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Abstract
Local video features provide state-of-the-art performance
for action recognition. While the accuracy of action recog-
nition has been continuously improved over the recent
years, the low speed of feature extraction and subsequent
recognition prevents current methods from scaling up to
real-size problems. We address this issue and first develop
highly efficient video features using motion information in
video compression. We next explore feature encoding by
Fisher vectors and demonstrate accurate action recogni-
tion using fast linear classifiers. Our method improves the
speed of video feature extraction, feature encoding and ac-
tion classification by two orders of magnitude at the cost of
minor reduction in recognition accuracy. We validate our
approach and compare it to the state of the art on four re-
cent action recognition datasets.

1. Introduction
The amount of video has increased dramatically over re-

cent years and continues to grow. Striking indications of
this development include 6000 years of video uploaded to
YouTube yearly1 and millions of surveillance cameras in-
stalled only in the UK. According to Cisco2, video is ex-
pected to dominate Internet traffic by 91% in 2014.

The access to information in such gigantic quantities of
video data requires accurate and efficient methods for au-
tomatic video analysis. Much work has been recently de-
voted to automatic video understanding and recognition of
human actions in particular [16, 8, 22, 31, 32, 35]. While
the recognition accuracy has been continuously improved,
current methods remain limited to relatively small datasets
due to the low speed of video processing, often ranging in
the order of 1-2 frames per second. This stands in a sharp
contrast with the needs of large-scale video indexing and re-
trieval in modern video archives. Fast video recognition is
also required by client applications, e.g., for automatic on-
the-fly video moderation and video editing. Efficient video
representations enabling fast event recognition will also fos-
ter solutions to new problems such as automatic clustering

1http://youtube.com/t/press_statistics
2http://newsroom.cisco.com/dlls/2010/prod_060210.html

of very large video collections.
The main goal of this work is efficient action recogni-

tion. We follow the common bag-of-features action recog-
nition pipeline [16, 32, 35] and explore the speed and mem-
ory trade-offs of its main steps, namely, feature extraction,
feature encoding and classification. Given their success for
action recognition, we represent video using motion-based
HOF [16] and MBH [35] local descriptors. Motion estima-
tion at dense grid, however, is a time-consuming process
that limits the speed of feature extraction. In this work we
avoid motion estimation and design fast descriptors using
motion information from video compression. In contrast
to the dense optical flow (OF), video compression provides
sparse motion vectors only (we call it MPEG flow). As one
contribution of this paper, we show that the use of sparse
MPEG flow instead of the dense OF improves the speed of
feature extraction by two orders of magnitude and implies
only minor reduction in classification performance.

Feature encoding typically involves assignment of local
descriptors to one or several nearest elements in a visual vo-
cabulary. Given the large number of video descriptors, the
speed of this step is a major bottleneck. We evaluate using
kd-forest approximate nearest neighbor search [25] and an-
alyze the associated trade-off between the speed and recog-
nition accuracy. We next investigate Fisher vector (FV) en-
coding [23] and show improved action recognition while
using fast linear classifiers. We evaluate the speed and ac-
curacy of our approach on Hollywood-2 [19], UCF50 [27],
HMDB51 [14] and UT-Interaction [30] benchmarks. The
implementation of out method is available at [7].

The rest of the paper is organized as follows. After re-
viewing related work in Section 2 we address efficient ex-
traction of local video features in Section 3. Section 4 de-
scribes our fast video encoding. Section 5 presents experi-
mental results.

2. Related work
Recent methods show significant progress towards ac-

tion recognition in realistic and challenging videos from
YouTube, movies and TV [16, 17, 8, 22, 29, 31, 35].
Among other approaches, bag-of-features (BOF) meth-
ods [5, 15, 32] have gained popularity due to their simplic-
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ity, wide range of application and high recognition accu-
racy. BOF methods represent actions by collections of lo-
cal space-time descriptors aggregated over the video. Sev-
eral alternative local descriptors have been proposed in-
cluding histograms of flow orientations (HOF) [16], his-
tograms of 3D gradients (HOG3D) [12, 33], motion bound-
ary histograms (MBH) [4, 35], shapes of point trajecto-
ries [20, 26, 35], local trinary patterns [13, 37] and others.
Mid-level features such as action attributes [8] and action
bank [31] have also been explored. Recent evaluation [35]
demonstrates that MBH, HOF and HOG descriptors sam-
pled along dense point trajectories outperform other meth-
ods on a number of challenging datasets [35]. More recent
extensions demonstrate improvements using motion stabi-
lization and person trajectories [9, 36]. We follow [35] and
design a new motion-based local descriptor that drastically
improves the speed of previous methods at the cost of minor
decrease in the recognition accuracy.

