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Abstract

The goal of image pre-compensation is to process an
image such that after being convolved with a known kernel,
will appear close to the sharp reference image. In a prac-
tical setting, the pre-compensated image has significantly
higher dynamic range than the latent image. As a result,
some form of tone mapping is needed. In this paper, we
show how global tone mapping functions affect contrast
and ringing in image pre-compensation. In particular, we
show that linear tone mapping eliminates ringing but in-
curs severe contrast loss, while non-linear tone mapping
functions such as Gamma curves slightly enhances contrast
but introduces ringing. To enable quantitative analysis, we
design new metrics to measure the contrast of an image
with ringing. Specifically, we set out to find its “equivalent
ringing-free” image that matches its intensity histogram
and uses its contrast as the measure. We illustrate our ap-
proach on projector defocus compensation and visual acu-
ity enhancement. Compared with the state-of-the-art, our
approach significantly improves the contrast. We believe
our technique is the first to analytically trade-off between
contrast and ringing.

1. Introduction
All projectors introduce some form of visual blurring

due to its optics and possibly non-planar projection surface.
One way to reduce this problem is to first characterize its
blur (defocus) kernel and preprocess the image such that
the resulting projected image is sharp. The preprocessing
step is called image pre-compensation.

More generally, image pre-compensation is a long s-
tanding problem in image processing with numerous ap-
plications in computer vision and graphics. Given a sharp
reference image I and the blur kernel or point spread func-
tion (PSF) K, the goal is to find a “compensated” image J
which, after being convolved with K, will appear close to
I . In the projection defocus compensation example above,
by projecting J , the actual perceived image should appear
nearly focused.

Pre-compensation vs. Deblurring. At first glance, im-
age pre-compensation may resemble image deblurring as
both can be viewed as “deconvolution”. The two problems,
however, are inherently different. In image deblurring, there
always exist some “ground truth” J to produce I under
kernel K. The ill-posedness of deblurring rises from the
invertibility of K, i.e., if K is not invertible, there exist
multiple J that can produce the same I . To resolve this
ambiguity, classical Wiener filter [25] uses regularization
to enforce invertibility whereas more advanced solutions
add priors such as image statistics, e.g., gradient sparsi-
ty [14, 16, 13, 15], edge sharpness [10, 11, 4] or new
irradiance-based blur model [3] to constrain the solution.

In image pre-compensation, there usually does not exist
any valid solution J . In projector defocus compensation
for example, the convolution kernel is a low pass filter that
removes the high frequency components of J . J is expected
to preserve sharpness even after being blurred. Therefore,
the problem is ill-posed in that no “ground truth” solution
exists.

Dynamic Range Problem. A serious problem in image
pre-compensation is the significant increase of dynamic
range. Assume K is invertible, conceptually J can be
directly computed as

J = I ⊗K−1 (1)

where ⊗ denotes convolution. Consider a randomly gen-
erated 1D invertible kernel and a 1D image of a step edge
[0, 1]1. The resulting J has range [−2.9, 4.9], as shown in
Fig. 1. In the projector defocus compensation case, we will
need to use J as the input to the projector and therefore we
will have to first compress the rang (tone map) J to [0, 1].

The simplest tone mapping function is linear range com-
pression. In the simple 1D example above, if we apply lin-
ear tone mapping on J as l(J) , the resulting I = l(J)⊗K
will have dynamic range [0.4, 0.6], much narrower than its
original one [0, 1], as shown in Fig. 1. In the projector
defocus case, it will lead to severe contrast loss. More so-
phisticated tone mapping such as Gamma function slightly

1In this paper, we assume the display’s dynamic range is [0, 1]
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Figure 1. The pre-compensated image of a step edge under an
invertible kernel incurs dynamic range burst. Linear tone mapping
produces ringing-free result but significantly reduces the scale
(contrast) of the step.

broadens the dynamic range and contrast of I but at at the
same time introduces ringing. Most previous approaches as-
sume relatively small kernels K and resort to optimization
schemes such as steepest descent [26] and Wiener filters
[2, 19]. However, these techniques are less effective on
larger kernels. By far, only a handful of techniques address
the role of tone mapping functions in image deconvolu-
tion/deblurring [12, 3, 23] while the analysis in image pre-
compensation is largely missing.

