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Abstract

We introduce a method to reduce most higher-order
terms of Markov Random Fields with binary labels into
lower-order ones without introducing any new variables,
while keeping the minimizer of the energy unchanged.
While the method does not reduce all terms, it can be used
with existing techniques that transforms arbitrary terms (by
introducing auxiliary variables) and improve the speed. The
method eliminates a higher-order term in the polynomial
representation of the energy by finding the value assignment
to the variables involved that cannot be part of a global
minimizer and increasing the potential value only when
that particular combination occurs by the exact amount
that makes the potential of lower order. We also introduce
a faster approximation that forego the guarantee of exact
equivalence of minimizer in favor of speed. With experi-
ments on the same field of experts dataset used in previous
work, we show that the roof-dual algorithm after the re-
duction labels significantly more variables and the energy
converges more rapidly.

1. Introduction
Recent years have seen an increasing emphasis on

higher-order Markov Random Fields in vision. Although
their importance was long understood and there were ear-
lier attempts on utilizing them [5, 18, 21], their use [9, 27]
and research into minimization of various classes of higher-
order MRF energies [1, 6, 8, 11, 12, 17, 20, 24, 25, 26] have
intensified significantly in the past few years. While there
are useful higher-order MRF energies with specific forms
that can be efficiently minimized [15, 16], minimization of
general higher-order energy is needed to utilize sophisti-
cated priors, especially if it is learned from data as in the
case of Fields of Experts (FoEs) [23].

One approach that can minimize general higher-order
MRF energy extends the popular graph-cut methods. In the
case of the MRF with unary and pairwise potential, graph
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Figure 1. Comparison of the average number of variables in the
first-order energy after the reduction. It can be seen that the pro-
posed ELC reduction produces an energy with much less variables.
From left to right: ELC reduction followed by the reduction in
[10, 11], ELC reduction followed by the reduction in Fix et al.[6],
approximate ELC reduction, the reduction in [10, 11], and the re-
duction in [6]. The numbers are the average over about 180 fusion-
move iterations while denoising 10 test images.

cuts can globally minimize submodular energy with binary
labels [13]. Even non-submodular energy can be partially
solved [3, 2, 14]. Energies with more labels can be approx-
imately minimized by “move-making” algorithms which it-
eratively update the solution by devising a labeling problem
with binary labels and solving it with graph cuts. Popular
α-expansion algorithm [4] and more general fusion-move
algorithms [19] fall into this category.

To extend these methods to the higher-order case, reduc-
tion of higher-order potentials with binary labels into first-
order cases have been proposed [6, 7, 8, 11, 13]. The idea
is to add new variables to reduce the order of the energy, as
discussed in the next section.

In this paper, we introduce a method to reduce the order
of the energy without any additional variables. We identify
the condition that this can be done and propose an algorithm
to take advantage of this property. While this condition is
not satisfied for all higher-order terms, in experiments we
have found that it is satisfied for a significant number of
such terms. In fact, in experiments on the same FoE dataset



used in previous work, more than 94% of cubic terms and
more than 99% of quartic terms could be reduced without
new variables. The remaining higher-order terms can be re-
duced by prior methods that add new variables. Thus, this
method has to be used in combination with one of the ex-
isting reductions (but see below for the approximation algo-
rithm).

The experiments also suggest that the resulting energy
after the reduction using the present method is easier to
minimize than those reduced by previous methods. In the
experiments we show that the use of roof-dual algorithm af-
ter the reduction also results in significantly more variables
labeled than when the previous methods are used alone.

We also present a faster approximation that ignores
checking the condition and reduce all the higher-order
terms. While this does not have the guarantee that the min-
imization problem stays the same, used with the fusion-
move algorithm it minimizes the energy much faster than
the state of the art such as Fix et al. [6].

In the next section, we describe the higher-order MRFs
in more detail and discuss prior work in reducing them to
first order. In section 3, we introduce the new reduction as
well as the faster approximation. In section 4, we describe
the experimental validation of the technique and show the
results in image denoising. In section 5, we discuss some
implication of the algorithms, and conclude in the last sec-
tion.

