HSV values 3

Color Histogram Features
The RGB histogram 1
The CIELab histogram 1
The hue histogram 1
The saturation histogram 1

Color Contrast Features
The global contrast of the color features 9
The local contrast of the color features 9
The element distribution of the color features 9

Texture and Shape Features
Area of superpixel 1
Histogram of gradients (HOG) 31
Singular value feature 1

Table 1. Features which are used to compute feature vector for
each superpixel.

is the number of histogram bins and we use eight bins for
each histogram in our paper.

We have also used the global contrast and the local con-
trast as color features [1, 7, 26]. The global contrast of the
ith superpixel is given by DGi

=
∑N
j=1 d(ci, cj) where

d(ci, cj) denotes the Euclidean distance between the ith and
jth superpixel’s color value ci and cj . The local contrast
of color features is defined as DLi =

∑N
j=1 ω

p
i,jd(ci, cj)

where ωpi,j = 1
Zi

exp(− 1
2σ2

p
‖pi − pj‖22), in which pi de-

notes the position of ith superpixel and Zi is the normaliza-
tion term. In our experiments, we use σ2

p = 0.25. In addi-
tion to the global and local contrast, we further evaluate the
element distribution [26] by measuring the compactness of
colors in term of their spatial color variance.

For texture and shape features, we utilize the area of
superpixel, histogram of gradients (HOG) and the singu-
lar value feature. The HOG provides appearance features
by using around the pixels’ gradient information at fast
speed. We use the HOG features implemented by Felzen-
szwalb et al. [8] which has 31 dimensions. The Singular
Value Feature (SVF) [29] is used to detect the blurred re-
gion from a test image, because a blurred region often tends
to be a background. The SVF is a feature based on eigen-
images [3] which decompose an image by a weighted sum-
mation of a number of eigen-images, where each weight is
the singular value obtained by SVD. The eigen-images cor-
responding to the largest singular values determine the over-

(a) (b) (c) 

Figure 3. Our trimap construction processes. (a) Initial saliency
map. We divide the initial saliency map into 2 × 2, 3 × 3, and
4 × 4 regions and apply adaptive thresholding algorithm for each
region individually. After that, we sum up the thresholded saliency
map to obtain a new saliency map in (b). This saliency map is then
thresholded globally to obtain our trimap in (c).

all outline of the original image and other smaller singular
values depict detail information. Hence, some of the largest
singular values occupy much higher weights for blurred im-
ages.

The aforementioned features are concatenated and will
be used to estimate our initial saliency map. Table 1 sum-
marizes the features that we have used. In short, our super-
pixel feature vectors consist of 75 dimensions which com-
bine multiple evaluation matrixes for saliency detection.

Initial Saliency Map Estimation via Regression After we
calculate the feature vectors for every superpixels, we use a
regression algorithm to estimate each region’s degree to be
salient. In this work, we use the random forest [6] regres-
sor, because of its efficiency on large databases and gener-
alization ability. We use 2,000 images from the MSRA-B
dataset [19] which are selected as a training set from Jiang
et al. [15] for training data, and we use annotated ground
truth images for labels. We generate N feature vectors for
each image, so that we train about one million vectors for
the training data. We use 200 trees, with no limit for the
node size. A visual example of an initial map is shown at
Figure 2.

5. High-Dimensional Color Transform for
Saliency Detection

In this section, we present our high-dimensional color
transform and describe a step-by-step process to obtain our
final saliency map starting from the initial saliency map
from the previous section.

Trimap Construction The initial saliency map usually
does not detect salient objects accurately and may contain
many ambiguous regions. This trimap construction step is
to identify very salient pixels from the initial saliency map
that definitely belong to salient regions and backgrounds,
and use our high-dimensional color transform method to re-
sort the ambiguities in the unknown regions. In order to
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Figure 4. Our high-dimensional color transform space. We con-
catenate different nonlinear RGB transformed color space repre-
sentations to form a high-dimensional feature vector to represent
the color of a pixel.

catch the salient pixels more accurately, instead of using a
single global threshold to obtain our trimap from the initial
saliency map, we propose using a multi-scale analysis with
adaptive thresholding. Our trimap construction process is
described in Figure 3. First, we divide the initial map into
2 × 2, 3 × 3, and 4 × 4 regions and apply thresholding
for each region individually. We apply Otsu’s multi-level
adaptive thresholding [24] to control the rate between the
foreground, background and unknown regions in each sub-
region. In our experiments, we use a seven-level threshold
in each subregion. After merging the three different scale
thresholded saliency maps by summation, we obtain a lo-
cally thresholded 21-level map T ′. This new saliency map
has better local contrast than the initial saliency map. There-
fore, it is able to locally capture very salient regions even
though the local region might not be the most salient glob-
ally within the whole image. Finally, we obtain the trimap
by global thresholding as follows:

T (i) =

 1 if T ′(i) ≥ 18
0 if T ′(i) ≤ 6
unknown else

(1)

