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Abstract

We describe an information-driven active selection ap-
proach to determine which detectors to deploy at which lo-
cation in which frame of a video to minimize semantic class
label uncertainty at every pixel, with the smallest computa-
tional cost that ensures a given uncertainty bound. We show
minimal performance reduction compared to a “paragon”
algorithm running all detectors at all locations in all frames,
at a small fraction of the computational cost. Our method
can handle uncertainty in the labeling mechanism, so it can
handle both “oracles” (manual annotation) or noisy detec-
tors (automated annotation).

1. Introduction

Semantic video segmentation refers to the annotation of
each pixel of each frame in a video with a class label. If
we are given a data collection mechanism, either as an “or-
acle” or a detector for each known object class, we could
perform semantic video segmentation in a brute-force (and
simplistic) way by labeling each pixel in each frame. Such a
“baseline” algorithm is clearly inefficient as it fails to exploit
spatio-temporal regularities in the video signal. Moreover,
capturing and exploiting these regularities is computationally
inexpensive and can be done using a variety of low-level vi-
sion techniques. On the other hand, detecting and localizing
objects in the scene requires high-level semantic procedures
that have far greater computational cost (in the manual an-
notation scenario, semantic procedures are replaced with an
expensive human annotator). In other words, the complexity
of annotating a video sequence is dominated by the cost of
high-level procedures, e.g. submitting images to a battery
of detectors. The annotation cost decreases if fewer such
procedures are performed.

We describe a method to reduce the complexity of a label-
ing scheme, using either an oracle or a battery of detectors,
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Figure 1. Given an input video, our approach iteratively improves
the annotation estimate by submitting “informative” frames to a

“relevant” subset of object detectors. At each iteration, we select
the most informative frame (and possibly region within it) based
on uncertainty of current annotations. We then select a subset
of relevant object detectors, based on estimate of classes that are
present in the video. Responses of these detectors are used to
update the posterior of the label field, which is then used to perform
selection at the next iteration.

by exploiting temporal consistency and actively selecting
which data to gather (which detector), when (which frame)
and where (location in an image).

It is important to stress that our method aims to reduce
complexity, but in principle can do no better than the base-
line, since it is using only a subset of the data. To avoid
confusion, we call the performance upper bound paragon,
rather than baseline. If the data collection mechanism is
reliable (e.g. an oracle), we show minimal performance re-
duction at a fraction of the cost.

Our approach is framed as uncertainty reduction with
respect to the choice of frame, detector, and location. As a
result, we can work with uncertain data collection mecha-
nisms, unlike many label propagation schemes that assume
an oracle [31]. As output, we provide a class-label probabil-
ity distribution per pixel, which can be used to estimate the
most likely class, and also provides the labeling uncertainty.

Our method hinges on the causal decision of what future
data to gather, when, and where, based on inference from
past data, so as to reduce labeling uncertainty (or “informa-
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tion gain” [19]). The method is formulated as a stochastic
subset selection problem, finding an optimal solution to
which is intractable in general. However, the problem en-
joys the submodular property [22], so a greedy heuristic
attains a constant factor approximation of the optimum [17],
a fact that we exploit in our method. A brief overview of our
framework is shown in Fig. 1.

1.1. Related work and contributions

We are motivated by the aim to perform semantic video
segmentation using as few resources (frames and detectors)
as possible, while guaranteeing an upper bound on residual
uncertainty. We do so by sequentially choosing the best
measurements, which relates to active learning. Search-
ing for the best region within the image relates to location
selection. Detector selection is performed by leveraging ob-
ject co-occurrences in the video; thus, work on contextual
information is relevant.

Active learning aims to minimize complexity by select-
ing the data that would provide the largest “value” relative to
the task at hand. It has been used in image segmentation [28]
and user-guided object detection [33]; tradeoffs between cost
and informativeness were studied in [30], and a procedure
efficiently computing the objective was described in [21].
The active learning framework has been used for keyframe
selection in an interactive video annotation task in [32]. In
a work closest to ours, [31] addresses frame selection for
label propagation in video. However, their method relies on
oracle labeling and moreover cannot be easily extended to
location selection.

