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Abstract

In this work we describe a Convolutional Neural Net-
work (CNN) to accurately predict image quality without a
reference image. Taking image patches as input, the CNN
works in the spatial domain without using hand-crafted fea-
tures that are employed by most previous methods. The net-
work consists of one convolutional layer with max and min
pooling, two fully connected layers and an output node.
Within the network structure, feature learning and regres-
sion are integrated into one optimization process, which
leads to a more effective model for estimating image quality.
This approach achieves state of the art performance on the
LIVE dataset and shows excellent generalization ability in
cross dataset experiments. Further experiments on images
with local distortions demonstrate the local quality estima-
tion ability of our CNN, which is rarely reported in previous
literature.

1. Introduction
This paper presents a Convolutional Neural Network

(CNN) that can accurately predict the quality of distorted
images with respect to human perception. The work focuses
on the most challenging category of objective image qual-
ity assessment (IQA) tasks: general-purpose No-Reference
IQA (NR-IQA), which evaluates the visual quality of digi-
tal images without access to reference images and without
prior knowledge of the types of distortions present.

Visual quality is a very complex yet inherent character-
istic of an image. In principle, it is the measure of the dis-
tortion compared with an ideal imaging model or perfect
reference image. When reference images are available, Full
Reference (FR) IQA methods [14, 22, 16, 17, 19] can be ap-
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plied to directly quantify the differences between distorted
images and their corresponding ideal versions. State of the
art FR measures, such as VIF [14] and FSIM [22], achieve
a very high correlation with human perception.

However, in many practical computer vision applications
there do not exist perfect versions of the distorted images,
so NR-IQA is required. NR-IQA measures can directly
quantify image degradations by exploiting features that are
discriminant for image degradations. Most successful ap-
proaches use Natural Scene Statistics (NSS) based features.
Typically, NSS based features characterize the distributions
of certain filter responses. Traditional NSS based features
are extracted in image transformation domains using, for
example the wavelet transform [10] or the DCT transform
[13]. These methods are usually very slow due to the use of
computationally expensive image transformations. Recent
development in NR-IQA methods – CORNIA [20, 21] and
BRISQUE [9] promote extracting features from the spatial
domain, which leads to a significant reduction in compu-
tation time. CORNIA demonstrates that it is possible to
learn discriminant image features directly from the raw im-
age pixels, instead of using handcrafted features.

Based on these observations, we explore using a Convo-
lutional Neural Network (CNN) to learn discriminant fea-
tures for the NR-IQA task. Recently, deep neural networks
have gained researchers’ attention and achieved great suc-
cess on various computer vision tasks. Specifically, CNN
has shown superior performance on many standard object
recognition benchmarks [6, 7, 4]. One of CNN’s advan-
tages is that it can take raw images as input and incorporate
feature learning into the training process. With a deep struc-
ture, the CNN can effectively learn complicated mappings
while requiring minimal domain knowledge.

To the best of our knowledge, CNN has not been ap-
plied to general-purpose NR-IQA. The primary reason is
that the original CNN is not designed for capturing image
quality features. In the object recognition domain good fea-
tures generally encode local invariant parts, however, for
the NR-IQA task, good features should be able to capture
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NSS properties. The difference between NR-IQA and ob-
ject recognition makes the application of CNN nonintuitive.
One of our contributions is that we modified the network
structure, such that it can learn image quality features more
effectively and estimate the image quality more accurately.

Another contribution of our paper is that we propose a
novel framework that allows learning and prediction of im-
age quality on local regions. Previous approaches typically
accumulate features over the entire image to obtain statis-
tics for estimating overall quality, and have rarely shown
the ability to estimate local quality, except for a simple ex-
ample in [18]. By contrast, our method can estimate quality
on small patchs (such as 32 × 32). Local quality estima-
tion is important for the image denoising or reconstruction
problems, applying enhancement only where required.

We show experimentally that the proposed method ad-
vances the state of the art. On the LIVE dataset our CNN
outperforms CORNIA and BRISQUE, and achieves com-
parable results with state of the art FR measures such as
FSIM [22]. In addition to the superior overall performance,
we also show qualitative results that demonstrate the local
quality estimation of our method.