Our paper is the first to systematically study how the
tone mapping function affects ringing and contrast in image
pre-compensation. In this work, we focus on global tone
mapping functions. We first show that linear tone mapping
completely eliminates ringing but incurs severe contrast
loss. In contrast, non-linear tone mapping functions such
as Gamma curves slightly enhances contrast but introduces
ringing. To conduct a quantitative analysis, we design new
metrics to measure the contrast of an image with ringing.
Specifically, we set out to find its “equivalent ringing-free”
image that matches the intensity histogram and uses its
contrast as the measure. Our approach hence enables reli-
able comparisons between different tone mapping functions
as well as effective constructions of specific tone mapping
functions to achieve a target contrast.

We demonstrate our technique in a range of application-
s. For projector defocusing, we show that our technique
outperforms the state-of-the-art solutions based on steepest
descent [26] and Wiener filters [2, 19] on large kernels.
For visual acuity enhancement, our technique can improve
the visual experience for people with myopia or hyperopia
when not wearing corrective lenses. Specifically, we pro-
vide a simple user interface to trade between ringing and
contrast that allow user to adjust the ringing control factor
for generating the optimal curve. Our user study shows that
our technique is effective and comparable to the state-of-
the-art solutions [1, 9] in both visual quality and quantitative

measures.

2. Tone Mapping in Image Pre-compensation
We first study how tone mapping affects the dynamic

range, contrast, and ringing in image pre-compensation.
The phenomena of significant dynamic range stretch in
image deconvolution has been widely documented in sig-
nal processing [22] and computer graphics/vision literature
[26, 1, 8, 9]. To briefly reiterate, the stretch is due to
matrix inversion. Recall that the convolution kernel K
can be written in form of a Toeplitz matrix with block-
circulant-with-circulant-block (BCCB) structure which can
be diagonalized by singular value decomposition (SVD) as
K = UΛV ∗, where U and V are the left and right singular
vectors and Λ is a diagonal matrix composed of the square
roots of eigen values. Assume λmin is minimum eigen value
in Λ. Since the eigen values of K−1 are the reciprocal of
K’s, the maximum in Λ′ is then λ′

max = 1/λmin. If λmin

is close to zero, λ′
max can be very large, resulting range

expansion in J . This implies that J can be of a much higher
dynamic range (HDR) and therefore cannot be “physically”
implemented, e.g., used as an input to the projector. The
question is then how to map dynamic range of J to [0, 1].

Before proceeding, we clarify our notations. Assume the
sharp reference image I has range [0, 1] and the computed
J has range [min(J),max(J)]. Given a tone mapping
function f : [min(J),max(J)] 7→ [0, 1], we map J to Jf
as the final pre-compensated image and denote the resulting
convolution result as If = Jf ⊗K = f(J)⊗K. An ideal
f should produce If ≈ I .

2.1. Linear Mapping: The Baseline Performance

As shown in the example of Fig. 1, the simplest f is the
linear compression function l:

Jl = l(J) =
J −min(J)

r
(2)

where r = max(J)−min(J), i.e., the span of the dynamic
range. Convolving Jl with K, we have Il as

Il = l(J)⊗K =
(I − µ)

r
(3)

where µ = min(J) ⊗K is a constant. Il hence shifts and
scale I and therefore should be ringing free. However, it
suffers from significant contrast loss.

For a ringing free image I , we can define its contrast by
root mean square (RMS) as:

c(I) =

√√√√ 1

n

n∑
i=1

(I(i)− Ī)2 (4)

where n is number of pixels and Ī is the average intensity
value.