Location selection has been studied to reduce the num-
ber of evaluations of a sliding-window detector. Previously
this was done by generating a set of diverse image partitions
likely to cover an object [1]. In [27], it was shown that using
such segmentation-driven approach on large image databases
maintains performance, while providing computational sav-
ings. In [2] a class-dependent sequential decision (“where to
look next”) approach exploits “context” learned in training,
but is limited to finding a single object per image. Recently,
a sequential decision strategy that requires user interaction,
but does not have this limitation was described in [6]. Our ap-
proach is not limited to a single object, is class-independent,
and is based on direct uncertainty-minimization framework.

Contextual information has been used to prune false
positives in single images [7] by using co-occurrence statis-
tics and learning dependencies among object categories. Sim-
ilarly, [34] use a conditional random field to infer “category
presence” using co-occurrence statistics in single images.
Our work is related to [16], who exploit co-occurrences to
sequentially choose which detectors to run to improve speed
of object recognition in single images. On the other hand,
we tackle video, which allows us to obtain significant com-
putational savings by not running “unnecessary” detectors.

Figure 2. A pair of frames with temporally consistent regions ({Si},
[5]). The highlighted regions are present in both frames.
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Figure 3. A pseudo-measurement provided by the car detector. Left:
a set of bounding boxes given by a DPM detector [10]. Middle:
segmentation result using Grabcut [23]. Color indicates detector
score. This is taken as the measurement in our framework. Right:
likelihood (1) for a “car” class.

In this paper, we focus only on labeling “objects” in video,
as found by bounding box detectors. Extending the approach
to also use region-based detectors, as in [26], is possible, and
could allow for using geometric context [12].

Our first contribution is a frame selection method for
video annotation, which naturally allows for uncertainty in
the measurements, and thus is applicable to both a battery of
standard object detectors (yielding automated annotation),
as well as an error-free oracle (yielding manual annotation).
Region selection within an image is then naturally added to
the framework – this is our second contribution. Our third
contribution is the extension of the framework to enable not
just the frame and location selection, but also the selection
of detectors based on video shot context.

2. Formulation
In Sec. 2.1 we give an overview of our probability model,

introduce object detectors, and describe how their outputs
are used to infer the underlying object class labels. Sec.
2.2 introduces the information gathering framework, and
proposes an online strategy to select the most informative
frames on which to run detectors. This strategy is extended
to selecting a region within an image in Sec. 2.3. Sec. 2.4
describes a method for selecting the best subset of detectors
by inferring and exploiting context in the video.

Let I(t) : D → Z+ be the image defined on a domain
D ⊂ R2, and let {I(t)}Ft=1 be F frames of a video. The set
of temporally consistent regions (e.g. supervoxels or other
oversegmentation of the video) {Si}Ni=1 forms a partition
of the video domain DF = ∪Ni=1Si with Si ∩ Sj = ∅
(see Fig. 2). We assume that these regions respect object
boundaries, so that it is possible to associate (temporally-
consistent) object class labels to them. For the i-th region,
we denote such label by ci ∈ {0, . . . , L}.

A bank of object detectors represents a set of “test func-
tions” that, when executed at time t, provide a measurement



y(t) : D → RL
+. We are interested in labels assigned to

regions, so we will write yi(t) ∈ RL
+ to denote responses of

a detector bank supported on subset of Si in t-th frame. Its j-
th component yji (t) ∈ R+ is the “detection score” for object
class j ∈ {1, . . . , L}1 (see Fig. 3) that provides uncertain
evidence for the underlying labels.