2. Related Work

Previously researchers have attempted to use neural net-
works for NR-IQA. Li et al. [8] applied a general regression
neural network that takes as input perceptual features in-
cluding phase congruency, entropy and the image gradients.
Chetouani et al. [3] used a neural network to combine mul-
tiple distortion-specific NR-IQA measures. These methods
require pre-extracted handcrafted features and only use neu-
ral networks for learning the regression function. Thus they
do not have the advantage of learning features and regres-
sion models in a holistic way, and these approaches are in-
ferior to the state of the art approaches. In contrast, our
method does not require any handcrafted features and di-
rectly learns discriminant features from normalized raw im-
age pixels to achieve much better performance.

The use of convolutional neural networks is partly mo-
tivated by the feature learning framework introduced in
CORNIA [20, 21]. First, the CORNIA features are learned
directly from the normalized raw image patches. This im-
plies that it is possible to extract discriminative features
from spatial domain without complicated image transfor-
mations. Second, supervised CORNIA [21] employs a two-
layer structure which learns the filters and weights in the
regression model simultaneously based on an EM like ap-
proach. This structure can be viewed as an empirical imple-
mentation of a two layer neural network. However, it has
not utilized the full power of neural networks.

Our approach integrates feature learning and regression
into the general CNN framework. The advantages are two
fold. First, making the network deeper will raise the learn-

ing capacity significantly [1]. In the following sections we
will see that with fewer filters/features than CORNIA, we
are able to achieve the state of the art results. Second, in
the CNN framework, training the network as a whole us-
ing a simple method like backpropagation enables the pos-
sibility of conveniently incorporating recent techniques de-
signed to improve learning such as dropout [5] and rectified
linear unit [7]. Furthermore, after we make the bridge be-
tween NR-IQA and CNN, the rapid developing deep learn-
ing community will be a significant source of novel tech-
niques for advancing the NR-IQA performance.

3. CNN for NR-IQA
The proposed framework of using CNN for image qual-

ity estimation is as follows. Given a gray scale image, we
first perform a contrast normalization, then sample non-
overlapping patches from it. We use a CNN to estimate the
quality score for each patch and average the patch scores to
obtain a quality estimation for the image.

3.1. Network Architecture

The proposed network consists of five layers. Figure 1
shows the architecture of our network, which is a 32×32−
26 × 26 × 50 − 2 × 50 − 800 − 800 − 1 structure. The
input is locally normalized 32×32 image patches. The first
layer is a convolutional layer which filters the input with
50 kernels each of size 7 × 7 with a stride of 1 pixel. The
convolutional layer produces 50 feature maps each of size
26× 26, followed by a pooling operation that reduces each
feature map to one max and one min. Two fully connected
layers of 800 nodes each come after the pooling. The last
layer is a simple linear regression with a one dimensional
output that gives the score.

3.2. Local Normalization

Previous NR-IQA methods, such as BRISQUE and
CORNIA, typically apply a contrast normalization. In this
work, we employ a simple local contrast normalization
method similar to [9]. Suppose the intensity value of a pixel
at location (i, j) is I(i, j), we compute its normalized value
Î(i, j) as follows:

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + C

µ(i, j) =

p=P∑
p=−P

q=Q∑
q=−Q

I(i+ p, j + q)

σ(i, j) =

√√√√ p=P∑
p=−P

q=Q∑
q=−Q

(
I(i+ p, j + q)− µ(i, j)

)2
(1)

where C is a positive constant that prevents dividing by
zero. P and Q are the normalization window sizes. In [9],



Figure 1: The architecture of our CNN

it was shown that a smaller normalization window size im-
proves the performance. In practice we pick P = Q = 3 so
the window size is much smaller than the input image patch.
Note that with this local normalization each pixel may have
a different local mean and variance.

Local normalization is important. We observe that us-
ing larger normalization windows leads to worse perfor-
mance. Specifically, a uniform normalization, which ap-
plies the mean and variance of the entire image patch to
each pixel, will cause about a 3% drop on the performance.

It is worth noting that when using a CNN for object
recognition, a global contrast normalization is usually ap-
plied to the entire image. The normalization not only al-
leviates the saturation problem common in early work that
used sigmoid neurons, but also makes the network robust to
illumination and contrast variation. For the NR-IQA prob-
lem, contrast normalization should be applied locally. Ad-
ditionally, although luminance and contrast change can be
considered distortions in some applications, we mainly fo-
cus on distortions arising from image degradations, such as
blur, compression and additive noise.

