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Abstract

Humans are capable of perceiving a scene at a glance,
and obtain deeper understanding with additional time. Sim-
ilarly, visual recognition deployments should be robust to
varying computational budgets. Such situations require
Anytime recognition ability, which is rarely considered in
computer vision research. We present a method for learn-
ing dynamic policies to optimize Anytime performance in
visual architectures. Our model sequentially orders feature
computation and performs subsequent classification. Cru-
cially, decisions are made at test time and depend on ob-
served data and intermediate results. We show the applica-
bility of this system to standard problems in scene and ob-
ject recognition. On suitable datasets, we can incorporate
a semantic back-off strategy that gives maximally specific
predictions for a desired level of accuracy; this provides a
new view on the time course of human visual perception.

1. Introduction
Anytime recognition is a core competence in human per-

ception, mediating between reflexive recognition and deep
analysis of visual input. Human studies have produced evi-
dence for coarse-to-fine processing of visual input as more
time becomes available [11, 19]. The underlying mecha-
nisms are unknown, with only a few attempts to explain the
temporal dynamics (e.g. via sequential decision processes
[15]).

While multi-class recognition in computer vision has
achieved levels of performance that allow useful real-world
implementation, state-of-the-art methods tend to be compu-
tationally expensive and insensitive to Anytime demands.
As these methods are applied at scale, managing their re-
source consumption (power or cpu-time) cost becomes in-
creasingly important. For tasks such as personal robotics,
the ability to deploy varying levels of processing to differ-
ent stimuli, depending on computational demands on the
robot, also seems crucial.

For most state-of-the-art classification methods, different
features are extracted from an image instance at different
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costs, and contribute differently to decreasing classification
error. Although “the more features, the better”, high accu-
racy can be achieved with only a small subset of features for
some instances—and different instances benefit from differ-
ent subsets of features. For example, simple binary features
are sufficient to quickly detect faces [22] but not more var-
ied visual objects, while the features most useful for sepa-
rating landscapes from indoor scenes [24] are different from
those most useful for recognizing fine distinctions between
bird species [10].

Computing all features for all images is infeasible in
a deployment sensitive to Anytime needs, as each feature
brings a significant computational burden. To deal with this
problem, we can set an explicit cost budget, specified in
terms of wall time or total power expended or another met-
ric. Additionally, we strive for Anytime performance—the
ability to terminate the classifier even before the cost budget
is depleted and still obtain the best answer. In this paper, we
address the problem of selecting and combining a subset of
features under an Anytime cost budget.

To exploit the fact that different instances benefit from
different subsets of features, our approach to feature selec-
tion is a sequential policy. To learn the policy parameters,
we formulate the problem as a Markov Decision Process
(MDP) and use reinforcement learning methods. With dif-
ferent settings of parameters, we can learn policies rang-
ing from Static, Myopic—greedy selection not relying on
any observed feature values, to Dynamic, Non-myopic—
relying on observed values and considering future actions.

Since test-time efficiency is our motivation, our methods
should carry little computational burden. For this reason,
our models are based on linear evaluations, not nearest-
neighbor or graphical model methods. Because different
features can be selected for different instances, and be-
cause our system may be called upon to give an answer
at any point during its execution, the feature combination
method needs to be robust to a large number of different
observed-feature subsets. To this end, we present a novel
method for learning several classifiers for different clusters
of observed-feature subsets.

We evaluate our method on multi-class recognition tasks.
We first demonstrate on synthetic data that our algorithm
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learns to pick features most useful for the specific test in-
stance. We demonstrate the advantage of non-myopic over
greedy, and of dynamic over static on this and the Scene-
15 visual classification dataset. Then we show results on a
subset of the hierarchical ImageNet dataset, where we addi-
tionally learn to provide the most specific answers for any
desired cost budget and accuracy level.

2. Related Work

Static selection A well-known method to evaluate fea-
tures sequentially is the cascaded boosted classifier of Vi-
ola & Jones [22] (updated by Bourdev & Brandt [2] with a
soft threshold), which is able to quit evaluating an instance
before all features are computed—but feature cost was not
considered. The cost-sensitive cascade of Chen et al. [3] op-
timizes stage order and thresholds to jointly minimize clas-
sification error and feature computation cost. Xu et al. [26]
and Grubb & Bagnell [13] separately develop a variant of
gradient boosting for training cost-sensitive classifiers; the
latter prove near-optimality of their greedy algorithm with
submodularity results. Their methods are tightly coupled to
the stage-wise regression algorithm.