2.1. Probability model

To measure the “value” of future measurements y for
the task of inferring labels {ci}Ni=1, we need to quantify
their uncertainty before actually measuring them, which re-
quires a probabilistic detector response model. We assume
object labels to be spatially independent: p(c1, . . . , cN ) =∏N

i=1 p(ci), with a uniform prior p(ci) = 1
L+1 . This as-

sumption is introduced for simplicity, and can be lifted by
using the Markov random field (MRF) model.
Detector response model. When a bank of detectors is
deployed on t-th frame, we obtain evidence for the object
labels of regions supported in that frame. For i-th region, this
evidence is modeled by a likelihood p(y(t)|ci) = p(yi(t)|ci)
(responses whose domain does not intersect the i-th region
are not informative). Moreover, we assume that individual
detector responses are conditionally independent given the
label: p(yi(t)|ci) =

∏L
j=1 p(y

j
i (t)|ci). To learn these distri-

butions, we use VOC 2010 database. Namely, for each detec-
tor, we learn the “true positive” pj,on(y

j)
.
= p
(
yj |c = j

)
and

the “false positive” pj,off(y
j)

.
= p

(
yj |c 6= j

)
distributions,

which we model as exponentials:{
pj,on(y

j) = λj,on exp(−yjλj,on)

pj,off(y
j) = λj,off exp(−yjλj,off)

(1)

As shown in Fig. 3, pj,off decays faster than pj,on – false pos-
itive responses usually have smaller scores than true positive
responses. Using these distributions, for a background class
(ci = 0), we have p(yi(t)|ci = 0) =

∏L
j=1 pj,off(y

j
i (t)),

while for an object class (k ≥ 1), we have p(yi(t)|ci =

k) = pk,on(y
k
i (t))

∏L
j=1
j 6=k

pj,off(y
j
i (t)).

Oracle response model. An error-free oracle can be
viewed as an ideal detector that returns ”1” if an object
of a particular class is present at region i and ”0” otherwise.
In this case, the (binary) measurements yji (t) ∈ {0, 1} are
deterministic functions of the underlying labels, and can be
written using Kronecker deltas as: yji (t) = δ(j − ci), with
the likelihood:

p(yji (t)|ci) =

{
1− ε if yji = 1

ε if yji = 0
. (2)

The regularization by ε (a small number) is needed to avoid
singularities due to violations of modeling assumptions (ei-

1We have L+1 object classes and L detectors, since there is no standard
“background detector”.

ther oracle errors, or failure of labels’ temporal consistency).
Because our goal is automated annotation, we will refer
to detector responses throughout the paper; however, the
methods can be directly applied to oracle annotation as well.
Label field update. Given detector responses in frame t,
the label probability in region i is updated as

p
(
ci
∣∣y(t)) ∝ p(yi(t)∣∣ci)p(ci). (3)

This can be extended to a recursive update: if Yk ={
y(t1), . . . , y(tk)

}
is the history of detector responses taken

at frames {tj}kj=1, then

p
(
ci
∣∣Yk
)
∝ p
(
yi(tk)

∣∣ci)p(ci∣∣Yk−1), (4)

which is standard in recursive Bayesian filtering [14]. When
k = 1 (the first update) it simply restates (3) (Bayes’ rule).

2.2. Information gathering; active frame selection

Having described the update of label probabilities after
measuring detector responses, we return to the question
of selecting the best subset of frames where to run them.
Our goal is to maximize the “Value of Information”, (VoI
[11, 13]), or uncertainty reduction, with respect to the choice
of frames to submit to the oracle, or to test against a battery
of detectors. Thus, given frames {I(t)}Ft=1, regions {Si}Ni=1,
and a budget ofK frames, we minimize uncertainty on labels
{ci}Ni=1 with respect to a selection of K measurements (yet)
to be taken

t∗1, . . . , t
∗
K = argmin

T :|T |≤K
H
(
c1, . . . , cN

∣∣y(t1), . . . , y(tK)
)
.

(5)
We measure uncertainty by (Shannon) entropy [8].

