
Locally Optimized Product Quantization

for Approximate Nearest Neighbor Search

Yannis Kalantidis and Yannis Avrithis

National Technical University of Athens

{ykalant, iavr}@image.ntua.gr

Abstract

We present a simple vector quantizer that combines low

distortion with fast search and apply it to approximate near-

est neighbor (ANN) search in high dimensional spaces.

Leveraging the very same data structure that is used to pro-

vide non-exhaustive search, i.e., inverted lists or a multi-

index, the idea is to locally optimize an individual product

quantizer (PQ) per cell and use it to encode residuals. Lo-

cal optimization is over rotation and space decomposition;

interestingly, we apply a parametric solution that assumes

a normal distribution and is extremely fast to train. With

a reasonable space and time overhead that is constant in

the data size, we set a new state-of-the-art on several public

datasets, including a billion-scale one.

1. Introduction

Approximate nearest neighbor (ANN) search in high-

dimensional spaces is not only a recurring problem in com-

puter vision, but also undergoing significant progress. A

large body of methods maintain all data points in memory

and rely on efficient data structures to compute only a lim-

ited number of exact distances, that is ideally fixed [14]. At

the other extreme, mapping data points to compact binary

codes is not only efficient in space but may achieve fast ex-

haustive search in Hamming space [10, 16].

Product quantization (PQ) [12] is an alternative compact

encoding method that is discrete but not binary and can be

used for exhaustive or non-exhaustive search through in-

verted indexing or multi-indexing [3]. As is true for most

hashing methods [11], better fitting to the underlying distri-

bution is critical in search performance, and one such ap-

proach for PQ is optimized product quantization (OPQ) [9]

and its equivalent Cartesian k-means [15].

How are such training methods beneficial? Different cri-

teria are applicable, but the underlying principle is that all

bits allocated to data points should be used sparingly. Since

search can be made fast, such methods should be ultimately

(a) k-means (b) PQ

(c) OPQ (d) LOPQ

Figure 1. Four quantizers of 64 centroids () each, trained on a

random set of 2D points (), following a mixture distribution. (c)

and (d) also reorder dimensions, which is not shown in 2D.

seen as (lossy) data compression targeting minimal distor-

tion, with extreme examples being [1, 5].

As such, k-means, depicted in Fig. 1(a), is a vector quan-

tization method where by specifying k centroids, log
2
k bits

can represent an arbitrary data point in R
d for any dimen-

sion d; but naı̈ve search is O(dk) and low distortion means

very large k. By constraining centroids on an axis-aligned,

m-dimensional grid, PQ achieves km centroids keeping

search at O(dk); but as illustrated in Fig. 1(b), many of

these centroids remain without data support e.g. if the dis-

tributions on m subspaces are not independent.

OPQ allows the grid to undergo arbitrary rotation and re-

ordering of dimensions to better align to data and balance

their variance across subspaces to match bit allocation that

is also balanced. But as shown in Fig. 1(c), a strongly multi-

modal distribution may not benefit from such alignment.

Our solution in this work is locally optimized product

1

quantization (LOPQ). Following a quite common search

option of [12], a coarse quantizer is used to index data by in-

verted lists, and residuals between data points and centroids

are PQ-encoded. But within-cell distributions are largely

unimodal; hence, as in Fig. 1(d), we locally optimize an in-

dividual product quantizer per cell. Under no assumptions

on the distribution, practically all centroids are supported

by data, contributing to a lower distortion.

LOPQ requires reasonable space and time overhead

compared to PQ, both for offline training/indexing, and on-

line queries; but all overhead is constant in data size. It is

embarrassingly simple to apply and boosts performance on

several public datasets. A multi-index is essential for large

scale datasets and combining with LOPQ is less trivial, but

we provide a scalable solution nevertheless.

2. Related work and contribution

Focusing on large datasets where index space is the bottle-

neck, we exclude e.g. tree-based methods like [14] that re-

quire all data uncompressed in memory. Binary encoding is

the most compact representation, approaching ANN search

via exhaustive search in Hamming space. Methods like

spectral hashing [18], ITQ [10] or k-means hashing [11]

focus on learning optimized codes on the underlying data

distribution. Search in Hamming space is really fast but,

despite learning, performance suffers.

Significant benefit is to be gained via multiple quantiz-

ers or hash tables as in LSH [6], at the cost of storing each

point index multiple times. For instance, [17, 19] gain per-

formance by multiple k-means quantizers via random re-

initializing or partitioning jointly trained centroids. Sim-

ilarly, multi-index hashing [16] gains speed via multiple

hash tables on binary code substrings. We still outperform

all such approaches at only a fraction of index space.

PQ [12] provides efficient vector quantization with less

distortion than binary encoding. Transform coding [4] is

a special case of scalar quantization that additionally allo-

cates bits according to variance per dimension. OPQ [9]

and Ck-means [15] generalize PQ by jointly optimizing ro-

tation, subspace decomposition and sub-quantizers. Inter-

estingly, the parametric solution of OPQ aims at the exact

opposite of [4]: balancing variance given a uniform bit al-

location over subspaces.