Dynamic selection The above methods learn an efficient
but fixed order for evaluating features given a test instance.

Gao & Koller [12] propose a method for active classifi-
cation: myopically selecting the next feature based on ex-
pected information gain given the values of the already se-
lected features. The method is based on locally weighted
regression, highly costly at test time. Ji & Carin [16] also
formulate cost-sensitive feature selection generatively, as an
HMM conditioned on actions, but select actions myopically,
again at signficant test time cost.

Karayev at al. [17] propose a reinforcement learning ap-
proach for selecting object detectors; they rely on expen-
sive test-time inference in a graphical model to combine
observations. Dulac-Arnold et al. [8] present another MDP-
based solution to “datum-wise classification”, with an ac-
tion space comprised of all features and labels, recently ex-
tended to region-based processing [9]. He He et al. [14] also
formulate an MDP with features and a single classification
step as actions, but solve it via imitation learning of a greedy
policy. Benbouzid et al. [1] formulate an MDP that sim-
ply extends the traditional sequential boosted classifier with
an additional skip action, significantly limiting the space of
learnable policies ([21] provides another variation on this
problem). Although [17] targets Anytime performance, their
inference procedure is prohibitively expensive for test-time
use in a general classification task. In contrast, our fast lin-
ear method allows direct specification of the Anytime cost
budget.

Label trees also guide an instance through a tree of clas-
sifiers; their structure is determined by the confusion ma-
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Figure 1: Definition of the reward function. To maximize
the total area above the entropy vs. cost curve from 0 to B,
we define the reward of an individual action as the area of
the slice of the total area that it contributes. From state s,
action a = hf leads to state s′ with cost cf . The information
gain is IHs(Y ;hf ) = H(Y ;Hs)−H(Y ;Hs ∪ hf ).

trix or learned jointly with weights [7]. Xu et al. [25] learn
a cost-sensitive binary tree of weak learners using an ap-
proach similar to the cyclic optimization of [3]. Less di-
rectly related—but exciting for its novelty—is the work of
[23], who apply simple introspection to structured mod-
els for a significant speedup of human pose estimation.
Another exciting direction is theoretical analysis of near-
optimal policies with humans in the loop [4].

3. Anytime Classification by Cost-sensitive
Dynamic Feature Selection

Definition 1. The test-time efficient multi-class classifica-
tion problem consists of

• N instances labeled with one of K labels:
D = {xn ∈ X , yn ∈ Y = {1, . . . ,K}}Nn=1.
• F featuresH = {hf : X 7→ Rdf }Ff=1, with associated

costs cf .
• Budget-sensitive loss LB, composed of cost budget B

and loss function `(ŷ, y) 7→ R.

The goal is to find a feature selection policy π(x) :
X 7→ 2H and a feature combination classifier g(Hπ) :
2H 7→ Y such that such that the total budget-sensitive loss∑LB(g(π(xn)), yn) is minimized.

The cost of a selected feature subset Hπ(x) is CHπ(x).
The budget-sensitive loss LB presents a hard budget con-
straint by only accepting answers with CH ≤ B. Addition-
ally, LB can be cost-sensitive: answers given with less cost
are more valuable than costlier answers. The motivation for
the latter property is Anytime performance; we should be



able to stop our algorithm’s execution at any time and have
the best possible answer.

Feature costs cf can be specified flexibly, with options
including theoretical analysis, number of flops, wall clock
runtime, total CPU time, or exact power expenditure. We
believe that a deployment in a modern datacenter is most
likely to optimize for power expenditure. In the absence of
reliable ways to measure power, we use total CPU time to
define the cost: if an operation is performed in parallel on
multiple cores, its cost is considered to be the total cpu time
on all cores.

At training time, our computation is unbudgeted, and we
can compute all features to have fully-observed training in-
stances. At test time, there is a budget and so the instances
we classify will only be partially-observed, as determined
by the feature selection policy.

We defer discussion of learning the feature combina-
tion classifier g(Hπ) : 2H 7→ Y to Section 3.4. For now,
we assume that g can combine an arbitrary subset of fea-
tures and provide a distribution P (Y = y). For example,
g could be a Naive Bayes (NB) model trained on the fully-
observed data.