Efficient action recognition has been addressed by sev-
eral methods. The work [1, 38, 39] is particularly related to
ours as it makes use of motion information from video com-
pression for fast action recognition. This previous work,
however, designs action-specific descriptors and, hence, its
speed scales linearly with the number of action classes. In
contrast, we design a generic action representation and eval-
uate its accuracy and efficiency on many action classes in
challenging settings. Yeffet and Wolf [37] extend the fast
LBP image descriptor to a Local Trinary Pattern (LTP) de-
scriptor in video and evaluate its accuracy on action recog-
nition. While LTP was claimed to run in real time, no quan-
titative evaluation of its speed was reported in [37]. Dif-
ferently to LTP, we use flow-based MBH and HOF descrip-
tors which have recently shown excellent results for action
recognition [35]. Yu et al. [40] have proposed another pixel-
based local descriptor for efficient action recognition. We
quantitatively compare our method with [40] and show im-
provements in both the speed and accuracy. Closely related
to our work, [34] has recently improved the speed of lo-
cal feature extraction in video by random feature sampling.
We experimentally compare our method to [34] and show
one order of magnitude improvement in speed while also
demontrating improved accuracy.

Alternative schemes for feature encoding have been re-
cently evaluated for image classification in [3]. Fisher vec-
tor (FV) encoding [24] has been shown to provide best ac-
curacy using efficient linear kernels for classification. FV
encoding has been successfully applied for event detec-
tion [28] and we are confirming its improved performance
and efficiency compared to the histogram encoding typi-
cally used in action recognition. We also investigate effi-
cient computation of FV using approximate nearest neigh-
bor methods for descriptor assignment. FV encoding en-
ables high recognition accuracy using fast linear classifiers

which is a big advantage for large-scale video recognition.

Contributions. The contributions of this work are the fol-
lowing. First, we design and thoroughly evaluate an ef-
ficient motion descriptor based on the video compression
which is 100x faster to compute at a minor degradation
of recognition performance compared to the state-of-the-
art [35]. Second, to the best of our knowledge, we are
the first to evaluate both efficiency and classification perfor-
mance of FV and VLAD for action recognition and find it
improving the recognition rates without loss in speed com-
pared to the histogram encoding.

3. Efficient video features
Dense Trajectory (DT) features together with MBH and

HOF descriptors achieve state-of-the-art accuracy in action
recognition [35] at the cost of high computational require-
ments. The analysis in [35] indicates that most of the run-
ning time (61%) is spent on the computation of optical flow,
while the second most expensive operation (36%) is aggre-
gation of dense flow measurements into histogram descrip-
tors (discarding the ”save features to disk” part). In this pa-
per we alleviate the expense of both of these steps by (i) re-
using motion estimates available from video compression
and (ii) constructing descriptors from very sparse motion
measurements. In this section we first analyze the quality
of motion vectors available in compressed video represen-
tations and then describe our efficient video descriptor.

3.1. Motion fields from video compression

Consequent video frames are highly redundant with most
of the changes between frames typically originating from
the object or camera motion. As the storage of sparse mo-
tion vectors is much more efficient compared the storage
of pixel values, video compression schemes heavily rely on
motion estimation and encode coarse motion information
in compressed video representations such as MPEG. This
motion field can be accessed at the time of video decom-
pression without additional cost3.

Motion estimation by video encoders is designed to opti-
mize video compression size and may not necessarily corre-
spond to the true motion in the video. To verify the quality
of the motion field obtained from video compression (here
called MPEG flow), we compare it with the ground truth
flow as well as with the output of optical flow methods by
Lucas and Kanade [18] and Farnebäck [6]. We choose these
two methods since they are deployed in existing implemen-
tations of local motion descriptors [16] and [35] which we
use in this work for comparison. Figure 1 illustrates the
ground truth flow and automatic flow estimates obtained
for a synthetic video sequence from the recent MPI Sintel
dataset [2]. For this experiment we quantize flow fields into

3Full video decompression may not be required.