Although [12] provides non-exhaustive variant IVFADC

based on a coarse quantizer and PQ-encoded residuals, [9,

15] are exhaustive. The inverted multi-index [3] achieves

very fine space partitioning via one quantizer per subspace

and is compatible with PQ-encoding, gaining performance

at query times comparable to Hamming space search. On

the other hand, the idea of space decomposition can be ap-

plied recursively to provide extremely fast codebook train-

ing and vector quantization [2].

The recent extension of OPQ [8] combines optimization

with a multi-index and is the current state-of-the-art on a

billion-scale dataset, but all optimizations are still global.

We observe that OPQ performs significantly better when

the underlying distribution is unimodal, while residuals are

much more unimodal than original data. Hence we indepen-

dently optimize per cell to distribute centroids mostly over

underlying data, despite the constraints of a product quan-

tizer. In particular, we make the following contributions:

1. Partitioning data in cells, we locally optimize one prod-

uct quantizer per cell on the residual distribution.

2. We show that training is practical since local distribu-

tions are easier to optimize via a simple OPQ variant.

3. We provide solutions for either a single or a multi-

index, fitting naturally to existing search frameworks

for state-of-the-art performance with little overhead.

A recent related work is [7], applying a local PCA ro-

tation per centroid prior to VLAD aggregation. However,

both our experiments and [9, 8] show that PCA without sub-

space allocation actually damages ANN performance.

3. Background

Vector quantization. A quantizer is a function q that maps

a d-dimensional vector x ∈ R
d to vector q(x) ∈ C, where C

is a finite subset of Rd, of cardinality k. Each vector c ∈ C
is called a centroid, and C a codebook. Given a finite set X
of data points in R

d, q induces distortion

E =
∑

x∈X

‖x− q(x)‖2. (1)

According to Lloyd’s first condition, regardless of the cho-

sen codebook, a quantizer that minimizes distortion should

map vector x to its nearest centroid, or

x 7→ q(x) = argmin
c∈C
‖x− c‖, (2)

for x ∈ R
d. Hence, an optimal quantizer should minimize

distortion E as a function of codebook C alone.

Product quantization. Assuming that dimension d is a

multiple of m, write any vector x ∈ R
d as a concatenation

(x1, . . . ,xm) of m sub-vectors, each of dimension d/m. If

C1, . . . , Cm are m sub-codebooks in subspace R
d/m, each

of k sub-centroids, a product quantizer [12] constrains C to

the Cartesian product

C = C1 × · · · × Cm, (3)

i.e., a codebook of km centroids of the form c =
(c1, . . . , cm) with each sub-centroid cj ∈ Cj for j ∈ M =
{1, . . . ,m}. An optimal product quantizer q should mini-

mize distortion E (1) as a function of C, subject to C being

of the form (3) [9]. In this case, for each x ∈ R
d, the nearest

centroid in C is

q(x) = (q1(x1), . . . , qm(xm)), (4)

where qj(xj) is the nearest sub-centroid of sub-vector xj in

Cj , for j ∈M [9]. Hence an optimal product quantizer q in

d dimensions incurs m subproblems of finding m optimal

sub-quantizers qj , j ∈ M, each in d/m dimensions. We

write q = (q1, . . . , qm) in this case.

Optimized product quantization [9],[15] refers to opti-

mizing the subspace decomposition apart from the cen-

troids. Constraint (3) of the codebook is now relaxed to

C = {Rĉ : ĉ ∈ C1 × · · · × Cm, RTR = I}, (5)

where orthogonal d × d matrix R allows for arbitrary ro-

tation and permutation of vector components. Hence E
should be minimized as a function of C, subject to C be-

ing of the form (5). Optimization with respect to R and

C1, . . . , Cm can be either joint as in Ck-means [15] and in

the non-parametric solution OPQNP of [9], or decoupled, as

in the parametric solution OPQP of [9].

Exhaustive search. Given a product quantizer q =
(q1, . . . , qm), assume that each data point x ∈ X is rep-

resented by q(x) and encoded as tuple (i1, . . . , im) of m
sub-centroid indices (4), each in index set K = {1, . . . , k}.
This PQ-encoding requires m log

2
k bits per point.

Given a new query vector y, the (squared) Euclidean dis-

tance to every point x ∈ X may be approximated by

δq(y,x) = ‖y − q(x)‖2 =
m∑

j=1

‖yj − qj(xj)‖2, (6)

where qj(xj) ∈ Cj = {cj
1
, . . . , cjk} for j ∈ M. Distances

‖yj − c
j
i‖

2 are precomputed for i ∈ K and j ∈ M, so (6)

amounts to only O(m) lookup and add operations. This is

the asymmetric distance computation (ADC) of [12].