The problem (5) is in general intractable. For a very spe-
cial case of noise-free measurements, a dynamic program-
ming (DP) solution exists [18, Alg.1], as was also shown
in [31]. When measurements are noisy, this solution is not
guaranteed to be optimal. However, due to conditional as-
sumptions made in Sec. 2.1, the problem is submodular, so
a greedy decision policy yields a constant factor approxima-
tion to the optimum [17]. Thus we settle for

s∗ = argmin
s

H
(
c1, . . . , cN

∣∣y(s),Yk
)
, (6)

where Yk = {y(t1), . . . , y(tk)} is the set of already ob-
served detector responses, and s is the frame index for the
next measurement yet to be taken. This policy begins with
T = ∅, at each stage chooses the frame s∗ that provides
the greatest uncertainty reduction, updates the set of chosen
frames T := T ∪ {s∗}, and repeats. Notice that this policy
has two advantages over the DP solution: first, it is online
and thus does not require a pre-defined budget (K). Sec-
ond, it is less susceptible to modeling errors because it uses
observed responses in making the next decision.



Using the properties of conditional entropy we can
write H(c1, . . . , cN |y(s),Yk) = H(c1, . . . , cN |Yk) −
I(y(s); c1, . . . , cN |Yk). Since the first term (uncertainty of
ci’s before the next selection) is independent of y(s), (6)
is equivalent to maximizing the second term, which is the
mutual information (MI) between the next measurement and
the labels: I(y(s); c1, . . . , cN |Yk).

Due to the spatial independence of labels, we have that
I(y(s); c1, . . . , cN |Yk) =

∑N
i=1 I(y(s); ci|Yk). Thus, we

can rewrite (6) as

s∗ = argmax
s

N∑
i=1

I(y(s); ci|Yk) (7)

Moreover, if ci is not present in frame s, then y(s) does
not provide evidence for it, and I(y(s); ci|Yk) = 0. On the
other hand, if ci is present, y(s) is informative – proportion-
ally to uncertainty in ci. Thus, the criterion prefers frames
that have the largest number of uncertain regions. As in
the twenty-question game, we wish to label the data that is
most uncertain given prior measurements. Taking measure-
ments on frames that have little uncertainty provides little
information gain.

There are no closed form expression for mutual informa-
tion for the densities that we consider here. Hence, we need
to either approximate it by Monte Carlo sampling, or to find
efficiently computable proxies. Because we are interested
in a maximization problem, the natural proxy of interest
is the lower bound on I(y(s); ci|Yk). However, it is also
very common to use upper bounds (most often using the
second-moment Gaussian approximation). Upper bounds
are acceptable because we are ultimately interested in the
maximizing point, rather than the maximizing value. Thus,
the tightness of the bound is irrelevant, and it is only required
that the maxima are preserved. We use an upper bound:

I(y(s); ci|Yk) ≤
L,L∑

m=0,n=0

wmwn

L∑
j=1

ηjn
ηjm
− L (8)

where wm
.
= p(ci = m|Yk), and ηjm = λj,on if j = m and

ηjm = λj,off otherwise. We prove this result in the technical
report [15] and empirically show that it preserves the local
maxima of the Monte Carlo approximation.

As an alternative to (7) we can try to select frames with
high classification error. Let E(s, i) = alive(Si, s)

(
1 −

max` p(ci = `|Yk)
)

where alive(Si, s) = 1 if region Si is
supported on frame s and is 0 else, and the second term is
simply the classification error. We then use a criterion

s∗ = argmax
s

N∑
i=1

E(s, i). (9)

Note that unlike MI, this criterion does not make predic-
tions about the next measurement y(s), and is therefore very

Figure 4. Candidate regions used for selecting the most informative
location (10)

simple to compute. Yet, as we show in Sec. 3, it performs
competitively in practice.