Sample frame from MPI Sintel dataset [2] Quantized ground truth flow Quantized MPEG flow, err=0.283

Quant. LK flow, err=0.334 Quant. Farnebäck flow, err=0.286

Figure 1. Comparison of optical flow estimation for a synthetic video sequence “bandage 1” from MPI Sintel dataset [2]. On the right we
compare the ground truth flow with the flow obtained from DivX video compression (MPEG flow) as well as optical flow estimated with
Lukas-Kanade [18] and Farnebäck [6] methods. The direction of flow vectors is quantized into eight equally distributed orientations and is
color-coded according to the color-wheel on the bottom-right. White color represents no motion. The error of the flow is obtained by the
ratio of incorrectly quantized flow values when compared to the ground truth and evaluated over the whole video. While the resolution of
MPEG flow is lower compared to other methods, the accuracy of all three methods is comparable both quantitatively and qualitatively.

Original movie frame Quantized MPEG flow Quantized LK flow Quantized Farnebäck flow

Figure 2. Qualitative comparison of optical flow in real movie frames using flow estimation methods in Figure 1. All methods produce
noisy flow estimates. Quantized values of MPEG flow are consistent with the quantized output of the two optical flow algorithms. We
compare quantized flow values since these are used in descriptor computation by our and other methods.

eight orientation values and one “no-motion” bin since this
representation of flow is used in this paper for the construc-
tion of our fast video descriptor. The details and measure-
ment results are in Figure 1.

We have evaluated quantitative performance of MPEG
flow in the standard Clean setup of the MPI Sintel bench-
mark. Despite the fact that the motion field obtained
from MPEG flow has low resolution, the obtained results
(EPE all=11.148 and EPE matched=6.706) outperform sev-

eral methods reported on the MPI Sintel web-page http:

//sintel.is.tue.mpg.de/results. Qualitatively, the
level of noise in MPEG flow and optical flow estimates is
comparable both for synthetic and real video examples as
illustrated in Figure 2. This indicates that the substitute of
the slow optical flow used in video descriptors [16, 35] by
the “virtually free” MPEG flow may not have large implica-
tions on the performance of subsequent recognition steps.

http://sintel.is.tue.mpg.de/results
http://sintel.is.tue.mpg.de/results
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Figure 3. MPEG flow (MF) video descriptor defined at positions of
MPEG flow vectors. Each 2×2×3 descriptor cell is accumulated
from quantized values of original and interpolated flow vectors
indicated by the red and yellow circles respectively.

3.2. MPEG flow video descriptor

We follow the design of previously proposed local space-
time descriptors [16, 35] and define our descriptor by his-
tograms of MPEG flow vectors accumulated in a video
patch. Each patch is divided into cells as illustrated in Fig-
ure 3 and the normalized histograms from patch cells are
concatenated into a descriptor vector. Constrained by the
coarse 16 × 16 pixel spatial resolution of MPEG flow, we
align descriptor grid cells with positions of motion vectors
(red points in Figure 3). We also use bilinear interpolation
of flow and increase the spatial resolution of the flow field
by the factor of two (yellow points in Figure 3)4.

Following [35], we compute HOF descriptors as his-
tograms of MPEG flow discretized into eight orientation
bins and a no-motion bin. For MBHx and MBHy de-
scriptors the spatial gradients of the vx and vy components
of the flow are similarly discretized into nine orientation
bins. The final descriptor is obtained by concatenating his-
tograms from each cell of the 2× 2× 3 descriptor grid fol-
lowed by l2-normalization of every temporal slice. HOG
descriptors are computed at the same sparse set of points.

The above scheme defines a 32× 32× 15 pixel descrip-
tor which we compute at every location of the video defined
by the spatial stride of 16 pixels and temporal stride of 5
frames. To sample multiple spatial scales, we similarly de-
fine a 48× 48× 15 pixel descriptor sampled with 24 pixels
spatial stride. For a video of 640 × 480 pixels spatial reso-
lution we obtain around 300 descriptors per frame. This is
comparable to ≈ 350 dense trajectory features produced by
the method in [35] for the same video resolution.

Main computational advantages of our descriptor orig-
inate from the elimination of the optical flow computa-
tion and from the coarse sampling of flow vectors. As we
demonstrate experimentally in Section 5, these modifica-
tions imply drastic improvements of computational require-
ments at the cost of minor reduction in the classification
performance.

4We found interpolation of the flow to be important in our experiments

4. Descriptor encoding
The purpose of descriptor encoding is to transform col-

lections of local image or video descriptors {xi . . . xN} into
fixed-size vector representations. In this paper we investi-
gate three different descriptor encoding schemes and pro-
pose their computational improvements as described below.