Indexing. When quantizing point x ∈ R
d by quantizer q,

its residual vector is defined as

rq(x) = x− q(x). (7)

Non-exhaustive search involves a coarse quantizer Q of

K centroids, or cells. Each point x ∈ X is quantized to

Q(x), and its residual vector rQ(x) is quantized by a prod-

uct quantizer q. For each cell, an inverted list of data points

is maintained, along with PQ-encoded residuals.

A query point y is first quantized to its w nearest cells,

and approximate distances between residuals are then found

according to (6) only within the corresponding w inverted

lists. This is referred to as IVFADC search in [12].

Re-ranking. Second-order residuals may be employed

along with ADC or IVFADC, again PQ-encoded by m′ sub-

quantizers. However, this requires full vector reconstruc-

tion, so is only used for re-ranking [13].

Multi-indexing applies the idea of PQ to the coarse quan-

tizer used for indexing. A second-order inverted multi-

index [3] comprises two subspace quantizers Q1, Q2 over

R
d/2, each of K sub-centroids. A cell is now a pair of

sub-centroids. There are K2 cells, which can be struc-

tured on a 2-dimensional grid, inducing a fine partition

over Rd. For each point x = (x1,x2) ∈ X , sub-vectors

x1,x2 ∈ R
d/2 are separately (and exhaustively) quantized

to Q1(x1), Q2(x2), respectively. For each cell, an inverted

list of data points is again maintained.

Given a query vector y = (y1,y2), the (squared) Eu-

clidean distances of each of sub-vectors y1,y2 to all sub-

centroids of Q1, Q2 respectively are found first. The dis-

tance of y to a cell may then be found by a lookup-add

operation, similarly to (6) for m = 2. Cells are traversed in

increasing order of distance to y by the multi-sequence al-

gorithm [3]—a form of distance propagation on the grid—

until a target number T of points is collected. Different

options exist for encoding residuals and re-ranking.

4. Locally optimized product quantization

We investigate two solutions: ordinary inverted lists, and a

second-order multi-index. Section 4.1 discusses LOPQ in

the former case, which simply allocates data to cells and

locally optimizes a product quantizer per cell to encode

residuals. Optimization per cell is discussed in section 4.2,

mostly following [9, 15]; the same process is used in sec-

tion 4.4, discussing LOPQ in the multi-index case.

4.1. Searching on a single index

Given a set X = {x1, . . . ,xn} of n data points in R
d,

we optimize a coarse quantizer Q, with associated code-

book E = {e1, . . . , eK} of K centroids, or cells. For

i ∈ K = {1, . . . ,K}, we construct an inverted list Li con-

taining indices of points quantized to cell ei,

Li = {j ∈ N : Q(xj) = ei} (8)

where N = {1, . . . , n}, and collect their residuals in

Zi = {x− ei : x ∈ X , Q(x) = ei}. (9)

For each cell i ∈ K, we locally optimize PQ encoding of

residuals in set Zi, as discussed in section 4.2, yielding an

orthogonal matrix Ri and a product quantizer qi. Residuals

are then locally rotated by ẑ ← RT

i z for z ∈ Zi and PQ-

encoded as qi(ẑ) = qi(R
T

i z).
At query time, the query point y is soft-assigned to its

w nearest cells A in E . For each cell ei ∈ A, residual

yi = y − ei is individually rotated by ŷi ← RT

i yi. Asym-

metric distances δqi(ŷi, ẑp) to residuals ẑp for p ∈ Li are

then computed according to (6), using the underlying local

product quantizer qi. The computation is exhaustive within

list Li, but is performed in the compressed domain.

Analysis. To illustrate the individual gain from the two op-

timized quantities, we investigate optimizing rotation alone

with fixed sub-quantizers, as well as both rotation and sub-

quantizers, referred to as LOR+PQ and LOPQ, respectively.

In the latter case, there is an O(K(d2+dk)) space overhead,

comparing e.g. to IVFADC [12]. Similarly, local rotation of

the query residual imposes an O(wd2) time overhead.

4.2. Local optimization

Let Z ∈ {Z1, . . . ,ZK} be the set of residuals of data

points quantized to some cell in E . Contrary to [12], we

PQ-encode these residuals by locally optimizing both space

decomposition and sub-quantizers per cell. Given m and k
as parameters, this problem is expressed as minimizing dis-

tortion as a function of orthogonal matrix R ∈ R
d×d and

sub-codebooks C1, . . . , Cm ⊂ R
d/m per cell,

minimize
∑

z∈Z

min
ĉ∈Ĉ
‖z−Rĉ‖2

subject to Ĉ = C1 × · · · × Cm

RTR = I,

(10)

where |Cj | = k for j ∈ M = {1, . . . ,m}. Given solution

R, C1, . . . , Cm, codebook C is found by (5). For j ∈ M,

sub-codebook Cj determines a sub-quantizer qj by

x 7→ qj(x) = arg min
ĉ
j∈Cj
‖x− ĉj‖ (11)

for x ∈ R
d/m, as in (2); collectively, sub-quantizers deter-

mine a product quantizer q = (q1, . . . , qm) by (4). Local

optimization can then be seen as a mapping Z 7→ (R, q).
Following [9, 15], there are two solutions that we briefly

describe here, focusing more on OPQP.