3.3. Pooling

In the convolution layer, the locally normalized image
patches are convolved with 50 filters and each filter gen-
erates a feature map. We then apply pooling on each fea-
ture map to reduce the filter responses to a lower dimension.
Specifically, each feature map is pooled into one max value
and one min value, which is similar to CORNIA. Let Rk

i,j

denote the response at location (i, j) of the feature map ob-
tained by the k-th filter, then the max and min values of uk
and vk are given by

uk = max
i,j

Rk
i,j

vk = min
i,j

Rk
i,j

(2)

where k = 1, 2, ...,K and K is the number of kernels. The
pooling procedure reduces each feature map to a 2 dimen-
sional feature vector. Therefore, each node of the next fully

connected layer takes an input of size 2 × K. It is worth
noting that although max pooling already works well, intro-
ducing min pooling boosts the performance by about 2%.

In object recognition scenario, pooling is typically per-
formed on every 2 × 2 cell. In that case, selecting a repre-
sentative filter response from each small cell may keep some
location information while achieving robustness to transla-
tion. This operation is particularly helpful for object recog-
nition since objects can typically be modeled as multiple
parts organized in a certain spatial order. However, for the
NR-IQA task we observe that image distortions are often
locally (if not globally) homogeneous, i.e. the same level of
distortion occurs at all the locations of a 32× 32 patch, for
example. The lack of obvious global spatial structure in im-
age distortions enables pooling without keeping locations to
reduce the cost of computation.

3.4. ReLU Nonlinearity

Instead of traditional sigmoid or tanh neurons, we use
Rectified Linear Units (ReLUs) [11] in the two fully con-
nected layers. [7] demonstrated in a deep CNN that ReLUs
enable the network to train several times faster compared
to using tanh units. Here we give a brief description of Re-
LUs. ReLUs take a simple form of nonlinearity by applying
a thresholding function to the input, in place of the sigmoid
or tanh transform. Let g, wi and ai denote the output of
the ReLU, the weights of the ReLU and the output of the
previous layer, respectively, then the ReLU can be mathe-
matically described as g = max(0,

∑
i wiai).

Note that ReLUs only allow nonnegative signals to pass
through. Due to this property, we do not use ReLUs but use
linear neurons (identity transform) on the convolutional and
pooling layer. The reason is that the min pooling typically
produce negative values and we do not want to block the
information in these negative pooling outputs.

3.5. Learning

We train our network on non-overlapping 32×32 patches
taken from large images. For training we assign each patch



a quality score as its source image’s ground truth score. We
can do this because the training images in our experiments
have homogeneous distortions. During the test stage, we
average the predicted patch scores for each image to ob-
tain the image level quality score. By taking small patches
as input, we have a much larger number of training sam-
ples compared to using the whole image on a given dataset,
which particularly meets the needs of CNNs.

Let xn and yn denote the input patch and its ground truth
score respectively and f(xn;w) be the predicted score of xn
with network weights w. Support Vector Regression (SVR)
with ε-insensitive loss has been successfully applied to learn
the regression function for NR-IQA in previous work [21,
9]. We adopt a similar objective function as follows:

L =
1

N

N∑
n=1

‖f(xn;w)− yn‖l1

w′ = min
w
L

(3)

Note that the above loss function is equivalent to the loss
function used in ε-SVR with ε = 0. Stochastic gradient
decent (SGD) and backpropagation are used to solve this
problem. A validation set is used to select parameters of the
trained model and prevent overfitting. In experiments we
perform SGD for 40 epochs in training and keep the model
parameters that generate the highest Linear Correlation Co-
efficient (LCC) on the validation set.

Recently successful neural network methods [7, 5] re-
port that dropout and momentum improve learning. In our
experiment we also find these two techniques boost the per-
formance.

Dropout is a technique that prevents overfitting in train-
ing neural networks. Typically the outputs of neurons are
set to zero with a probability of 0.5 in the training stage
and divided by 2 in the test stage. By randomly masking
out the neurons, dropout is an efficient approximation of
training many different networks with shared weights. In
our experiments, since applying dropout to all layers sig-
nificantly increases the time to reach convergence, we only
apply dropout at the second fully connected layer.