2. Higher-order MRFs with binary labels and
their reduction

Let us denote B = {0, 1}. The Markov Random Field
energy with labels in B is a real-valued function on Bn,
which is called a pseudo-Boolean function (PBF). It can be
uniquely written as a polynomial:

E(x) = E(x1, . . . , xn) =
∑
C∈C

αCxC , (1)

where C is a set of cliques, i.e., a set of subsets of the set
V = {1, . . . , n}, and αC is a real coefficient, while

xC =
∏
i∈C

xi (2)

denotes the product of variables xi with i ∈ C, i.e., a mono-
mial. (We can consider the constant term to be the αC for
C = ∅, in which case xC is defined to be 1.)

When the maximum number of elements in the clique is
k + 1, or equivalently, when the degree of the polynomial
is k + 1, the energy is said to be of k-th order. When it is
quadratic, or of first order, efficient algorithms called graph
cuts can be used to minimize it. Especially when all the
quadratic terms have negative coefficients, it is called sub-
modular and graph cuts can efficiently find its global mini-
mizer. Even when the function is not submodular, roof-dual

techniques [2, 3, 14], commonly referred to as the QPBO
algorithm, can give information on the global minimizer.

To take advantage of these algorithms in the case of
higher-order energies, a number of techniques for reducing
higher-order terms to first order have been developed.

Until a few years ago, there was only one known method
[22] that can reduce general higher-order terms into first or-
der. However, this method is considered impractical, as it
uses very large coefficients that makes the resulting energy
very hard to minimize.

There were other methods known to apply in the case of
terms with negative coefficients [7, 13]. When a < 0, the
identity

ax1 . . . xd = min
w∈B

aw

{∑
i

xi − (d− 1)

}
(3)

allows us to replace ax1 . . . xd in a minimization problem
with aw {

∑
i xi − (d− 1)}, making it first order.

This left the case of positive coefficients unsolved for
some time, but the gap was closed by a separate reduction
[10, 11] for higher-order terms with positive coefficients.

ax1 · · ·xd =

a min
w1,...,wnd

∈B

nd∑
i=1

wi

(
ci,d

(
−
∑
i

xi + 2i

)
− 1

)
(4)

+ a

∑
i<j

xixj

 ,

where a > 0 and

nd =

⌊
d− 1

2

⌋
, ci,d =

{
1 d is odd and i = nd,

2 otherwise.
(5)

Also, [11] pointed out that by flipping variables (using vari-
ables x̄ = 1 − x), reducing the term, and then flipping the
variables back, we have many more transformations.

There are also other techniques [6, 8] that improve the
minimizeability of resulting first order energy and decrease
the number of additional variables. Gallagher et al. [8] pro-
posed using different reduction for different term in the en-
ergy, deciding the reduction for each term so that the num-
ber and the sum of the coefficients of non-submodular terms
in the reduced energy are minimized. Fix et al. [6] proved a
novel identity that turns the coefficient of the highest-order
term to negative, allowing the use of the preferable reduc-
tion above that only applies to terms with negative coeffi-
cients [7, 13]. They also proved a more general formula for
reducing multiple higher-order terms at once, with which
the coefficients of any number of higher-order terms can
be turned negative with only one new variable if they have
common variables.



3. Reducing higher order terms without
adding variables

What is common among the reduction techniques in the
previous section is that new variables are added in order
to reduce the higher-order term into first order. This is a
problem because more variables translate into more difficult
function to minimize. In fact, it is a limiting factor for this
line of approach that the number of variables needed to re-
duce general higher-order potential increases exponentially
as the order increases, since such a potential would have an
exponential number of monomials with degree > 2.

As the main contribution of the present paper, we intro-
duce a new reduction of higher-order terms without adding
any new variables. We first illustrate the method with an
example.

3.1. Raising the local potential

Suppose we have a PBF φ(x, y, z) that takes values:

φ(0, 0, 0) = a φ(1, 0, 0) = b

φ(0, 1, 0) = c φ(1, 1, 0) = d

φ(0, 0, 1) = e φ(1, 0, 1) = f

φ(0, 1, 1) = g φ(1, 1, 1) = h.