Parametric solution (OPQP [9]) is the outcome of as-

suming a d-dimensional, zero-mean normal distribution

N (0,Σ) of residual data Z and minimizing the theoretical

lower distortion bound as a function of R alone [9]. That is,

R is optimized independently prior to codebook optimiza-

tion, which can follow by independent k-means per sub-

space, exactly as in PQ.

Given the d × d positive definite covariance matrix Σ,

empirically measured on Z , the solution for R is found in

closed form, in two steps. First, rotating data by ẑ ← RTz

for z ∈ Z should yield a block-diagonal covariance matrix

Σ̂, with the j-th diagonal block being sub-matrix Σ̂jj of j-

th subspace, for j ∈ M. That is, subspace distributions

should be pairwise independent. This is accomplished e.g.

by diagonalizing Σ as UΛUT.

Second, determinants |Σ̂jj | should be equal for j ∈ M,

i.e., variance should be balanced across subspaces. This is

achieved by eigenvalue allocation [9]. In particular, a set B
of m buckets Bj is initialized with Bj = ∅, j ∈ M, each

of capacity d∗ = d/m. Eigenvalues in Λ are then traversed

in descending order, λ1 ≥ · · · ≥ λd. Each eigenvalue λs,

s = 1, . . . , d, is greedily allocated to the non-full bucket B∗

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

R

re
ca

ll
@
R

IVFADC

I-PCA+RP

I-PCA

I-OPQ

LOPQ

Figure 2. Recall@R performance on SYNTH1M—recall@R is

defined in section 5.1. We use K = 1024 and w = 8 for all

methods; for all product quantizers, we use m = 8 and k = 256.

Curves for IVFADC, I-OPQ and I-PCA+RP coincide everywhere.

of minimal variance, i.e., B∗ ← B∗ ∪ s with

B∗ = arg min
B∈B

|B|<d∗

∏

s∈B

λs, (12)

until all buckets are full. Then, buckets determine a re-

ordering of dimensions: if vector bj ∈ R
d∗

contains ele-

ments of bucket Bj (in any order) for j ∈ M and b =
(b1, . . . ,bm), then vector b is read off as a permutation π
of set {1, . . . , d}. If Pπ is the permutation matrix of π, then

matrix UPT

π represents a re-ordering of eigenvectors of Σ
and is the final solution for R. In other words, Z is first

PCA-aligned and then dimensions are grouped in subspaces

exactly as eigenvalues are allocated to buckets.

Non-parametric solution (OPQNP [9] or Ck-means [15])

is a variant of k-means, carried out in all m subspaces in

parallel, interlacing in each iteration its two traditional steps

assign and update with steps to rotate data and optimize R,

i.e., align centroids to data. OPQP is extremely faster than

OPQNP in practice. Because we locally optimize thousands

of quantizers, OPQNP training is impractical, so we only use

it in one small experiment in section 5.2 and otherwise focus

on OPQP, which we refer to as I-OPQ in the sequel.

4.3. Example

To illustrate the benefit of local optimization, we experi-

ment on our synthetic dataset SYNTH1M, containing 1M

128-dimensional data points and 10K queries, generated by

taking 1000 samples from each of 1000 components of an

anisotropic Gaussian mixture distribution. All methods are

non-exhaustive as in section 4.1, i.e. using a coarse quan-

tizer, inverted lists and PQ-encoded residuals; however, all

optimization variants are global except for LOPQ. For fair

comparison here and in section 5, I-OPQ is our own non-

exhaustive adaptation of [9]. IVFADC (PQ) [12] uses natu-

ral order of dimensions and no optimization.

Figure 2 shows results on ANN search. On this ex-

tremely multi-modal distribution, I-OPQ fails to improve

over IVFADC. PCA-aligning all data and allocating dimen-

sions in decreasing order of eigenvalues is referred to as

I-PCA. This is even worse than natural order, because e.g.

the largest d/m eigenvalues are allocated in a single sub-

space, contrary to the balancing objective of I-OPQ. Ran-

domly permuting dimensions after global PCA-alignment,

referred to as I-PCA+RP, alleviates this problem. LOPQ

outperforms all methods by up to 30%.

4.4. Searching on a multi­index

The case of a second-order multi-index is less trivial, as the

space overhead is prohibitive to locally optimize per cell as

in section 4.1. Hence, we separately optimize per cell of the

two subspace quantizers and encode two sub-residuals. We

call this product optimization, or Multi-LOPQ.

Product optimization. Two subspace quantizers Q1, Q2

of K centroids each are built as in [3], with associated

codebooks Ej = {ej
1
, . . . , ejK} for j = 1, 2. Each data

point x = (x1,x2) ∈ X is quantized to cell Q(x) =
(Q1(x1), Q2(x2)). An inverted list Li1i2 is kept for each

cell (e1i1 , e
2

i2) on grid E = E1 × E2, for i1, i2 ∈ K.