Updating the network weights with momentum is a
widely adopted strategy. We update the weights in the fol-
lowing form:

∆wt = rt∆wt−1 − (1− rt)εt 〈OwL〉

wt = wt−1 + ∆wt

εt = ε0(d)t

rt =

{
t
T re + (1− t

T )rs, t < T

re, t > T

(4)

where wt is weight at epoch t, ε0 = 0.1 is learning rate,
d = 0.9 is decay for the learning rate, rs = 0.9 and re = 0.5
are starting and ending momentums respectively, T = 10 is
a threshold to control how the momentum changes with the
number of epochs. Note that unlike [5] where momentum
starts off at a value of 0.5 and stays at 0.99, we use a large
momentum at the beginning and reduce it as the training
progresses. We found through experiments that this setting
can achieve better performance.

4. Experiment
4.1. Experimental Protocol

Datasets: The following two datasets are used in our exper-
iments.

(1) LIVE [15]: A total of 779 distorted images with
five different distortions – JP2k compression (JP2K), JPEG
compression (JPEG), White Gaussian (WN), Gaussian blur
(BLUR) and Fast Fading (FF) at 7-8 degradation levels de-
rived from 29 reference images. Differential Mean Opinion
Scores (DMOS) are provided for each image, roughly in the
range [0, 100]. Higher DMOS indicates lower quality.

(2) TID2008 [12]: 1700 distorted images with 17 differ-
ent distortions derived from 25 reference images at 4 degra-
dation levels. In our experiments, we consider only the four
common distortions that are shared by the LIVE dataset, i.e.
JP2k, JPEG, WN and BLUR. Each image is associated with
a Mean Opinion Score (MOS) in the range [0, 9]. Contrary
to DMOS, higher MOS indicates higher quality.
Evaluation: Two measures are used to evaluate the perfor-
mance of IQA algorithms: 1) Linear Correlation Coefficient
(LCC) and 2) Spearman Rank Order Correlation Coefficient
(SROCC). LCC measures the linear dependence between
two quantities and SROCC measures how well one quan-
tity can be described as a monotonic function of another
quantity. We report results obtained from 100 train-test it-
erations where in each iteration we randomly select 60% of
reference images and their distorted versions as the training
set, 20% as the validation set, and the remaining 20% as the
test set.

4.2. Evaluation on LIVE

On the LIVE dataset, for distortion-specific experiment
we train and test on each of the five distortions: JP2K,
JPEG, WN, BLUR and FF. For non-distortion-specific ex-
periments, images of all five distortions are trained and
tested together without providing a distortion type.

Table 1 shows the results of the two experiments com-
pared with previous state of the art NR-IQA methods as
well as FR-IQA methods. Results of the best performing
NR-IQA systems are in bold. The FR-IQA measures are
evaluated by using 80% of the data for fitting a non-linear
logistic function, then testing on 20% of the data. We can
see from Table 1 that our approach works well on each of



SROCC JP2K JPEG WN BLUR FF ALL
PSNR 0.870 0.885 0.942 0.763 0.874 0.866
SSIM 0.939 0.946 0.964 0.907 0.941 0.913
FSIM 0.970 0.981 0.967 0.972 0.949 0.964

DIIVINE 0.913 0.910 0.984 0.921 0.863 0.916
BLIINDS-II 0.929 0.942 0.969 0.923 0.889 0.931
BRISQUE 0.914 0.965 0.979 0.951 0.877 0.940
CORNIA 0.943 0.955 0.976 0.969 0.906 0.942

CNN 0.952 0.977 0.978 0.962 0.908 0.956
LCC JP2K JPEG WN BLUR FF ALL
PSNR 0.873 0.876 0.926 0.779 0.870 0.856
SSIM 0.921 0.955 0.982 0.893 0.939 0.906
FSIM 0.910 0.985 0.976 0.978 0.912 0.960

DIIVINE 0.922 0.921 0.988 0.923 0.888 0.917
BLIINDS-II 0.935 0.968 0.980 0.938 0.896 0.930
BRISQUE 0.922 0.973 0.985 0.951 0.903 0.942
CORNIA 0.951 0.965 0.987 0.968 0.917 0.935

CNN 0.953 0.981 0.984 0.953 0.933 0.953

Table 1: SROCC and LCC on LIVE. Italicized are FR-IQA
methods for reference.