3.1. Dynamic feature selection as a Markov-
Decision-Process (MDP).

To model the feature selection policy π(x) : X 7→ 2H,
we introduce the Markov Decision Process (MDP), which
defines a single episode of selecting features for some in-
stance x.

Definition 2. The feature selection MDP consists of the
tuple (S,A, T (·), R(·), γ):

• State s ∈ S stores the selected feature subset Hπ(x)
and their values and total cost CHπ(x)

.

• The set of actions A is exactly the set of featuresH.

• The (stochastic) state transition distribution T (s′ |
s, a) can depend on the instance x.

• The reward function R(s, a, s′) 7→ R is manually
specified, and depends on the classifier g and the in-
stance x.

• The discount γ determines amount of lookahead in
selecting actions: if 0, actions are selected greedily
based on their immediate reward; if 1, the reward
accrued by subsequent actions is given just as much
weight as the reward of the current action.

Running the MDP on a given instance x gives a trajec-
tory ξ = (s0, a0, s1, r1, . . . , aI−1, sI , rI), where I is the
total number of actions taken (and therefore features se-
lected), s0 is the initial state, ai ∼ π(a | si) is chosen
by the policy π(a | s), and si+1 ∼ T (s | si, ai), which can

depend on x. The total expected reward (value) of an MDP
episode is written as

Vπ(s0) = Eξ∼{π,x}r(ξ) = Eξ∼{π,x}

[
I∑
i=0

γi ri

]
(1)

Gathering such trajectories forms the basis of our policy
learning method.

3.2. Defining the reward.

The budget-sensitive loss LB enforces Anytime perfor-
mance by valuing early gains more than later gains. To for-
malize this, consider Figure 1, which shows the entropy and
the 0-1 loss of g at every point in a sequential feature selec-
tion episode for some instance x. For the best Anytime per-
formance, we want to capture the most area above the loss
vs. cost curve, up to max budget B [17].

Recall from (1) that the value of an episode ξ is defined
as the sum of obtained rewards. If the reward of a single
action is defined as the area above the curve that is captured
as a direct result, then the value of the whole episode exactly
corresponds to LB.

However, there is a problem with using loss directly:
only the first action to “tip the scale” toward the correct pre-
diction gets a direct reward (in the figure, it is the first ac-
tion). A smoother reward function is desirable: if the classi-
fier g can give a full distribution P (Y = y | Hπ(x)) and not
just a prediction ŷ ∈ Y , we can maximize the information
gain of the selected subset instead of directly minimizing
the loss of g(π(x)):

I(Y ;Hπ(x)) = H(Y )−H(Y |Hπ(x)) = (2)

=
∑
y∈Y

P (y) logP (y)−
∑

y,Hπ(x)

P (y,Hπ(x)) logP (y | Hπ(x))

To the extent that g is unbiased, maximizing information
gain corresponds to minimizing loss, and ensures that we
not only make the right classification decision but also be-
come maximally certain. Therefore, as graphically pre-
sented in Figure 1, we define the reward of selecting fea-
ture hs with cost cf with the set Hs computed to be
IHs(Y ;hf )(Bs − 1

2cf ).
Although we do not evaluate in this regime, note that

this definition easily incorporates a setup cost in addition to
deadline cost by only computing the area in between setup
and deadline costs.

3.3. Parametrizing and learning the policy.

Space constraints prohibit a full exposition of reinforce-
ment learning techniques; [20] provides a thorough review.
In brief: we seek π that maximizes the expected value of the



MDP (1). Therefore, actions must be selected according to
their expected value:

arg max
a

π(a | s) = arg max
a

Q∗(s, a)

where Q∗(s, a) is the optimal action-value function—the
expected value of taking action a in state s and then acting
optimally to the end of the episode.

Because the state represents an exponential number of
subsets and associated real values, we cannot represent
Q(s, a) exactly. Instead, we use feature approximation and
write Q(s, a) = θTφ(s, a), where φ : S × A 7→ Rds is the
state featurization function, ds is the dimensionality of the
state feature vector, and θ is a vector of weights that defines
the policy.

Specifically, the policy is defined as

π(a | s) =
1

Z
exp

(
1

τ
θTφ(s, a)

)
(3)

where Z is the appropriate normalization and τ is a tem-
perature parameter that controls the level of exploration vs.
exploitation in the policy. As τ → 0, π(a | s) becomes
highly peaked at arg maxaQ(s, a); it becomes uniform as
τ →∞.