At the same time, Q1, Q2 are employed for residuals as

well, as in Multi-D-ADC [3]. That is, for each data point

x = (x1,x2) ∈ X , residuals xj − Qj(xj) for j = 1, 2
are PQ-encoded. However, because the codebook induced

on R
d by Q1, Q2 is extremely fine (K2 cells on the grid),

locally optimizing per cell is not an option—the total space

overhead e.g. would be O((d2 + dk)K2). What we do is

separately optimize per subspace: similarly to (9), let

Zj
i = {xj − e

j
i : x ∈ X , Q

j(xj) = e
j
i}. (13)

contain the residuals of points x ∈ X whose j-th sub-vector

is quantized to cell e
j
i for i ∈ K and j = 1, 2. We then

locally optimize each set Zj
i as in discussed section 4.2,

yielding a rotation matrix Rj
i and a product quantizer qji .

Now, given a point x = (x1,x2) ∈ X quantized to cell

(e1i1 , e
2

i2) ∈ E , its sub-residuals zj = xj − e
j
ij are rotated

and PQ-encoded as qjij (ẑ
j) = qjij ((R

j
ij)

Tzj) for j = 1, 2.

That is, encoding is separately adjusted per sub-centroid i1

(resp., i2) in the first (resp., second) subspace.

Given a query y, rotations ŷ
j
ij = (Rj

ij)
T(yj − e

j
ij) are

lazy-evaluated for ij = 1, ...,K and j = 1, 2, i.e. com-

puted on demand by multi-sequence and stored for re-use.

For each point index p fetched in cell (e1i1 , e
2

i2) ∈ E with

associated residuals ẑjp for j = 1, 2, asymmetric distance

‖ŷ1

i1 − q1i1(ẑ
1

p)‖
2 + ‖ŷ2

i2 − q2i2(ẑ
2

p)‖
2 (14)

is computed. Points are ranked according to this distance.

When considering the entire space R
d, this kind of opti-

mization is indeed local per cell, but more constrained than

in section 4.2. For instance, the effective rotation matrix

in cell (e1i1 , e
2

i2) ∈ E is constrained to be block-diagonal

with blocks R1

i1 , R
2

i2 , keeping rotations within-subspace.

By contrast, OMulti-D-OADC [8] employs an arbitrary ro-

tation matrix that is however fixed for all cells.

Analysis. Comparing to Multi-D-ADC [3], the space over-

head remains (asymptotically) the same as in section 4.1,

i.e., O(K(d2 + dk)). The query time overhead is O(Kd2)
in the worst case, but much lower in practice.

5. Experiments

5.1. Experimental setup

Datasets. We conduct experiments on four publicly avail-

able datasets. Three of them are popular in state-of-the-art

ANN methods: SIFT1M, GIST1M [12] and SIFT1B [13]1.

SIFT1M dataset contains 1 million 128-dimensional SIFT

vectors and 10K query vectors; GIST1M contains 1 mil-

lion 960-dimensional GIST vectors and 1000 query vectors;

SIFT1B contains 1 billion SIFT vectors and 10K queries.

Given that LOPQ is effective on multi-modal distri-

butions, we further experiment on MNIST2 apart from

our synthetic dataset SYNTH1M discussed in section 4.3.

MNIST contains 70K images of handwritten digits, each

represented as a 784-dimensional vector of raw pixel inten-

sities. As in [9, 8], we randomly sample 1000 vectors as

queries and use the remaining as the data.

Evaluation. As in related literature [12, 9, 13, 3, 16, 15],

we measure search performance via the recall@R measure,

i.e. the proportion of queries having their nearest neighbor

ranked in the first R positions. Alternatively, recall@R is

the fraction of queries for which the nearest neighbor would

be correctly found if we verified the R top-ranking vectors

using exact Euclidean distances. Recall@1 is the most im-

portant, and is equivalent to the precision of [14].

Re-ranking. Following [13], second-order residuals can

be used for re-ranking along with LOPQ variants, but for

fair comparison we only apply it with a single index. This

new variant, LOPQ+R, locally optimizes second-order sub-

quantizers per cell. However, rotation of second-order

residuals is only optimized globally; otherwise there would

be an additional query time overhead on top of [13].

Settings. We always perform search in a non-exhaustive

manner, either with a single or a multi-index. In all cases,

we use k = 256, i.e. 8 bits per sub-quantizer. Unless other-

wise stated, we use 64-bit codes produced with m = 8. On

SIFT1B we also use 128-bit codes produced with m = 16,

except when re-ranking, where m = m′ = 8 is used in-

stead, as in [13]. For all multi-index methods, T refers to

the target number of points fetched by multi-sequence.