4.1. Histogram encoding

Histogram encoding is a common method for represent-
ing video by local descriptors. First, for each descriptor
type (HOG, HOF, MBHx, MBHy) a vocabulary of K vi-
sual words is constructed using K-means. Then each de-
scriptor is assigned to one of the visual words and the vi-
sual word indices are accumulated in a histogram. We
follow [16] and use “space-time pyramid” which allows
to capture the rough spatial and temporal layout of action
elements. We split videos into six spatio-temporal grids
(x × y × t: 1x1x1, 2x2x1, 1x3x1, 1x1x2, 2x2x2, 1x3x2,
a total of 24 cells). In total we have C = 96 channels =
4 descriptor types × 24 cells, that is one channel per a pair
of descriptor type and grid cell. Each cell accumulates its
own histogram which is then l1-normalized, thus the total
histogram representation is of size C ·K. We also employ
space-time pyramids for the Fisher vector and VLAD en-
coding methods described in Sections 4.2 and 4.3 respec-
tively.

For visual word assignment we experimented with using
brute-force nearest neighbors and with using the kd-trees
from the FLANN library [21]. The motivation for using
kd-trees is the significant improvement in processing speed
over the brute-force algorithm (see Subsection 5.2). The
main parameters for the kd-trees method are the number of
trees and the number of tests made during the descent over
trees.

4.2. Fisher Vector

Fisher Vector (FV) has been reported to consistently im-
prove the performance in image classification and image re-
trieval tasks [11]. Another advantage of FV encoding over
histogram encoding is it’s good performance using fast lin-
ear classifiers. FV encoding assumes that descriptors are
generated by a GMM model with diagonal covariance ma-
trices. Similarly to histogram encoding, the GMM model
of K Gaussians is first learned on the training set. Once
the model (µk,σk) is learned, the FV representation of the
descriptors {x1 . . . xN} is given by the two parts [24]:

uk =
1

N
√
πk

N∑
i=1

qki

(
xi − µk

σk

)

vk =
1

N
√
2πk

N∑
i=1

qki

[(
xi − µk

σk

)2

− 1

]
(1)



Figure 4. Sample frames from action recognition datasets. From top to bottom: Hollywood2 [19], UCF50 [27], HMDB51 [14], UT-
Interaction [30].

where qki is the Gaussian soft assignment of the descriptor
xi to the k-th Gaussian, πk are the mixture weights, division
and square are term-by-term operations. The u part captures
the first-order differences, the v part captures the second-
order differences. The final representation of size C · 2DK
is given by concatenation of the two parts. As suggested in
[24], we then take signed square root and l2-normalize the
result. We apply the same normalization scheme to VLAD,
described next.

4.3. VLAD

The VLAD encoding is the simplified version of Fisher
vector which considers only the first-order differences and
assigns descriptors to a single mixture component. It was
also shown to outperform the histogram encoding in [11].
In our implementation we keep the soft-assignment factor
qki. The VLAD representation of size C ·DK is then given
by concatenating:

uk =
∑

i:NN(xi)=µk

qki (xi − µk)

5. Experimental evaluation
In this section we evaluate the proposed descriptor

and encoding schemes on Hollywood2 [19], UCF50 [27],
HMDB51 [14] and UT-Interaction [30] action recognition
benchmarks (see Figure 4) and compare the speed and ac-
curacy of action recognition to recent methods [34, 35, 40].
We follow standard evaluation setups and report mean aver-
age precision (mAP) for Hollywood2 and mean accuracy
(acc) for UCF50, HMDB51 and UT-Interaction datasets.
The processing speed is reported in frames-per-second
(fps), run at a single-core Intel Xeon E5345 (2.33 GHz).

To recognize actions we use SVM with multi-channel
exponential χ2-kernel [41] together with histogram-based
action representations. For Fisher vector and VLAD encod-
ings we use linear SVMs.