As commonly done, we learn the θ by policy iteration.
First, we gather (s, a, r, s′) samples by running episodes (to
completion) with the current policy parameters θi. From
these samples, Q̂(s, a) values are computed, and θi+1 are
given by L2-regularized least squares solution to Q̂(s, a) =
θTφ(s, a), on all states that we have seen in training.

During training, we gather samples starting from either
a random feasible state, with probability ε, or from the ini-
tial empty state otherwise. Both ε and τ parameters decay
exponentially with the number of training iterations. Train-
ing is terminated if πθi+1 returns the exact same sequence
of episodes ξ on a validation set as πθi .

Static vs. Dynamic state-action feature vector. The fea-
turization function φ(s) extracts the following features from
the state:

• Bit vector m of length F : initially all bits are 1 and are
set to 0 when the corresponding feature is computed.
• For each hf , a vector of size df representing the val-

ues; 0 until observed.
• Cost feature c ∈ [0, 1], for fraction of the budget spent.
• Bias feature 1.

These features define the dynamic state, presenting
enough information to have a closed-loop (dynamic) policy
that may select different features for different test instances.
The static state has all of the above features except for the
observed feature values. This enables only an open-loop
(static) policy, which is exactly the same for all instances.

Input: D = {xn, yn}Nn=1; LB
Result: Trained π, g

π0 ← random;
for i← 1 to max iterations do

States, Actions, Costs, Labels←
GatherSamples(D, πi−1);
gi ← UpdateClassifier(States, Labels);
Rewards← ComputeRewards(States, Costs,
Labels, gi,LB, γ);
πi ← UpdatePolicy(States, Actions,
Rewards);

end
Algorithm 1: Because reward computation depends on
the classifier, and the distribution of states depends on the
policy, g and π are trained iteratively.

Policy learned with the static state is used as a baseline in
experiments.

The state-action feature function φ(s, a) effectively
block-codes these features: it is 0 everywhere except the
block corresponding to the action considered. In implemen-
tation, we train F separate regressions with a tied regular-
ization parameter, which is K-fold cross-validated.

Effect of γ. Note that solving the MDP with these features
and with γ = 0 finds a Static, greedy policy: the value of
taking an action in a state is exactly the expected reward to
be obtained. When γ = 1, the value of taking an action is
the entire area above the curve as defined in Figure 1, and
we learn the Static, non-myopic policy—another baseline.

3.4. Learning the classifier.

We have so far assumed that g can combine an arbitrary
subset of features and provide a distribution P (Y = y)—
for example, a Gaussian Naive Bayes (NB) model trained
on the fully-observed data.

Since discriminative classifiers commonly provide better
performance, we use a logistic regression classifier, which
presents a new challenge: at test time, some feature val-
ues are missing and need to be imputed. If the classifier is
trained exclusively on fully-observed data, then the feature
value statistics at test time will not match, resulting in poor
performance. Therefore, we need to learn classifier weights
on a distribution of data that exhibits the pattern of missing
features induces by the policy π. At the same time, learning
the policy depends on the classifier g, used in the computa-
tion of the rewards. For this reason, the policy and classifier
need to be learned jointly: Algorithm 1 gives the iterative
procedure.



Unobserved value imputation. Unlike the Naive Bayes
classifier, the logistic regression classifier is not able to
use an arbitrary subset of features Hπ , but instead oper-
ates on feature vectors of a fixed size. To represent the
feature vector of a fully observed instance, we write x =
[h1(x), . . . , hf (x)]. In case thatHπ ⊂ H, we need to fill in
unobserved feature values in the vector.

A basic strategy is mean imputation: filling in with the
mean value of the feature:

xπ =

[
hi(x) :

{
hi(x) if hi ∈ Hπ(x)

h̄i otherwise

]
(4)

If we assume that x is distributed according to a mul-
tivariate Gaussian x ∼ N (0,Σ), where Σ is the sample
covariance XTX and the data is standardized to have zero
mean, then it is possible to do Gaussian imputation. Given
a feature subsetHπ , we write:

xπ =

[
xo

xu

]
∼ N

(
0,

[
A C
CT B

])
(5)

where xo and xu represent the respectively observed and
unobserved parts of the full feature vector x. In this
case, the distribution over unobserved variables condi-
tioned on the observed variables is given as xu | xo ∼
N
(
CTA−1xo, B−CTA−1C

)
.