(a) (b)

Figure 2: Learned convolution kernels on (a) JPEG (b) ALL
on LIVE dataset

the five distortions, especially on JPEG, JP2K and FF. For
the overall evaluation, our CNN outperformed all previous
state of the art NR-IQA methods and approached the state
of the art FR-IQA method FSIM.

We visually examine the learned convolution kernels,
and find only a few kernels present obvious structures re-
lated to the type of distortion. Figure 2 shows the kernels
learned on JPEG and all distortions combined respectively.
We can see that blockiness patterns are learned from JPEG,
and a few blur-like patterns exist for kernels learned from
all distortions. It is not surprising that the kernels learned
by CNN tend to be noisy patterns instead of presenting
strong structure related to certain distortions as shown in
CORNIA[20]. This is because CORNIA’s feature learning
is unsupervised and belongs to generative model while our
CNN is supervisedly trained and learns discriminative fea-
tures.

Figure 3: SROCC and LCC with respect to number of con-
volution kernels

size 5×5 7×7 9×9
SROCC 0.953 0.956 0.955

LCC 0.951 0.953 0.955

Table 2: SROCC and LCC under different kernel sizes

4.3. Effects of Parameters

Several parameters are involved in the CNN design. In
this section, we examine how these parameters affect the
performance of the network on the LIVE dataset.

Number of kernels Figure 3 shows how the perfor-
mance varies with the number of convolution kernels. It is
not surprising to find that the number of filters significantly
affects the performance. In general, the use of more kernels
leads to better performance. But little performance increase
is gained when the number of kernels exceeds 40.

Kernel size We train and test the network with differ-
ent kernel sizes while fixing the rest of structure. Table 2
shows how the performance changes with the kernel size.
We can see from Figure 2 that all tested kernel sizes show
similar performance. The proposed network is not sensitive
to kernel size.

Patch size Since in our experiment the whole image
score is simply the average score of all patches sampled,
we examine how the patch sampling strategy affects perfor-
mance. This includes two aspects, patch size and number
of patches per image. It is worth noting that if we keep
sampling patches in a non-overlapping way, larger patch
size leads to fewer patches. For example, if we double the
patch size, the number of patches per image will drop to one
fourth of the original number. To avoid this situation, we al-
low overlap sampling and use a fixed sampling stride (32)
for different patch sizes. In this way the number of patches
per image remains roughly the same (ignoring the border
effect) when patch size varies. Table 3 shows the change
of performance with respect to patch size. From Table 3
we see that larger patch results in better performance. The
performance increases slightly as the patch size increases



size 48 40 32 24 16
SROCC 0.959 0.958 0.956 0.950 0.946

LCC 0.957 0.955 0.953 0.947 0.946

Table 3: SROCC and LCC on different patch size

Figure 4: SROCC and LCC with respect to the sampling
stride

from 8 to 48. However larger patches not only lead to more
processing time but also reduce spatial quality resolution.
Therefore we prefer the smallest patch that yields the state
of the art performance.

Sampling stride To observe how the number of patches
affects the overall performance, we fix the patch size and
vary the stride. Changing the stride does not change the
structure of the network. For simplicity at each iteration of
the 100 iteration experiment, we use the same model trained
at stride 32, and test with different different stride values.
Figure 4 shows the change of performance with respect to
the stride. A larger stride generally leads to lower perfor-
mance since less image information is used for overall esti-
mation. However, it is worth noting that state of the art per-
formance is still maintained even when the stride increases
up to 128, which roughly corresponds to 1/16 of the origi-
nal number of patches. This result is consistent with the fact
that the distortions on the LIVE data are roughly homoge-
neous across entire image, and also indicates that our CNN
can accurately predict quality score on small image patches.

4.4. Cross Dataset Test

Tests on TID2008 This set of experiment is designed to
test the generalization ability of our method. We follow the
protocol of previous work [9, 20] to investigate cross dataset
performance between the two datasets by training our CNN
on LIVE and testing on TID20081. Only the four types of
distortions that are shared by LIVE and TID2008 are exam-
ined in this experiment. The DMOS scores in LIVE range
from 0 to 100, while the MOS scores in TID2008 fall in the
range 0 and 9. To make a fair comparison, we adopt the

1We have observed that some images in TID2008 share the same con-
tent as images in LIVE. However, their resolutions are different.