5.1. Descriptor evaluation

Table 1 (Left) presents results of action recognition us-
ing the proposed MPEG flow (MF) features compared to
Dense Trajectories (DT) baseline [35] using histogram en-
coding. For the full combination of four descriptors the per-
formance of DT (∼60.0%) is approximately four per-cent
higher compared to MF features (∼56.2%). When compar-
ing the speed of feature extraction for both methods mea-
sured on videos with 640 × 480 pixels spatial resolution,
our method achieves 168fps which is about 7 times faster
than real-time and 140 times faster compared to [35]. The
speed measurements in this experiment include the time of
feature computation as well as the time for video reading
and decompression. Our method spends most of the time on
the aggregation of histogram-based video descriptors using
intergral space-time histograms. Compared to [35] we save
∼66% by avoiding OF computation, ∼4% by sparser de-
scriptor sampling and ∼29% by the aggregation of sparse
motion vectors. The run-time of our descriptor is, hence,
<1% of descriptor computation time in [35]. Reducing
the number of descriptor types increases the speed of our
method to 347fps (14 times real time) at the cost of <4%
drop in mAP.

DT features [35] are computed along point tracks which
is different to our features computed inside the fixed-size
video patches. To identify the source of ∼4% mAP drop
of our method compared to [35], we simplify DT features
by first approximating free-shape trajectories in DT features
by constant velocity trajectories (DT V*). In the second
simplification we remove trajectory information from DT
descriptor and compute DT features in fixed axes-parallel
cuboids (DT V0). The results of these modifications in the
first two lines of Table 2 indicate 1% drop due to DT V* and
1% further drop in mAP due to DT V0. Explicitly includ-
ing the shape of trajectories into the descriptor (last line of
Table 2) does not improve performance significantly. From



Classification Speed
(mAP) (fps)

MF (our) DT [35] MF (our) DT [35]
HOF 47.2% 52.9% 346.8
MBHx 49.0% 52.0% 330.3
MBHy 50.4% 56.1% 330.3
HOF+MBHx+MBHy 53.9% 58.9% 218.7
HOF+MBHx+MBHy+HOG 56.2% 60.0% 168.4 1.2

xvid x264
5000 kbit/s 58.9% 57.5%
1000 kbit/s 58.2% 57.4%
500 kbit/s 57.7% 57.1%
250 kbit/s 57.7% 57.0%

Table 1. Left: Evaluation of action classification accuracy and the speed of feature computation for Hollywood2 action recognition bench-
mark. The speed of feature computation is reported for video of spatial resolution 640×480 pixels. Right: Evaluation of action recognition
accuracy in Hollywood2 under the variation of video compression in terms of video codecs and compression bit-rates. The results are re-
ported for MF descriptors in combination with FV encoding.

mAP
HOF+MBHx+MBHy+HOG (V0) 58.0%
HOF+MBHx+MBHy+HOG (V*) 58.9%
HOF+MBHx+MBHy+HOG [35] 60.0%
HOF+MBHX+MBHY+HOG+TRAJ [35] 60.3%

Table 2. Action classification accuracy on Hollywood2 dataset for
different versions of the dense trajectory features [35] in combina-
tion with histogram encoding

this experiment we conclude that the shape of trajectories
does not contribute to other descriptors significantly. We
believe that the difference in accuracy of DT features and
our method should be in the denser and more accurate flow
estimation deployed by DT. Per-class action classification
comparison of MF and DT features is illustrated in Figure 5.

5.2. Descriptor encoding evaluation

While our method achieves high speed descriptor com-
putation, the feature quantization becomes a bottle-neck
with nearest-neighbor (NN) quantization performing only at
the rate of 10fps when using efficient l2-distance implemen-
tation. To improve quantization speed, we experiment with
tree-based approximate nearest neighbor (ANN) quantiza-
tion schemes implemented in FLANN [21]. The trade-off
between computational time and the accuracy of quantiza-
tion measured on the final recognition task is illustrated in
Figure 6. Notably, the quantization using four trees and 32
tests in ANN search does not degrade recognition perfor-
mance and achieves factor ≈ 5x speed-up compared to NN.
Further increase of the speed implies approximately linear
degradation of classification accuracy.

We next investigated Fisher Vector (FV) [23] and VLAD
encodings [10] described in Section 4. The VLAD encoding
has already been applied to action reconition in [9], but here
we also evaluate the full Fisher vector. We train a GMM
model with K = 256 Gaussians [11]. Results in Figure 6
and Table 4 indicate improvements in both the speed and

accuracy when using FV and VLAD encodings compared
to the histogram encoding. As for the histogram encoding,
FLANN provides considerable speed-up for FV and VLAD
encodings.