2.3. Active location selection

It is straightforward to augment the frame selection cri-
terion (7) with the selection of the most informative region
R (R ⊆ D) within the image (to either run detectors on, or
to query an oracle). In this case, at each stage we maximize∑N

i=1 1{Si⊂R}I(ci; y(s)|Yk) over a pair (s,R), where the
indicator 1{Si⊂R} discards all the labels ci that are outside
R (the region that is submitted to detectors). However, be-
cause the mutual information is nonnegative, the best region
chosen by this strategy will always contain the entire image
(R∗ = D), and a proper subset of the image domain will
never be chosen. Thus, it is necessary to associate a cost to
R. We choose a cost that is proportional to the region size,
and trade off the two as:

s∗, R∗ = argmax
s,R

N∑
i=1

1{Si⊂R}I(ci; y(s)|Y
k)−γ|R| (10)

with γ – a weighing term. A more sophisticated approach
could estimate and use the computational effort in running
a detector bank as a function of |R| (which needs not be
linear). In practice, we maximize the criterion over a finite,
diverse set of candidate regions (shown in Fig. 4), which
presumably cover objects in the image.

2.4. Context and active detector selection

In situations where L (the number of available detectors)
is large, but the number of classes present in the scene is
small, it is not computationally efficient to run the entire
battery of detectors. To address this issue, we extend the
framework to include not just a selection of subsets of frames
and regions to be labeled, but also a selection of the subset of
detectors to be deployed, by exploiting context in the video.

Probability model. To describe the context of the video se-
quence, we introduce a random variable o = (o1, . . . , oL) ∈
{0, 1}L that is global within a video shot, where oj repre-
sents presence or absence of k-th object category in the shot.
Detector responses provide soft evidence as to whether ob-
ject categories are present in the shot. Our belief in objects
being present is summarized by the distribution p(o|Yk) –
the posterior of the context variable, given evidence from the
detectors.



To infer this distribution, we must first specify the likeli-
hood p(y|o). We assume that the distribution can be fac-
torized as p(y|o) =

∏L
j=1 p(y

j |oj), where each term is
a model for a detector response given that an object j is
present (or absent). To be invariant to response location, we
use the maximum detector response score within an image
zj(t) = maxi y

j
i (t) as the observation associated with j-th

category presence, and specify the model as:{
p(yj(t)|oj = 0) = pj,off

(
zj(t)

)
p(yj(t)|oj = 1) = πpj,on

(
zj(t)

)
+ (1− π)pj,off

(
zj(t)

)
.

(11)

where pj,off , pj,on are the distributions used in (1). The
density p(yj(t)|oj = 1) is a mixture, and can account for the
possibility of an object not being present in frame t despite
being present in the video shot. The mixture parameter π is
related to the fraction of time the object is expected to be
visible in the shot.

Detector selection. The marginal distributions p(oj |Yk)
describe the probability that j-th class is present in the video,
given the observation history. If computation is limited,
when p(oj |Yk) is small, we should avoid running j-th de-
tector. This can be phrased in terms of a threshold α on
marginal probabilities, yielding a two-stage procedure:{

J = {j : p(oj |Yk) > α}
s∗ = argmaxs

∑N
i=1 I({yj(s)}j∈J ; ci|Yk)

(12)

where {yj(s)}j∈J is a set of responses for detectors indexed
by J . This procedure is performed at each stage of our
sequential decision problem: once the set J of object cate-
gories is chosen, we select the most informative frame s∗

to run these detectors on, acquire new evidence, update the
posteriors, and repeat.

Of course, the frame selection step in the detector se-
lection procedure (12) can be extended to allow for region
selection. Due to space constraints, we do not explicitly
write out the equation; however, it is no different from the
extension of the original frame selection criterion (7) to
frame and region selection (10).

3. Experiments
To evaluate our approach, we use public benchmark

datasets including human-assisted motion[20], MOSEG[4],
Visor[29], and BVSD[25], as well several videos from Flickr
(Fig. 5). We are interested in classification error, so we
manually created pixelwise ground truth by labeling these
sequences.