Since Il is ringing free, we can compute its contrast
factor ζ with respect to I as ζ(Il) = c(Il)/c(I) = 1/r.
Notice that if I is of uniform intensity, c(I) = c(If ) = 0.
In this singular case, we define ζ(If ) = 1, indicating no
contrast lost. Notice that r can be very large even with a
moderate size K. For example, a 5 × 5 Gaussian kernel of
σ = 2.5 (here we assume J can be obtained by Wiener fil-
ter) will result in r = 17, i.e., the contrast loss is significant
(ζ = 1/17). In this paper, we use Jl as the baseline result
and compare it with other tone mapping functions.

2.2. General Tone Mapping

For a general tone mapping function, we assume it is
constructed by composing an additional tone mapping func-
tion f : [0, 1] 7→ [0, 1] onto the baseline result Jl. This
significantly simplifies our analysis. For example, many
classical tone mapping functions such as Gamma curves
can be directly modeled using f . The final tone mapping
function hence is f ◦l = f(l(J)) = f(Jl) and we denote Jf
as the pre-compensated result and If the perceived image.

General Linear Mapping. Let us first consider the gen-
eral linear mapping with truncation:

Jf =


0, 0 ≤ Jl < − b

m

mJl + b, − b
m ≤ Jl ≤ 1−b

m

1, 1−b
m < Jl ≤ 1

(5)

When no truncation occurs, we have

If = (mJl + b)⊗K = mIl + δ (6)

where δ = b⊗K is a constant. Similar to the baseline case,
If is also ringing-free and its contrast factor is

ζ(If ) =
c(If )

c(I)
=

c(If )

r · c(Il)
=

m

r
(7)

m = 1 corresponds to the baseline function l. If m < 1,
c(If ) < c(Il), i.e., we will lose more contrast. If m > 1,
c(If ) > c(Il), we will gain contrast. However, when m >
1, many pixels in Jf will saturate and need to be clamped
to 0 or 1. As a result, although the contrast is enhanced, If
will be contaminated by clamping. We denote the general
linear mapping without truncation as fm (m is the slope)
and we will use it to model the contrast on ringing-corrupted
images.

Non-linear Mapping and Ringing. When f is non-
linear, If will exhibit the ringing artifacts. The cause of
ringing can be explained in the frequency domain. Assume
the PSF K at a specific frequency ωn is an. Therefore,
the corresponding coefficient of K−1 at frequency ωn is
1/an. Let I be a step edge function and its corresponding
Fourier coefficient at ωn is υ/n for n ̸= 0, where υ is some
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Figure 2. Histograms of pre-compensated natural images. Top:
the histograms of 5 natural images from BSDS500 [17] pre-
compensated by an invertible kernel. Bottom: the histogram of
a fixed image pre-compensated by 6 different kernels.

constant. By Eqn 1, the coefficient of J at frequency ωn is
υ/n · 1/an.

If f is a linear function, the coefficient of If at frequency
ωn will be κ · υ/n · 1/an · an = κυ/n, where κ is a
constant scaling factor introduced by f . Therefore, the
spectrum of If will be a scaled version of I , i.e., If will
be contrast reduced step edge function and there will be no
ringing artifacts, which is consistent with our conclusion in
the linear case.

If f is a non-linear, Farid [5] proved using Taylor’s series
that the coefficients at frequency ωn for Jf will be scaled
non-linearly and non-uniformly, i.e., it will no longer be
a scaled version of υ/n · 1/an and convolving it with K
will not cancel out an. As a result, If will no longer be a
step edge function but a signal corrupted by non-uniformly
scaled high frequencies. Visually, it will exhibit strong
ringing artifacts. Similar analysis has been carried out in
[23].

2.3. Disambiguating Contrast from Ringing

The existence of ringing poses significant difficulty in
measuring contrast. Since ringings appear as oscillating
patterns, we cannot directly apply Eqn. 4 as the contrast
measure. Specifically, a low contrast image with severe
ringing can still produce large RMS contrast (Eqn. 4). In
principle, the contrast of a gray-level image should not be
modified by ringing, since this artifact does not introduce
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Figure 3. Measuring contrast and ringing under non-linear tone mapping f . (a) The sharp reference image I and kernel K; (b) The baseline
pre-compensated image Jl and its histogram H(Jl); (c) We compute the tangent line fm̂ of f at the mode of H(Jl); (d) Linear tone
mapping using m produces ringing free result IRF whereas f produces ringing-corrupted result If ; (e) The contrast of If is nearly the same
as the contrast of IRF; (f) |IRF − If | approximates the ringing in If .

additional meaningful content. However, the RMS con-
trast will be artificially boosted due to intensity variance.
Alternative contrast definitions such as Weber contrast or
Michelson contrast [21] that consider the minimum and
maximum luminance are not able to disambiguate actual
contrast from ringing. We are not aware of work done on
measuring contrast under ringing.