Table 5 presents action recognition results for the UCF50
dataset. Similar to the Hollywood2 dataset, the accuracy
of our methods is only a few percent below the state-of-
the-art results in [35] with FV and VLAD encodings pro-
viding improvements over the histogram encoding both in
speed and accuracy. The overall speed improves the speed
of [35] by two orders of magnitude. Table 6 presents results
for the UT-Interaction dataset and compares our method
with the efficient action recognition method [40]. Our
method demonstrates better classification accuracy com-
pared to [40] and improves the speed of [40] by one order
of magnitude.

In Table 7 we compare our results on the HMDB dataset
to [34] that investigates the effect of feature sampling on the
trade-off between computational efficiency and recognition
performance. For the MBH descriptor our method obtains
significant improvement both in speed and accuracy, despite
the fact that in [34] the system was evaluated on Intel i7-
3770K (3.50 GHz) which runs 1GHz faster than our Intel
Xeon E5345 (2.33 GHz). Both systems were evaluated on
a single core with no multithreading.

Recently, the method in [35] has been further improved
using motion stabilization [9, 36] and feature extraction
from person tracks [36]. These extensions are complemen-
tary to our work and can be used to improve results of our
method.

5.3. Parameter sensitivity

MPEG flow might be influenced by the types and param-
eters of video codecs. To investigate this aspect, we evalu-
ate the performance of action recognition for two common
video codecs (x264 and xvid) under varying video compres-
sion bit-rates. Results in Table 1 (Right) indicate the sta-
ble performance of action recognition for different types of



Farneback flow MPEG flow
Sampling stride mAP fps mAP fps

16 58.3% 35.2 58.2% 168.4
8 58.6% 24.1
4 59.2% 13.7

Table 3. Action classification accuracy on Hollywood2 dataset us-
ing sparse sampling of Farneback flow and MPEG flow followed
by FV feature encoding. The reported speed of feature extraction
is affected by the increased computational cost of aggregating mo-
tion vectors into local descriptors.
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video codecs and decreasing video quality corresponding to
low values of bit-rates.

We have also evaluated the influence of sparse flow sam-
pling on the speed and accuracy of action recognition. In
Table 3 we illustrate accuracy of our method when using
Farneback flow and MPEG flow. Denser flow sampling
(Farneback) leads to slight improvements in recognition ac-
curacy by the cost of significantly increased computation
time. Notably, sparse Farneback and MPEG flow show sim-
ilar recognition performance.

Feat. Quant. Total
Acc. (fps) (fps) (fps)

MF FLANN(4-32) 55.8%
168.4

52.4 40.0
MF VLAD(4) 56.7% 167.5 84.0
MF FV(32) 58.2% 40.9 32.9
DT [35] 59.9% 1.2 5.1 1.0

Table 4. Comparison of our method to the state of the art on Hol-
lywood2 dataset. The speed of [35] and of our method is reported
for videos with spatial resolution 640× 480 pixels.

Feat. Quant. Total
Acc. (fps) (fps) (fps)

MF FLANN(4-32) 81.6%
591.8

52.4 48.1
MF VLAD(4) 80.6% 671.4 314.6
MF FV(32) 82.2% 171.3 132.8
DT [35] 85.6% 2.8 5.1 1.8

Table 5. Comparison of our method to the state of the art on the
UCF50 dataset [27]. The speed is reported for videos with the
spatial resolution 320× 240 pixels.

Acc. Total FPS
FV(32) 87.6% 99.2
PSRM+BOST[40] 83.3% 10.0

Table 6. Accuracy and speed of action recognition in the UT-
interaction dataset [30].

Feat. Quant. Total
Acc. (fps) (fps) (fps)

MF ALL FV(32) 46.7% 455.6 129.7 101.0
MF MBH FV(32) 45.4% 683.3 268.0 192.5
MF ALL VLAD(32) 46.3% 455.6 455.6 227.8
MBH [34] 41.1% 33.9 267.1 30.8
HOG3D [34] 33.3% 49.6 290.8 42.2
DT [35] 48.3% 3.1

Table 7. Comparison of our method to [34] on the HMDB
dataset [14]. The speed is reported for videos with the spatial res-
olution 360× 240 pixels

6. Conclusions
We present an efficient method for extracting and encod-

ing local video descriptors for action recognition. We show
that sparse motion vectors from video compression enable
accurate action recognition at reduced computational cost.
We next apply and evaluate Fisher vector encoding for ac-
tion recognition and demonstrate the improved speed and
accuracy. Our method is fast and enables accurate action
recognition using linear classifiers. Implementation of our
method is available from [7].
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