Implementation Details. We use [5] to compute video-
superpixels (temporally consistent regions), with 500-700
superpixels in an image. Our detectors contain models for 20

Figure 5. Sample frames from a subset of video sequences used
for testing our algorithm, from BVSD ([25],top) and Flickr (ours,
bottom).

classes, pre-trained on VOC 2010 [9], based on DPM [10],
and refined with GrabCut [23], as shown in Fig. 3. We offset
detector scores to make them nonnegative and convert them
into likelihoods for use in our model (1), with likelihood
distribution learned from the VOC 2010. To approximate
p(o|Yk), we use a fully connected MRF, with node and edge
potentials learned using the UGM toolbox [24]. The co-
occurrence statistics are derived from VOC. Throughout all
experiments we used α = 0.005 (detector selection thresh-
old (12)), π = 0.5 (mixture weight in (11)). As written in (7)
and (10), the selection criteria weigh terms corresponding to
different regions equally. In practice we weighted the terms
according to region size; this choice improved performance.

Videos in our database vary in duration (from 19 to 300
frames), so we report classification accuracy as a function
of percentage of sequence labeled; this can be either a per-
centage of frames submitted to detectors, or a percentage of
pixels in a video submitted to detectors.

Frame selection. Our first experiment compares our
information-seeking approach (with criteria given by (8) and
(9)) with the naive methods (uniform and random selection).
We also compare with the DP approach of [31]: we use their
selection criterion, but propagate labels using our model, to
make the comparison with the other methods fair. As can be
seen in Table 1(top), we consistenly outperform other meth-
ods when the error-free “oracle” is used. The improvement
over [31] is due to our objective being closely related to the
labeling error and birth/death of temporal regions, whereas
their selection involves a combination of optical flow, image
intensities, and backward-forward optical flow consistency
(a proxy for occlusions).

When the “oracle” is replaced by a battery of detectors,
the DP approach is not optimal. Moreover, due to erroneous
detections (false positives or misses), any of the methods
is susceptible to failure, even if they choose “informative”
frames. We observe this in Table 1 (bottom): although our
methods perform best on average, at 10% labeling, “uniform”
attains a lower classification error. When the detector perfor-
mance is poor, any sampling scheme yields equally bad or
worse performance.

Location selection. Our second experiment compares
our region and frame selection scheme against the random
selection. The approach in [31] cannot be easily extended
to region selection, so we do not compare against it. Our
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Figure 6. Left: frame selection criterion for “Ferrari” sequence
(marked with “*” in Fig. 5), for the first few selection stages. The
selected frames are not uniformly distributed. Right: classification
error and normalized residual entropy (

∑N
i=1 H(ci|Yk)) as a func-

tion of number of frames selected for labeling. Note that after 20%
sequence is labeled, error reaches an asymptote.

% E (our) MI (our) [31] uniform random
1 4.666 4.666 5.112 6.079 5.304 ± 0.29
5 2.696 2.700 3.130 3.270 3.556 ± 0.19
10 2.264 2.274 2.434 2.478 2.912 ± 0.14
15 2.088 2.092 2.110 2.194 2.586 ± 0.10
20 2.005 2.007 2.023 2.072 2.455 ± 0.06
30 1.935 1.930 1.961 1.979 2.358 ± 0.07
% E (our) MI (our) [31] uniform random
1 11.224 11.277 12.623 11.948 12.624 ± 1.0
5 9.069 9.129 10.446 9.363 9.356 ± 0.43
10 8.097 8.393 8.455 7.764 8.639 ± 0.44
15 7.862 7.674 8.389 7.844 8.682 ± 0.37
20 7.611 7.582 8.041 7.589 8.499 ± 0.26
30 7.449 7.377 8.105 7.890 8.221 ± 0.25

Table 1. Average classification error of different frame selection
strategies with oracle (top) and detector (bottom) labeling; 1%-30%
frames.

candidate regions vary in size and location, and uniformly
selecting representatives out of this set is rather problematic;
therefore we do not test against this approach.

We compute candidate regions using [27], which typi-
cally consist of bounding boxes that entirely contain objects
of interest (see Fig. 4). Typically, per image, we have 10-20
regions that occupy 10%-80% of the image. Results with or-
acle and detector labeling are shown in Table 2, as a function
of percent pixels used to obtain a labeling (proportional to
the sum of selected regions’ areas). Perhaps unsurprisingly,
the “random” selection performs poorly.