Recall that the term “contrast” should characterize the
group behavior of pixels. We consider the intensity his-
tograms of the baseline pre-compensated result Jl and the
general tone mapped result Jf . Our key observation here is
that Jl contains ringing due the Gibbs phenomenon by de-
convolution. Further, the deconvolution behaves as deriva-
tives of a natural image, therefore the intensity histogram
H(Jl) follows the Laplacian distribution. In Fig. 2(a), we
randomly select 5 images from the BSDS500 database [17]
and compute their pre-compensated images using a fixed
kernel. In Fig. 2(b), we fix the image but apply 6 different
kernels to pre-compensate the image. The intensity his-
tograms of the resulting pre-conditioned images consistent-
ly follow the Laplacian distribution. More validations are
included in the supplementary materials.

Next, let us consider how a tone mapping function f
transforms H(Jl). In the linear function fm, the offset b
shifts the histogram whereas the slope m stretches it. In the
non-linear case, we can conduct a first order approximation
to f by using the tangent line at the mode of H(Jl) (i.e., the
most frequent intensity). This leads to a new contrast factor
measure under an arbitrary tone mapping function f : we
first compute H(Jl) and locate mode Ĵl; next, we compute
the tangent line fm̂ on f at point Ĵl; finally, we use fm̂ to
linearly tone map Jl to Jfm̂ .

Since fm̂ is linear, Ifm̂ = Jfm̂ ⊗ K is ringing free.
We call Ifm̂ the “equivalent ringing free” image of If and
denote it as IRF. We then compute the contrast of IRF using
Eqn. 4 and treat it as the contrast of If . Moreover, com-
puting IRF has another usage: we now can quantitatively
measure ringing of If as Γ = |If − IRF|. This is consistent
with the observation that ringing depends on both the input

pre-compensated image Jl (by which we locate the mode
of H(Jl)) and the tone mapping function f (by which we
compute the tangent function at the mode). Fig. 3 shows
the complete pipeline for measuring the contrast and ringing
under an arbitrary f .

3. Tone Mapping Function Selection
Our quantitative measures of contrast and ringing en-

ables reliable comparisons between various tone mapping
functions and feasible constructions of tone mapping func-
tion to achieve specific contrast.

3.1. ContrastPriority Tone Mapping

We first show how to construct a tone mapping function
to achieve a specific contrast. Given a desired contrast
factor ζ, we can directly compute the slope m of the corre-
sponding linear mapping function using Eqn. 7 as m = r ·ζ.
Since ζ is expected to outperform the baseline function fl
and at the same time should not exceed the contrast of the
original image, we should restrict ζ as 1/r < ζ ≤ 1 so that
the m ∈ (1, r].

Our contrast measure analysis shows that, for a tone
mapping function f , if we want to maintain contrast m of
If , at the histogram mode Ĵl, f should 1) map Ĵl to Ĵl to
preserve the overall image intensity level and 2) should have
the tangent slope m at Ĵl.