High-Dimensional Color Transform Colors are impor-
tant visual cues to our human visual system. Many previ-
ous studies [17] have discussed that the RGB color space
does not fully correspond to the space where the human
brain processes colors. It is also inconvenient to process
colors in the RGB space since illumination and colors are
nested here. For these reasons, many different color spaces
have been introduced such as YUV, YIQ, CIELab, HSV,
etc. Nevertheless, it is still unknown which color space is
the best to process images, especially for applications like
saliency detection that are tightly correlated to our human
perception. Instead of picking a particular color space for
processing, we introduce a high-dimensional color trans-
form which unifies the strength of many different color rep-

Color channel Gamma value γk k Dim
RGB 0.5k 1∼4 12
CIELab 0.5k 1∼4 12
Hue 0.5k 1∼4 4
Saturation 0.5k 1∼4 4
Gradient of RGB 0.5k 1∼4 12

Table 2. Summary of color coefficients concatenated in our high-
dimensional color transform space.

resentations. Our goal is to find a linear combination of
color coefficients in the high dimensional color transform
space such that colors of salient regions and colors of back-
grounds can be distinctively separated.

To build our high-dimensional color transform space,
we concatenate different nonlinear RGB transformed color
space representations as illustrated in Figure 4. We con-
catenate only the nonlinear RGB transformed color space
because the effects of the coefficients of linear transformed
color space such as YUV/YIQ, will be cancelled when we
linearly combine the color coefficient to form our saliency
map. The color spaces we concatenated include the CIELab
color space, and the hue and saturation channel in the HSV
color space. We also include color gradients in the RGB
space since our human perception is more sensitive to rela-
tive color differences instead of absolute color values. The
different magnitudes in the color gradients can also handle
cases when salient regions and backgrounds have different
amount of defocus and different color contrast. In summary,
11 different color channel representations are used in our
high-dimensional color transform space.

To further enrich the representative power of our high-
dimensional color transform space, we apply gamma cor-
rections to each of the color coefficients after normalizing
the coefficient between [0, 1]. The gamma values we used
range from 0.5 to 2 for each 0.5 interval. This results in a
l = 44 high-dimensional vector to represent the colors of
an image:

K = [RγkS GγkS BγkS · · · ] ∈ RN×l (2)

The nonlinear gamma correction takes into account that our
human perception responds nonlinearly to incoming illu-
mination. It also stretches/compresses the intensity con-
trast within different ranges of color coefficients. Table 2
summarizes the color coefficients concatenated in our high-
dimensional color transform space. This process is applied
to each superpixel in an input image individually.

A self-comparison of our high-dimensional color trans-
form with other combinations of color channels is shown in
Figure 7. The result shows that the performance is unde-
sirable when only RGB is used, and using various nonlin-
ear RGB transformed color spaces and gamma corrections
helps to catch the salient regions more accurately.



Image I1 R1 − 0.5G1 − 0.5B1 Ground Truth

Image I2 R2 − 0.5G2 − 0.5B2 Ground Truth

Image I3 B3 − 0.5R3 − 0.5G3 Ground Truth
Figure 5. Illustrations of linear coefficient combinations for
saliency map construction. (a) Input original images, (b) saliency
maps are obtained by using a linear combination of RGB channels,
and (c) Ground truth saliency map.

Saliency Map Construction via Optimal Linear Combi-
nation of Coefficients To obtain our saliency map, we uti-
lize the definite foreground and definite background color
samples in our trimap to estimate an optimal linear com-
bination of color coefficients to separate the salient region
color and the background color. We formulate this problem
as a least square problem which minimizes:

min
α

∥∥∥(U− K̃α)
∥∥∥2
2
, (3)

where α ∈ Rl is the coefficient vector that we want to esti-
mate, K̃ is aM×lmatrix with each row of K̃ corresponding
to a color samples in the definite foreground/background re-
gions,M is the number of color samples in the definite fore-
ground/background regions (M � N ), U is an M dimen-
sional vector with its value equal to one if a color sample
belongs to the definite foreground and 0 if a color sample
belongs to the definite background. Since we have a greater
number of color samples than the dimensions of the coef-
ficient vector, this least square problem is a well condition
problem which can be solved easily using standard linear
equation solvers.

After we get the optimal coefficient α, we can construct
the saliency map as:

SLS(Xi) =

l∑
j=1

Kijαj , i = 1, 2, · · · , N (4)

which denotes the linear combination of the color coeffi-
cient of our high-dimensional color transform space. Since
the initial color samples may be limited, we repeat the pro-
cesses described in this section to identify more reliable

(a) (b) (c) (d)
Figure 6. The visual examples of each step’s result. (a) test im-
ages, (b) initial saliency map after Section 4, (c) refined saliency
map SLS using high-dimensional color transform, and (d) our fi-
nal saliency map after including spatial refinement.
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Figure 7. Comparison of precision-recall curves of our initial map
and results based on different color transforms on the MSRA
dataset.

color samples and to further separate the color distance be-
tween the salient region and the background. In our exper-
iments, we found that three iterations are sufficient to con-
verge to a stable accurate saliency map. Figure 5 illustrates
the idea of using linear combination of color coefficient for
saliency detection.