Detector selection. This experiment demonstrates the
possibility of reducing computation effort without suffering
a performance penalty, by reducing the number of detectors
deployed at each stage. In these experiments we perform
frame selection using the MI criterion (8) (although E can
be used as well). We do not perform region selection. The
typical behavior of the detector selection, as shown in Fig.
7, is to run fewer detectors as more and more frames are
selected. Often, in the limit, only the detectors for the classes
that are present are fired. Thus, the cost of measurement
decreases (and computational savings increase) with number
of labeled frames.

One may wonder how much is gained from using co-

% E(our) MI(our) random
1 6.503 6.189 9.177 ± 0.502
5 3.434 3.125 4.662 ± 0.374

10 2.715 2.456 3.273 ± 0.155
20 2.392 2.187 2.600 ± 0.067
30 2.289 2.144 2.329 ± 0.061
% E (our) MI (our) random
1 16.878 16.861 17.113 ± 1.225
5 15.266 15.923 16.061 ± 0.458

10 14.588 13.830 15.192 ± 0.716
20 12.987 12.372 13.935 ± 0.304
30 11.970 11.819 12.963 ± 0.182

Table 2. Average classification percent error of different re-
gion+frame selection strategies with oracle (top) and detector (bot-
tom) labeling; using 1%-30% pixels.
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Figure 7. Detector selection on “Planet Earth” sequence (marked
with “#” in Fig. 5): For each frame selected for labeling (abscissa),
deployed detectors are shown as gray boxes. Colored circles repre-
sent p(oj |Yk) – the belief of a particular class being present, with
the area proportional to the value of the posterior, and ground truth
is indicated on the left by a red mark (bird). The “dog” class is fired
the longest because it co-occurs with “bird” in the training set.
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Figure 8. Left: As more frames get labeled, fewer detectors are
fired. We show the average number of detectors fired, over all
sequences in our datasets, for “MRF” and “independent” approx-
imations. MRF approximation of the joint distribution makes it
possible to quickly stop firing contextually irrelevant detectors.
Right: classification error as function of labeled frames. The
slightly larger error in “MRF” is the price paid for reduced number
of used detectors.

occurrence information. To investigate this, we performed
a set of experiments under the independence assumption
p(o|Yk) =

∏L
j=1 p(oj |Yk). The average computation sav-

ings and the average classification errors are shown in Fig. 8.
Using an MRF, we get a substantial decrease in the number
of detectors that are fired at each stage. This is because
co-occurrence information allows us to quickly suppress
probabilities for contextually atypical situations.

Baseline and “paragon” annotation. We first illustrate
the gain from using temporal information. We compare our



quantity method cost
y(t) [10]+[23] 60s+ 180s

y(t)1R [10]+[23] |R|
|D| (60s+ 180s)

{yj(t)}j∈J [10]+[23] |J|
L (60s+ 180s)

{Si}Ni=1 [3]+[5] F (10s+ 5s)
candidate regions [27] F (0.5s)
frame selection (7) + (4) 0.02s

frame+region selection (10) + (4) 0.045s
detector selection (12) 5s

Table 3. A summary of quantities that are computed in our frame-
work, associated procedures, and costs, measured in terms of time.

approach with the one that does not use temporal consistent
regions. Specifically, our “probabilistic baseline” (PB) is
the maximum likelihood estimation using the model (1),
applied to the detected and subsequently segmented regions.
It considers detector responses from all frames, but treats
each frame independently. Our framework outperforms this
approach; in fact, we perform better after labeling only a
small fraction of the sequence. Fig. 9 shows the percentage
of frames needed to reach the performance of this baseline:
we perform better after labeling only 10% of the sequence.
Fig. 10 shows several examples of annotation using PB and
our approach: temporal regularities allow us to suppress a
large number of false positive detections.

We also compare against the “paragon” approach, which
uses all frames, all detectors, and temporal consistency. But
by running detectors on only a fraction of the frames, we
do not perform significantly worse. As shown in Fig. 11,
classification error has a “diminishing returns” property: as
more frames are labeled, the improvement is decreasing.
This suggests that using all frames is unnecessary, and if
one has computational constraints, “early stopping” can be
beneficial.