Learning more than one classifier. As illustrated in Fig-
ure 2, the policy π selects some feature subsets more fre-
quently than others. Instead of learning only one classifier
g that must be robust to all observed feature subsets, we can
learn several classifiers, one for each of the most frequent
subsets. This is done by maintaining a distribution over en-
countered feature subsets during training. For each of theK
most frequent subsets, a separate classifier is trained, using
data that is closest by Hamming distance on the selected-
feature bit vector.

Each classifier is trained with the LIBLINEAR implemen-
tation of logistic regression, with L2 regularization param-
eter K-fold cross-validated at each iteration.

4. Evaluation
We evaluate the following sequential selection baselines:

• Static, greedy: corresponds to best performance of a
policy that does not observe feature values and selects
actions greedily (γ = 0).

• Static, non-myopic: policy that does not observe fea-
ture values but uses the MDP machinery with γ = 1 to
consider future action rewards.

• Dynamic, greedy: policy that observed feature values,
but selects actions greedily.
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Figure 2: The action space A of the MDP is the the set of
features H, represented by the φ boxes. The primary dis-
cretization of the state space can be visualized by the possi-
ble feature subsets (larger boxes); selected features are col-
ored in the diagram. The feature selection policy π induces
a distribution over feature subsets, for a dataset, which is
represented by the shading of the larger boxes. Not all states
are reachable for a given budget B. In the figure, we show
three “budget cuts” of the state space.

Our method is the Dynamic, non-myopic policy: observed
feature values, and full lookahead.

In preliminary experiments, Logistic Regression always
performed better than the Gaussian Naive Bayes classifier,
and so only the former is used in the experiments below. As
described above, we evaluated classification with Gaussian
vs. Mean imputation, and with different number of clas-
sifiers (1, 3, and 6) clustered by feature subsets. We found
that mean imputation performed better than Gaussian impu-
tation, and although increased number of classifiers some-
times increased performance, it also made our method more
prone to overfitting; K = 1 classifiers worked best on all
tasks.

4.1. Synthetic Experiment.

Following [25], we first show that the policy works
as advertised in a challenging synthetic example. In D-
dimensional space, the data has a label for each of the 2D

orthants, and is generated by a unit-variance Gaussian in
that orthant (See top left of Figure 3 for the 3D case). There
are D cheap features that simply return the sign of the data
point’s coordinate for the corresponding dimension. For
each orthant, there is also an expensive feature that returns
the data point’s label if the point is located in the corre-
sponding orthant, and random noise otherwise.

The optimal policy on a new data point is to determine its
orthant with cheap features, and then take the corresponding
expensive action. Note that both dynamic features and non-
myopic learning are crucial to the optimal policy, which is
successfully found by our approach. Figure 3 shows the re-
sults of this optimal policy, a random policy, and of different



d0

�3

0

3

d 1

�3

0

3

d
3

�3

0

3

0 1 2 3 4

Number in action sequence

d0
d1
d2
q0
q1
q2
q3
q4
q5
q6
q7

A
ct

io
n

Feature Number Cost
di: sign of dimension i D 1
qo: label of datapoint,
if in quadrant o

2D 10

0 1 2 3 4

Number in action sequence

d0
d1
d2
q0
q1
q2
q3
q4
q5
q6
q7

A
ct

io
n

0 1 2 3 4

Number in action sequence

d0
d1
d2
q0
q1
q2
q3
q4
q5
q6
q7

A
ct

io
n

0 1 2

Number in action sequence

d0
d1
d2
q0
q1
q2
q3
q4
q5
q6
q7

A
ct

io
n

random optimal

static, non-myopic dynamic, non-myopic

0 2 4 6 8 10 12 14
Cost

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or

Optimal

Random

Static, greedy

Static, non-myopic

Dynamic, greedy

Dynamic, non-myopic

Optimal Random Static,
greedy

Static,
non-myopic

Dynamic,
greedy

Dynamic,
non-myopic

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.318

0.000

0.617

0.453

0.610

0.444 0.455

0.355

0.618

0.452

0.331

0.000

Area under Error vs. Cost curve

Final Error
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baselines and our method, trained given the correct minimal
budget.