Given these two conditions, we insert a anchor point
P = (Ĵl, Ĵl) with tangent m. Recall that the other two an-
chor points are the endpoints P− = (0, 0) and P+ = (1, 1).
Our goal is to construct two Bézier curves, the lower half
B− from P− to P and the upper half B+ from P to P+, to
construct f . To do so, we introduce two more anchor points
Q− and Q+ on the tangent line at P to control the tangent
at P− and P+. Specifically, we can parameterize Q− and
Q+ by τ− and τ+:

Q− = (Ĵl − τ− sin θ, Ĵl − τ− cos θ),

Q+ = (Ĵl + τ+ sin θ, Ĵl + τ+ cos θ)
(8)

where θ = arctan(1/m) and 0 < τ− ≤ Ĵl/ cos θ and
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0 < τ+ ≤ (1 − Ĵl)/ cos θ. As a result, P−, Q−, and P
form Bézier curve B− and P , Q+, and P+ form Bézier
curve B+ as

B−(t) = (1− t)2P− + 2(1− t)tQ− + t2P,

B+(t) = (1− t)2P + 2(1− t)tQ+ + t2P+

where 0 ≤ t ≤ 1.

(9)

By adjusting τ− and τ+ and hence Q− and Q+, we
can control the amount of ringing through the curvature
of the curves (Section 2.3) while maintaining the desirable
contrast, as shown in Fig 4. We call this set of functions
the adaptive contrast-priority tone mapping (analogous to
shutter/aperture-priority in photography).

Notice that the upper-half Bézier segment B+ is convex
and the lower-half B− is concave, forming an “S” shape.
We therefore denote the special mapping function as s.
Fig. 4 shows the results by using different s functions. The
reason that the S-shaped curve s achieves higher contrast
factor than the baseline mapping l can also also explained
using Jensen’s inequality: since the upper-half (the high
intensity portion) is convex, by Jensen’s inequality we have

Is = B+(Jl)⊗K > B+(Jl ⊗K) > Jl ⊗K = Il (10)

This implies that the brightest pixel in Is will be brighter
than the one in the baseline result Il. Similarly, since the
lower half is concave, the darkest pixel in Is will be dimmer
than the one in Il. Therefore, the overall dynamic range of
final outputs using s will be greater than the one using l.

Next, let us compare s with the classical Gamma map-
ping function. Recall that the Gamma function, i.e., g(x) =
xγ , can be either convex when γ > 1 (denoted as g+) or
concave when γ < 0 (denoted as g−) where both types can
be used as the tone mapping function. For g+, similar con-
clusion of Eqn. 10 holds, i.e., the brightest pixel in Ig+ will
be brighter than the one in Il. However, since g+ is convex
everywhere, the dimmest pixel will also be brighter than
the baseline result. Therefore, the overall dynamic range is
only marginally expanded. Similar arguments apply to g−

which uniformly brings down the intensity for all pixels.
Our s function, in contrast, can be viewed as combining the
advantage of high intensity potion of g+ and low intensity
portion of g− and hence outperforms both.

3.2. Trading off between Contrast and Ringing

To balance ringing and contrast, recall that the linear
mapping fm produces ringing free result IRF. Therefore,
we can set to find the optimal s function that is close to IRF.
Specifically, we set out to minimize the following objective
function:

O(τ−, τ+;m) = ||IRF(m)− Is(τ
−, τ+;m)||+ α

1

m
(11)

The first term measures ringing in terms of the difference
between Is and its equivalent ringing-free counterpart IRF.
The second term 1/m measures the contrast, i.e., the larger
m (1 < m ≤ r), the higher the contrast. Finally, α is the
parameter that trades off between ringing and contrast. A
larger α favors more contrast (larger m) whereas a smaller
α favors less ringing (the curve will be closer to linear).
We conducted a user study to allow subjects choose their
preferred α for specific types of scenes (Section 4.2).

For a given α, we use the Levenberg-Marquardt (LM)
algorithm [18] to minimize objective function (11). Specif-
ically, we initialize m to its maximum, i.e., r as the initial
value, and find τ− and τ+ that produce the least ringing by
minimizing the first term. We then use the estimated τ− and
τ+ as initial values to optimize m. These steps are iterated
to obtain satisfactory results. Fig. 5 shows the optimized
results for different α.

4. Applications
We demonstrate our tone mapping schemes on two im-

age pre-compensation applications.