1http://corpus-texmex.irisa.fr/
2http://yann.lecun.com/exdb/mnist/

http://corpus-texmex.irisa.fr/
http://yann.lecun.com/exdb/mnist/

Compared methods (MNIST, SIFT1M, GIST1M). We

compare against three of the methods discussed in sec-

tion 4.3, all using a single index on a coarse quantizer and

PQ-encoded residuals, with any optimization being global.

In particular, IVFADC [12], our I-PCA+RP, and our non-

exhaustive adaptation of OPQ [9], using either OPQP or

OPQNP global optimization. These non-exhaustive variants

are not only faster, but also superior. OPQNP is too slow

to train, so is only shown for MNIST; otherwise I-OPQ

refers to OPQP. We do not consider transform coding [4]

or ITQ [10] since they are outperformed by I-OPQ in [9].

Compared methods (SIFT1B). After some experiments on

a single index comparing mainly to IVFADC and I-OPQ,

we focus on using a multi-index, comparing against Multi-

D-ADC [3] and its recent variant OMulti-D-OADC [8], cur-

rently the state-of-the-art. Both methods PQ-encode the

residuals of the subspace quantizers. Additionally, OMulti-

D-OADC uses OPQNP to globally optimize both the ini-

tial data prior to multi-index construction and the residuals.

We also report results for IVFADC with re-ranking (IV-

FADC+R) [13], Ck-means [15], KLSH-ADC [17], multi-

index hashing (Multi-I-Hashing) [16], and the very recent

joint inverted indexing (Joint-ADC) [19].

Implementation. Results followed by a citation are repro-

duced from the corresponding publication. For the rest we

use our own implementations in Matlab and C++ on a 8-

core machine with 64GB RAM. For k-means and exhaus-

tive nearest neighbor assignment we use yael3.

5.2. Results on MNIST, SIFT1M, GIST1M

MNIST is considered first. This is the only case where

we report results for OPQNP, since it is favored over OPQP

in [9], and MNIST is small enough to allow for training. As

suggested in [9], we run 100 iterations for OPQNP using the

implementation provided by the authors.

Recall and distortion results are shown in Figure 3. Ob-

serve how the gain of OPQNP over OPQP is very limited

now that global optimization is performed on the residuals.

This can be explained by the fact that residuals are expected

to follow a rather unimodal distribution, hence closer to the

Gaussian assumption of OPQP. The performance of our

simplified variant I-PCA+RP is very close to I-OPQ. Still,

separately optimizing the residual distribution of each cell

gives LOPQ a significant gain over all methods.

SIFT1M and GIST1M results are shown in Figures 4

and 5 respectively, only now OPQ is limited to OPQP.

As in [9], we use the optimal dimension order for each

dataset for baseline method IVFADC [12], i.e. natural (resp.

structured) order for SIFT1M (resp. GIST1M). In both

cases, LOPQ clearly outperforms all globally optimized ap-

proaches. For SIFT1M its gain at R = 1, 10 is more than

3https://gforge.inria.fr/projects/yael

10
0

10
1

10
2

0.2

0.4

0.6

0.8

1

R

re
ca

ll
@
R Method Ē

IVFADC 70.1

I-PCA+RP 13.3

I − OPQP
12.6

I − OPQNP
11.4

LOPQ 8.13

Figure 3. Recall@R on MNIST with K = 64, found to be opti-

mal, and w = 8. Ē = E/n: average distortion per point.

10
0

10
1

10
2

10
3

10
4

0.4

0.6

0.8

R

re
ca

ll
@
R

IVFADC

I-PCA+RP

I-OPQ

LOPQ

Figure 4. Recall@R on SIFT1M with K = 1024, w = 8.

10
0

10
1

10
2

10
3

10
4

0.2

0.4

0.6

0.8

R

re
ca

ll
@
R

IVFADC

I-PCA+RP

I-OPQ

LOPQ

Figure 5. Recall@R on GIST1M with K = 1024, w = 16.

8% over I-OPQ, which is close to the baseline. The gain is

lower for GIST1M but still 5% for R = 10. This is where I-

OPQ improves most, in agreement with [9, 8], so LOPQ has

less to improve. This is attributed to GIST1M mostly being

subject to one Gaussian distribution in [8]. I-PCA+RP is

always slightly below I-OPQ.

Figures 6 and 7 plot recall@10 versus bit allocation per

point (through varying m) and soft assignment neighbor-

hood w, respectively. LOPQ enjoys superior performance

in all cases, with the gain increasing with lower bit rates

and more soft assignment. The latter suggests more precise

distance measurements, hence lower distortion.

https://gforge.inria.fr/projects/yael

16 32 64 128

0.2

0.4

0.6

0.8

bits

re
ca

ll
@
1
0

IVFADC

I-PCA+RP

I-OPQ

LOPQ

Figure 6. Recall@10 on SIFT1M versus bit allocation per point,

with K = 1024 and w = 8. For 16, 32, 64 and 128 bits, m is

respectively 2, 4, 8 and 16.