CORNIA BRISQUE CNN
SROCC 0.890 0.882 0.920

LCC 0.880 0.892 0.903

Table 4: SROCC and LCC obtained by training on LIVE
and testing on TID2008

same method as [20] to perform a nonlinear mapping on the
predicted scores produced by the model trained on LIVE.
A nonlinear mapping based on a logistic function is usually
applied to FR measures for transforming the quality mea-
sure into a certain range. We randomly split the TID2008
into two parts of 80% and 20% 100 times. Each time 80% of
data is used for estimating parameters of the logistic func-
tion and 20% is used for testing, i.e. evaluating the trans-
formed prediction scores. Results of the cross dataset test
are shown in Table 4. We can see that our CNN outperforms
previous state of the art methods.

4.5. Local Quality Estimation

Our CNN measures the quality on small image patches,
so it can be used to detect low/high quality local regions as
well as giving a global score for the entire image.

We select an undistorted reference image from TID 2008
(which is not included in LIVE) and divide it into four verti-
cal parts. We then replace the second to the fourth parts with
distorted versions at three different degradation levels. Four
synthetic images are generated in this way, one for each
types of distortions including WN, BLUR, JPEG and JP2K.
We then perform local quality estimation on these synthetic
images using our model trained on LIVE. We scan 16× 16
patches with a stride of 8 and normalize the predicted scores
into the range [0, 255] for visualization. Figure 5 shows esti-
mated quality map on the synthetic images. We can see that
our model properly distinguishes the clean and the distorted
parts of each synthetic image.

To better examine the local quality estimation power
of our model, we consider several types of distortions in
TID2008 that are not used in previous experiments, and find
three types that can only affect local regions: JPEG trans-
mission, JPEG2000 transmission and blockwise distortion.
Again from TID2008 we pick several images that are not
shared by LIVE, and test on their distorted versions with
the above three distortions. Figure 6 shows the local quality
estimation results. We find our model locates the distorted
regions with reasonable accuracy and the results generally
fit human judgement. It is worth noting that our model lo-
cates the blockwise distortion very well although this type
of distortion is not contained in the training data from LIVE.
In the images of the third row in Figure 6, the stripes on the
window are mistaken as a low quality region. We speculate
that it is because the local patterns on the stripes resem-



(a) (b) (c) (d)

Figure 5: Synthetic examples and local quality estimation results. The first row contains images distorted in (a) WN, (b)
BLUR, (c) JPEG (d) JP2K. Each image is divided into four parts and three of them are distorted in different degradation
level. The second row shows the local quality estimation results, where brighter pixels indicate lower quality.

Figure 6: Local quality estimation results on examples of non-global distortion from TID2008. Column 1,3,5 show (a) jpeg
transmission errors (b) jpeg2000 transmission errors (c) local blockwise distortion. Column 2,4,6 show the local quality
estimation results, where brighter pixels indicate lower quality.

ble blockness distortion. Contextual information may be
needed to overcome such problems.

4.6. Computational Cost

Our CNN is implemented using the Python library
Theano [2]. With Theano we are able to easily run our al-

gorithm on a GPU to speed up the process without much
optimization. Our experiments are performed on a PC with
1.8GHz CPU and GTX660 GPU. We measure the process-
ing time on images of size 512×768 using our model of 50
kernels with 32×32 input size, and test the model using part
of those strides that give the state of the art performance in



the experiments on LIVE. Table 5 shows the average pro-
cessing time per image under different strides. Note that
our implementation is not fully optimized. For example,
the normalization process for each image is performed on
the CPU in about 0.017 sec, which takes a significant por-
tion of the total time. From Table 5 we can see that with a
sparser sampling pattern (stride greater than 64), real time
processing can be achieved while maintaining state of the
art performance.

stride 32 64 96 128
time(sec) 0.114 0.041 0.029 0.023

Table 5: Time cost under different strides.

5. Conclusion
We have developed a CNN for no-reference image qual-

ity assessment. Our algorithm combines feature learn-
ing and regression as a complete optimization process,
which enables us to employ modern training techniques to
boost performance. Our algorithm generates image qual-
ity predictions well correlated with human perception, and
achieves state of the art performance on standard IQA
datasets. Furthermore we demonstrated that our algorithm
can estimate quality in local regions, which is rarely re-
ported in previous literature and has many potential appli-
cations in image reconstruction or enhancement.
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