4.2. Scene recognition.

The Scene-15 dataset [18] contains 4485 images from
15 visual scene classes. The task is to classify images ac-
cording to scene. Following [24], we extracted 14 different
visual features (GIST, HOG, TinyImages, LBP, SIFT, Line
Histograms, Self-Similarity, Textons, Color Histograms,
and variations). The features vary in cost from 0.3 sec-
onds to 8 seconds, and in single-feature accuracy from
0.32 (TinyImages) to .82 (HOG). Separate multi-class lin-
ear SVMs were trained on each feature channel, using a ran-
dom 100 positive example images per class for training. We
used the liblinear implementation, and K-fold cross-
validated the penalty parameter C. The trained SVMs were
evaluated on the images not used for training, resulting in a
dataset of 2238 vectors of 210 confidence values: 15 classes

for each of the 14 feature channels. This dataset was split
60-40 into training and test sets for our experiments.

Figure 4 shows the results, including learned policy tra-
jectories. For all evaluated budgets, our dynamic, non-
myopic method outperforms all others on the area under the
error vs. cost curve metric. Our results on this dataset match
the reported results of Active Classification [12] (Figure 2)
and Greedy Miser [26] (Figure 3), although both methods
use an additional powerful feature channel (ObjectBank)1.

4.3. ImageNet and maximizing specificity.

The full ImageNet dataset has over 10K categories and
over a million images [5]. The classes are organized in
a hierarchical structure, which can be exploited for novel
recognition tasks. We evaluate on a 65-class subset intro-

1Detailed results for this and other experiments are on the project page
(see front page for the link).
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duced in “Hedging Your Bets” [6]. In this evaluation, we
consider the situation where the initial feature computation
has already happened, and the task is to find a path through
existing one-vs-all classifiers: features correspond to Platt-
scaled SVM confidences of leaf-node classifiers (trained on
SIFT-LLC features), and each has cost 1 [5]. Following [6],
accuracy is defined on all nodes, and inner node confidences
are obtained by summing the probabilities of the descendant
nodes.

We combine our sequential feature selection with the
“Hedging Your Bets” method for backing off prediction
nodes using the ImageNet hierarchy to maintain guaranteed
accuracy while giving maximally specific answers, given a
cost budget. The results are given in Figure 5. As the avail-
able budget increases, the specificity (defined by normalized
information gain in the hierarchy) of our predictions also in-
creases, while accuracy remains constant. Visualizing this
on the ILSVRC-65 hierarchy, we see that the fraction of pre-
dictions at the leaf nodes grows with available computation
time. This formulation presents a novel angle on modeling
the time course of human visual perception.

5. Conclusions and Future Work
We have shown how to optimize feature selection and

classification strategies under an Anytime objective by
modeling the associated process as a Markov Decision Pro-
cess. Throughout the experiments we show how strategies
that adapt the course of computation at test time lead to
gains in performance and efficiency. Beyond the aspects of
practical deployment of vision systems that our work is mo-
tivated by, we are curious to further investigate our model
as a tool to study human cognition and the time course of
visual perception.

Lastly, the recent successes of convolutional neural nets
for visual recognition open an exciting new avenue for ex-
ploring cost-sensitivity. Layers of a deep network can be
seen as features in our system, through which a properly
learned policy can optimally direct computation.
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Figure 4: Results on Scenes-15 dataset (best viewed in color). Figure (a) shows the error vs. cost plot for policies learned
given a budget of 5 seconds. Figure (b) aggregates the area under the error vs. cost plot metrics for different policies and
budgets, showeing that our approach outperforms baselines no matter what budget it’s trained for. Figure (c) shows the
branching behavior of our dynamic policy.
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(a) Areas under error vs. cost curves for policies learned at different
budgets. (No specificity back-off is performed here).
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(c) We visualize the fraction of predictions made at inner vs. leaf nodes of ILSVRC-65 at different cost points of an Anytime policy:
with more computation, accurate predictions are increasingly made at the leaf nodes.

Figure 5: Results on the ILSVRC-65 dataset (best viewed in color). Figure (a) shows our dynamic approaches outperforming
static baselines for all practical cost budgets. When our method is combined with Hedging Your Bets [6], a constant prediction
accuracy can be achieved at all points in the Anytime policy, with specificity of predictions increasing with the cost of
predictions. Figures (b) and (c) show this for the dynamic, non-myopic policy learned for budget = 26. This is analogous to
human visual performance, which shows increased specificity at longer stimulus times.