1 2 4 8 16 32 64

0.4

0.5

0.6

0.7

0.8

w

re
ca

ll
@
1
0

IVFADC

I-PCA+RP

I-OPQ

LOPQ

Figure 7. Recall@10 on SIFT1M versus w, with K = 1024 and

m = 8.

Method R = 1 R = 10 R = 100

Ck-means [15] – – 0.649

IVFADC 0.106 0.379 0.748

IVFADC [13] 0.088 0.372 0.733

I-OPQ 0.114 0.399 0.777

Multi-D-ADC [3] 0.165 0.517 0.860

LOR+PQ 0.183 0.565 0.889

LOPQ 0.199 0.586 0.909

Table 1. Recall@{1, 10, 100} on SIFT1B with 64-bit codes, K =

2
13

= 8192 and w = 64. For Multi-D-ADC, K = 2
14 and

T = 100K. Rows including citations reproduce authors’ results.

5.3. Results on SIFT1B

64-bit code (m = 8) results are shown in Table 1, includ-

ing I-OPQ, Ck-means [15], Multi-D-ADC [3] and IVFADC

without re-ranking, since re-ranking does not improve per-

formance at this bit rate [13]. All methods are using a single

index except Multi-D-ADC that uses a multi-index and Ck-

means that is exhaustive. For IVFADC we both reproduce

results of [13] and report on our re-implementation. To il-

lustrate the individual gain from locally optimized rotation

and sub-quantizers, we also include our sub-optimal variant

LOR+PQ as discussed in section 4.1. Both LOR+PQ and

LOPQ are clearly superior to all methods, with a gain of

18% over I-OPQ and 7% over Multi-D-ADC for recall@10,

although the latter is using a multi-index.

T Method R = 1 10 100

Multi-I-Hashing [16] – – 0.420

KLSH-ADC [17] – – 0.894

Joint-ADC [19] – – 0.938

20K
IVFADC+R [13] 0.262 0.701 0.962

LOPQ+R 0.350 0.820 0.978

10K

Multi-D-ADC [3] 0.304 0.665 0.740

OMulti-D-OADC [8] 0.345 0.725 0.794

Multi-LOPQ 0.430 0.761 0.782

30K

Multi-D-ADC [3] 0.328 0.757 0.885

OMulti-D-OADC [8] 0.366 0.807 0.913

Multi-LOPQ 0.463 0.865 0.905

100K

Multi-D-ADC [3] 0.334 0.793 0.959

OMulti-D-OADC [8] 0.373 0.841 0.973

Multi-LOPQ 0.476 0.919 0.973

Table 2. Recall@{1, 10, 100} on SIFT1B with 128-bit codes and

K = 2
13

= 8192 (resp. K = 2
14) for single index (resp. multi-

index). For IVFADC+R and LOPQ+R, m′
= 8, w = 64. Results

for Joint-ADC and KLSH-ADC are taken from [19]. Rows includ-

ing citations reproduce authors’ results.

128-bit code results are presented in Table 2 and Figure 8,

with our solutions including a single index with re-ranking

(LOPQ+R) and a multi-index (Multi-LOPQ). Of the re-

ranking methods, LOPQ+R has a clear advantage over IV-

FADC+R, where we adopt m = m′ = 8 since this option

is shown to be superior in [13]. All remaining methods use

m = 16. Multi-I-Hashing [16], KLSH-ADC [16] and Joint-

ADC [19] are all inferior at R = 100, although the latter

two require 4 times more space.

The current state-of-the-art results come with the use of

a multi-index, also boasting lower query times. The recent

highly optimized OMulti-D-OADC [8] outperforms Multi-

D-ADC [3]. However, the performance of our product

optimization Multi-LOPQ is unprecedented, setting a new

state-of-the-art on SIFT1B at 128-bit codes and enjoying

nearly 10% gain over OMulti-D-OADC on the most impor-

tant measure of precision (recall@1). Multi-index cells are

very fine, hence residuals are lower and local optimization

yields lower distortion, although constrained.

5.4. Overhead analysis

Both space and time overhead is constant in data size n.

Space overhead on top of IVFADC (resp. Multi-D-ADC)

refers to local rotation matrices and sub-quantizer cen-

troids per cell. For rotation matrices, this is Kd2 (resp.

2K(d/2)2) for single index (resp. multi-index). In prac-

tice, this overhead is around 500MB on SIFT1B. For sub-

quantizer centroids, overhead is Kdk in all cases. In prac-

tice, this is 2GB on SIFT1B for Multi-LOPQ with K = 214.

Given that the index space for SIFT1B with 128-bit codes

10
0

10
1

10
2

10
3

10
4

0.4

0.6

0.8

1

R

re
ca

ll
@
R

Multi-D-ADC [3]

OMulti-D-OADC [9]

Joint-ADC [19]

KLSH-ADC [17]

Multi-LOPQ

Figure 8. Recall@R on SIFT1B with 128-bit codes and T =

100K, following Table 2.

is 21GB in the worst case, this overhead is reasonable.