Computation savings. To produce a PB annotation, one
runs detectors and segmentation on every frame. DPM
[10] takes 60s/frame (for 20 classes) and Grabcut[23] takes
180s/frame (we segment every bounding box using an unop-
timized MATLAB implementation); the sum of the two is
the “cost” of observing y(t). To leverage temporal consis-
tency, we use [5] (5s/frame) and optical flow [3] (10s/frame).
The costs of our frame selection framework are negligible:
computation of frame selection utility (7) (or (9)) takes 15
ms/stage on all frames, inference (4) takes 5 ms/stage, both
measured on the longest sequence. Region selection requires
the candidate regions [27], which cost 0.5s/frame, but com-
putation of location selection utility (10) remains negligible
(40 ms/stage). Our detector selection framework requires
estimating “presence” marginals p(oj |Yk) at a cost of 5s per
stage of the algorithm. These “costs” are in Table 3.

We can estimate the PB cost as F (240s), where F is
the number of frames in the sequence. The “paragon” re-
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Figure 9. Percentage and number of frames to be labeled by detec-
tors to match PB performance. On average across all sequences
we only need to label 4.012% of the frames. Baseline obtains
12.669% average error using detectors on all frames.

Figure 10. Top: Sample frames with our annotation using 20% of
the sequence. Bottom: PB labeling on the same frames. Different
colors correspond to different object classes. Temporal regularities
allow us to remove many false positive detections present in PB.
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Figure 11. Blue: average error over entire dataset as a function
of labeled frames. As more frames are labeled, the improvement
in error decreases (on average), suggesting that if computational
budget is limited, it is unnecessary to use all frames. Black dashed
line is PB (which uses all frames independently).

quires temporally consistent regions {Si}Ni=1, and thus costs
F (270s). The frame selection framework requires negligi-
ble computation per stage and reduces computation cost to
F (15s) + K(240s), where K is the budget of frames to
be labeled (according to Fig. 11, K ≈ 0.2F is sufficient).
The region selection framework decreases the observation
cost linearly in region size; an admittedly coarse assumption.
The cost of a measurement supported on region R, denoted
y(t)1R, is then reduced from 240s to |R|/|D|(240s). The
detector selection framework decreases the observation cost
to |J |/L(240s), but incurs an additional 5s per stage (due
to context inference). As a specific example, for a “Ferrari”
sequence with F = 150, PB costs 600 min. The “paragon”
costs 638 min. Our framework with frame selection and 20%
labeling needs only ∼158 min. Frame and region selection
costs the same amount. Using frame and detector selection
framework, we use 54% detectors in the first 20% frames,
reducing the cost to just ∼85 min.



4. Discussion
We have presented an uncertainty-based active selection

approach to determine which locations of which frames in
a video shot to run which detector on to arrive at a label-
ing of each pixel at the smallest computational cost that
ensures a bound on residual uncertainty (

∑
iH(ci|Yk)). We

proposed two information-seeking criteria, MI and E , and
demonstrated that they outperm other selection schemes.

Unlike existing label propagation schemes that assume an
oracle, we can handle uncertainty in the measurements, by
leveraging an explicit probabilistic detector response model,
a prior on classes learned from the PASCAL VOC dataset,
and a hidden context variable global to each video shot. Our
method is causal, respects the spatio-temporal regularities in
the video, and falls within the class of submodular optimiza-
tion problems that enjoy desirable bounds in performance of
greedy inference relative to the (intractable) optimum.

We compare the performance of our scheme on various
baselines, including “paragons” running all detectors at all
locations in all frames. In the presence of reliable detectors
(an oracle, in the limit), a manyfold reduction of computa-
tional cost is possible with negligible performance drop.
Acknowledgments. Supported on AFRL FA8650-11-1-
7156:P00004, ARO MURI W911NF-11-1-0391, and ONR
N00014-13-1-0563.
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