Spatial Refinement In our final step, we further refine our
saliency map using spatial information. The idea is to give
more weight to pixels which are closer to the definite fore-
ground region and vice versa for pixels that are closer to
the definite background region in the trimap. The spatial
saliency map is defined as

Ss(Xi) = exp
(
−kminj∈F (d(pi,pj))

minj∈B(d(pi,pj))

)
, (5)

where minj∈F (d(pi,pj)) and minj∈B(d(pi,pj)) are the
minimum Euclidean distance from ith pixel to a definite
foreground pixel and to a definite background pixel respec-
tively. In our experiment, we set the parameter k = 0.5.
The final saliency map is obtained adding the color-based
saliency map and the spatial saliency map:

Sfinal(Xi) = SLS(Xi) + Ss(Xi). i = 1, 2, · · · , N (6)



Visual examples of our estimated step-by-step saliency
maps are presented in Figure 6. To speed up our refinement
processes,we perform saliency map refinements in super-
pixel level using the mean color of a superpixel as a pixel
color, and the center location of a superpixel as a pixel lo-
cation.

6. Experiments
We evaluate and compare the performances of our

algorithm against previous algorithms on three repre-
sentative benchmark datasets: the MSRA salient object
dataset [19], the Extended Complex Scene Saliency Dataset
(ECCSD) [33], and the Interactive cosegmentation Dataset
(iCoSeg) [4]. The MSRA dataset contains 5,000 images
with the pixel-wise ground truth by the authors provided by
Jiang et al. [15]. This dataset contains comparatively obvi-
ous salient objects on the simple background and is consid-
ered as a less challenging dataset in saliency detection. The
ECCSD dataset contains 1,000 images with multiple ob-
jects, which makes the detection tasks much more challeng-
ing. Unlike the MSRA dataset, test images in this dataset
are more like real world images. So, this dataset can test the
generalization ability of the salient region detection meth-
ods. Finally, the iCoSeg contains 643 images with multiple
objects in a single image. This dataset is quite interesting
because it contains many people which are relatively hard
to detect as salient objects.

We compare eight state-of-the-art methods according
to the evaluation criteria suggested by Achanta et al. [1].
The first evaluation compares the precision and recall rates.
The first and second row of Figure 8 show the precision-
recall curves for comparing our saliency method with the
aforementioned state-of-the-art saliency detection meth-
ods, including those of Zhai et al. (LC) [35], Cheng et
al. (HC,RC) [7], Shen and Wu (LR) [27], Perazzi et
al.(SF) [26], Yan et al.(HS) [33], Yang et al.(GMR) [34],
and Jiang et al. (DRFI) [15] for the datasets.

The second evaluation compares the F-measure rate. We
compute the F-measure rates for the binarized saliency map
as the threshold changes over the range [0, 255], where the
F-measure rate is given by

Fβ =
(1 + β2) · Precision ·Recall
β2 · Precision+Recall

. (7)

As in previous methods [1, 27, 33], we use β2 = 0.3.
The third row of Figure 8 shows the F-measure curve for
each of state-of-the-art methods.

The average run times of three state-of-the-art methods
are compared in Table. 3. The run time is measured at a
machine with an Intel Dual Core i5-2500K 3.30 GHz CPU.
Considering that our method is implemented by using MAT-
LAB with unoptimized code, the computational complex-
ity of the proposed method is comparable to those of HS

Method Ours DRFI[15] HS[33] GMR[34]
Time(s) 3.32 29.27 0.43 3.37

Code Matlab Matlab C++ C++

Table 3. Comparison of average run time (seconds per image).

and GMR. Most of the time in our method is at the super-
pixel generation step (about 0.94s) and feature vector gen-
eration step (about 1.8s). Note that these steps are for initial
saliency map estimation.

From the experiments’ results, we find that our algo-
rithm is effective and computationally efficient. Although
our performance does not outperform the method of Yang et
al. [34] and Jiang et al. [15], our algorithm’s computational
speed is much faster. Some visual examples of salient object
detection on the MSRA dataset are presented in Figure 9
which demonstrate effectiveness of the proposed method.

7. Conclusions
We have presented a high-dimensional color transform-

based salient region detection, which estimates foreground
regions by using the linear combination of various color
space. The trimap-based robust estimation overcomes lim-
itations of inaccurate initial saliency map. As a result, our
method achieves a fine performance and is computationally
efficient in comparison to the other state-of-the art methods.

We note that our high dimensional color transform might
not fully coincide with the human vision. However, it is ef-
fective in increasing the success of foreground and back-
ground color separation since the low dimensional RGB
space is very dense where distributions of foreground and
background colors are largely overlapped. We also note
that if identical colors appear in both foreground and back-
ground or the initialization of color seed estimation is very
wrong, our result is undesirable. In future, we plan to use
more features to solve these limitations and improve the ac-
curacy of saliency detection.
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