Query time overhead on top of IVFADC (resp Multi-D-

ADC) is the time needed to rotate the query for each soft-

assigned cell, which amounts to w (2K worst-case) multi-

plications of a d×d (d
2
× d

2
) matrix and a d (d

2
)-dimensional

vector for single index (resp. multi-index). In practice, the

multiplications for multi-index are far less. The average

overhead on SIFT1B as measured for Multi-LOPQ is 0.776,

1.92, 4.04ms respectively for T = 10K, 30K, 100K.

Multi-D-ADC takes 49ms for T = 100K [3], bringing

total query time to 53ms. Or, with 7ms for T = 10K in [3],

Multi-LOPQ outperforms by 5% the previous state-of-the-

art 128-bit precision on SIFT1B in less than 8ms.

6. Discussion

Beneath LOPQ lies the very simple idea that no single cen-

troid should be wasted by not representing actual data, but

rather each centroid should contribute to lowering distor-

tion. Hence, to take advantage of PQ, one should attempt to

use and optimize product quantizers over parts of the data

only. This idea fits naturally with a number of recent ad-

vances, boosting large scale ANN search beyond the state-

of-the-art without significant cost.

It is straightforward to use LOPQ exhaustively as well,

by visiting all cells. This of course requires computing

K (for LOPQ) or 2K (for Multi-LOPQ) lookup tables

and rotation matrices instead of just one (e.g. for OPQ).

However, given the superior performance of residual-based

schemes [3, 12], this overhead may still be acceptable. For

large scale, exhaustive search is not an option anyway.

LOPQ resembles a two-stage fitting of a mixture distri-

bution: component means followed by conditional densi-

ties via PQ. Joint optimization of coarse and local quantiz-

ers would then seem like a possible next step, but such an

attempt still eludes us due to the prohibitive training cost.

It would also make sense to investigate the connection to

tree-based methods to ultimately compress sets of points

as in [1], while at the same time being able to search non-

exhaustively without reducing dimensionality.

References

[1] R. Arandjelovic and A. Zisserman. Extremely low bit-rate

nearest neighbor search using a set compression tree. Tech-

nical report, 2013. 1, 8

[2] Y. Avrithis. Quantize and conquer: A dimensionality-

recursive solution to clustering, vector quantization, and im-

age retrieval. In ICCV. 2013. 2

[3] A. Babenko and V. Lempitsky. The inverted multi-index. In

CVPR, 2012. 1, 2, 3, 5, 6, 7, 8

[4] J. Brandt. Transform coding for fast approximate nearest

neighbor search in high dimensions. In CVPR, 2010. 2, 6

[5] V. Chandrasekhar, Y. Reznik, G. Takacs, D. M. Chen, S. S.

Tsai, R. Grzeszczuk, and B. Girod. Compressing feature sets

with digital search trees. In ICCV Workshops. IEEE, 2011. 1

[6] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-

sensitive hashing scheme based on p-stable distributions. In

Symposium on Computational Geometry, pages 253–262.

ACM New York, NY, USA, 2004. 2

[7] J. Delhumeau, P. Gosselin, H. Jegou, and P. Perez. Revisiting

the VLAD image representation. In ACM Multimedia, Oct

2013. 2

[8] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quanti-

zation. Technical report, 2013. 2, 5, 6, 7

[9] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quan-

tization for approximate nearest neighbor search. In CVPR,

2013. 1, 2, 3, 4, 5, 6, 8

[10] Y. Gong and S. Lazebnik. Iterative quantization: A pro-

crustean approach to learning binary codes. In CVPR, 2011.

1, 2, 6

[11] K. He, F. Wen, and J. Sun. K-means hashing: an affinity-

preserving quantization method for learning binary compact

codes. In CVPR, 2013. 1, 2

[12] H. Jégou, M. Douze, and C. Schmid. Product quantization

for nearest neighbor search. PAMI, 33(1), 2011. 1, 2, 3, 4, 5,

6, 8

[13] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg. Search-

ing in one billion vectors: Re-rank with source coding. In

ICASSP, 2011. 3, 5, 6, 7

[14] M. Muja and D. Lowe. Fast approximate nearest neighbors

with automatic algorithm configuration. In ICCV, 2009. 1,

2, 5

[15] M. Norouzi and D. Fleet. Cartesian k-means. In CVPR,

2013. 1, 2, 3, 4, 5, 6, 7

[16] M. Norouzi, A. Punjani, and D. J. Fleet. Fast search in Ham-

ming space with multi-index hashing. In CVPR, 2012. 1, 2,

5, 6, 7

[17] L. Paulevé, H. Jégou, and L. Amsaleg. Locality sensitive

hashing: a comparison of hash function types and query-

ing mechanisms. Pattern Recognition Letters, 31(11):1348–

1358, Aug. 2010. 2, 6, 7, 8

[18] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In

NIPS, 2008. 2

[19] Y. Xia, K. He, F. Wen, and J. Sun. Joint inverted indexing.

In ICCV, 2013. 2, 6, 7, 8