4.1. Projection Defocus Compensation

A projector acts as a camera with an ultra-wide aperture
and therefore can only focus at a fixed depth. All projec-
tors suffer from certain blurriness due to imperfect optics
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Figure 5. Balance between contrast and ringing. Top two rows
show the reference image and the blurred result if we do not pre-
compensate the input. The bottom three rows show the results
under different tone mapping functions. A small α loses contrast
but incurs minimal ringing. A large α enhances the contrast but
incurs more ringing.

or non-planar projection surface. The seminal works of
Zhang and Nayar [26] and Brown et al. [2] were the first to
compensate defocus blurs using image pre-compensation.
Brown et al. [2] and Oyamada and Saito [19] used Wiener
filters whereas Grosse et al. [7] later used a coded aper-
ture to improve PSF invertibility. Their techniques work
well for small kernels where the dynamic range of the
pre-compensated image is about the same as the reference
image. Zhang and Nayar [26] bypassed the tone mapping
process through constrained iterative steepest descent. At
each iteration, they clamp the latest estimation to [0, 1]. For
larger kernels, the optimized results neither guarantee good
contrast nor reduced ringing.

Our approach is the first that can actively trade off be-
tween contrast and ringing. To validate our approach, we
project an Epson Powerlite 3LCD projector out of focus on
a wall and captured the projected image using a Canon 60D
camera, as shown in Fig. 6. We mount a coded aperture for
generating invertible PSFs and project a 36 × 64 dot array
to estimate the PSF. The reference images I are sharp. For
each reference image I , we first obtain the pre-compensated
image J using Wiener filter and then compute Jl (with
range [0, 1]). We then compute Jl’s histogram and apply our
optimization framework to find the optimal contrast-priority
tone mapping curve.

Fig. 7 and 8 show two typical examples. Directly using
Jl as the pre-compensated image significantly loses con-
trast. Results using steepest descent [26] show enhanced
contrast but at the expense of excessive blur. Results pro-
duced by our technique appear much sharper, although they
also exhibit some ringing. We can use a larger α to reduce
ringing at the cost of losing contrast or a smaller α to
enhance contrast at the cost incurring more ringing. More
results can be found in the supplementary material.

Projector

Camera

Coded

Aperture

Screen

Figure 6. Experimental setup on projector defocus compensation.

4.2. Improving Visual Acuity

There is an emerging interest on developing tailored
displays for improving visual acuity, e.g., to allow a per-
son with myopia to read without wearing corrective lenses.
Recall that both myopia and hyperopia can be viewed as
special defocus blurs. Alonso et al. [1] used simple Wiener
deconvolution to compute the pre-compensated image and
discussed how contrast loss affects the user experience.
To enhance contrast, Pamplona et al. [20] designed a spe-
cial computational display using multiple layers of LCDs.
Huang et al. [9] later developed a multi-layer pre-filtering
on an ultra-high dynamic range light field display. All these
solutions use simple tone mapping functions and rely on
the displays to enhance contrast. We show that contrast can
be significantly enhanced with a good design of the tone
mapping process; our technique is complementary to the
computational display approaches.

We emulate the PSFs of myopia/hyperopia using Zernike
polynomials [24], which are widely adopted in ophthalmol-
ogy. The kernel in its radial form is defined as

Rm
n (ρ) =

(n−m)/2∑
i=0

(−1)i(n− i)!

i!( 1
2
(n+m)− i)!( 1

2
(n−m)− i)!

ρn−2i (12)

where 0 ≤ m ≤ n and n −m is even. In our experiments,
we only consider up to the second order (n ≤ 2) terms
which can sufficiently model defocus and astigmia. Fig. 10
shows several examples of our PSFs.

We emulate the effect of myopia by convolving sharp
text images with the PSFs and display the results on a
regular LCD display Viewsonic VA2448 with contrast ratio
1000:1. We then use our algorithm to compute the pre-
compensated images such that after being blurred by the
myopia PSFs, will appear readable to the user. In the projec-
tor defocus case, the reference image I is generally a natural
image with rich color and contrast; here, the reference im-
ages are grayscale or even black/white to represent typical
texts (e.g., as displayed on the Kindle). Compared with
linear tone mapping, our technique significantly enhances
the contrast as shown in Fig. 9.
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Reference Image Defocused Result Zhang & Nayar Linear Tone Mapping Our Solution

Figure 7. Defocus compensation on an image. (a) The reference sharp image. (b) The defocused result captured by a Canon 60D. The
kernel is shown on the upper-left; (c) Zhang and Nayar’s algorithm [26] preserves the contrast but exhibits strong ringing. (d) Linear tone
mapping avoids ringing but loses contrast. (e) Our result enhances the contrast with slight ringing.
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Figure 8. Defocus compensation on texts. (a) A text image that
is defocus blurred (same kernel as Fig. 7). (b) [26] marginally
improves the result. (d) Linear tone mapping produces ringing-
free result but loses contrast. (e) Our result enhances the contrast
with moderate ringing.

User Study Finally, we conduct a simple user study to
study users’ preference between contrast and ringing. We
first develop an interface to allow the user to dynamically
change the ringing control factor α in Eqn. 11. We pre-
select 8 different myopia PSFs and 8 test images (4 natural
and 4 text of different font sizes). For every PSF-image pair,
the user selects his/her α. We have recruited 10 subjects (7
male, 3 female), with an average age of 26. Subjects perfor-
m the test with corrected vision where myopia is emulated
by digitally blurring the image.

Fig. 10 (a) and (b) show the range (in blue) and mean (in
red) of α with respect the text images and with respect to
the kernels. For a fixed kernel, we find that the range of the
preferred α on natural images is much larger than the one
on text images. This indicates the heterogeneity of human
perception towards the contrast of natural scenes. The users
also uniformly prefer a higher contrast even though the
displayed images exhibit ringing. In contrast, when viewing
text images, the users uniformly prefer a relatively smaller
α even though it will sacrifice contrast. This suggests that
visual artifacts in texts are more severe to human vision than
in natural images. Our results also show that the size of the
blur kernels affects the choice of α. For smaller kernels

where the loss of contrast is generally low, the divergence
of α is high. For larger kernels, the users seem to uniformly
prefer low ringing than high contrast if they cannot get both.
Further experiments are required to validate our hypotheses
and this preliminary studies have already provided some
useful insights.

5. Conclusions and Future Work

We have presented a new tone mapping scheme for im-
age pre-compensation that can effectively trade between
contrast and ringing. We have also carried out in-depth
analysis on the causes of dynamic range burst and ring-
ing. Furthermore, we have developed a technique to re-
liably measure contrast and ringing on images in image
pre-compensation. Based on our analysis, we have fur-
ther designed a contrast-preserving tone mapping function.
We have demonstrated our approach in projector defocus
compensation and corrective lens free visual enhancement.
Compared with the state-of-the-art, our approach not only
greatly improves the contrast but also provides an effective
interface to trade between contrast and ringing.

Although our user study in visual acuity enhancement
illustrates the effectiveness of our solution, it is still primi-
tive. Our immediate future step hence is to first measure the
actual myopia/hyperopia PSFs of each individual user, e.g.,
by using the tailored display [20], and use the ground truth
PSFs to estimate the tone mapping function. In addition,
our Bézier curve model aims to replicate the contrast at
the most frequent intensity. If the histogram of the pre-
compensated image has multiple peaks, we can potentially
insert multiple anchor points and construct a more complex
tone-mapping function. Finally, the problem of contrast
preservation can be studied from the perspective of gradi-
ents [6]. Our tone mapping function is global and in the
future, we plan to explore integrating our contrast model
with gradient histogram and gradient domain fusion for
handling local contrast enhancements.



(a) (b) (c)

Figure 9. Emulation of myopia by displaying blurred texts. (a)
We use the myopia kernel to blur the text. (b) The result using
pre-compensated image under linear tone mapping. (c) The result
using our tone mapping function.
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Figure 10. A user study for evaluating our system. Top: the test
images. (a) For a fixed kernel, we plot the range of preferred α
across users on different test images. (b) For a fixed test image, we
plot the range of preferred α across the users on different kernels.
The red bar corresponds to the mean α.
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