(6)

With three variables, the general PBF of this form is cubic.
Then, it can be written in the polynomial form:

φ(x, y, z) = a(1− x)(1− y)(1− z) + bx(1− y)(1− z)

+ c(1− x)y(1− z) + dxy(1− z) + e(1− x)(1− y)z

+ fx(1− y)z + g(1− x)yz + hxyz. (7)

Expanding it, we obtain

s = −a+ b+ c− d+ e− f − g + h (8)

as the coefficient of the highest-degree term xyz. Since xyz
is the only cubic term in the expansion, it follows that if s is
zero, the polynomial would be quadratic.

Suppose we define a new function φ′(x, y, z) by using
(7) but substituting a′ = a+ s for a. Then the coefficient of
xyz in φ′(x, y, z) is

s′ = −a′ + b+ c− d+ e− f − g + h (9)
= −(a+ s) + b+ c− d+ e− f − g + h (10)
= −a+ b+ c− d+ e− f − g + h− s (11)
= s− s = 0. (12)

Thus, we have reduced the cubic polynomial φ(x, y, z) into
a quadratic function φ′(x, y, z) without adding any vari-
ables.

However, these are not the same functions. Therefore
we need to ascertain that this replacement does not affect

the outcome of the minimization problem. Suppose that
φ(x, y, z) is a potential in a larger energy function. Then,
x, y, z are part of the many variables in the problem.

The idea is that if a is large and s is positive, and thus the
minimizer of the whole energy does not include (x, y, z) =
(0, 0, 0) that gives φ(x, y, z) = a, then adding s > 0 and
thus increasing the value a which is not a part of the global
minimum does not change the outcome of the minimization.
And of course, it does not have to be a that we raise the
value. Any of the values a, d, f, and g of φ(x, y, z), which
appear with negative signs in (8) would do, as long as the
assignment of 0 or 1 to the variables that gives rise to the
value is not a part of the global minimizer.

Similarly, if s < 0, we add −s to one of b, c, e, and h.
Of course, this does not guarantee that the actual global

minimizer does not take that local configuration, or increas-
ing it does not change the minimizer. Thus, we investigate
the condition that does guarantee it.

3.2. Excludable local configuration

Suppose we have the energy (1):

E(x) = E(x1, . . . , xn) =
∑
C∈C

αCxC ,

where C denotes a subset (clique) of V = {1, . . . , n} and

xC =
∏
i∈C

xi.

For any C ⊂ V , separate the energy into two parts:

E(x) = EC(x) + EC(x) (13)

with

EC(x) =
∑

D∈C ,C∩D ̸=∅

αDxD, (14)

EC(x) =
∑

D∈C ,C∩D=∅

αDxD. (15)

Note that EC(x) does not contain any variable xi, i ∈ C.
For x ∈ Bn and C ⊂ V , let us denote the vector of

variables indexed by C by

x|C = (xi)i∈C . (16)

Also, let BC be the set of all values that x|C can take.

Definition 1. For a clique C ⊂ V , a value assignment u ∈
BC is said to be an excludable local configuration (ELC) on
C if there exists another assignment v ∈ BC such that

max
x∈Bn,x|C=v

EC(x) < min
x∈Bn,x|C=u

EC(x). (17)



At the core of the polynomial EC(x), there is the part
that consists entirely of variables with indices in C. That
part does not change value if x|C is fixed to u or v. How-
ever, the value of EC(x) can change, since there are mono-
mials in EC(x) that depend on variables with indices out-
side of C. Excludable local configuration u ∈ BC and the
accompanying v ∈ BC have non-overwrapping value range
in spite of that variability. That is, EC(x) with x|C = u is
always larger than EC(x) with x|C = v, so that the global
minimizer would always take v on C rather than taking u.
Formally, we have the following theorem.

Theorem 1. If u ∈ BC is an ELC, then

min
x∈Bn

E(x) < min
x∈Bn,x|C=u

E(x). (18)

In other words, no minimizer x of the energy E(x) takes the
local configuration u on C.

Proof. For any x ∈ Bn and v ∈ BC , let us denote by
x(v)the vector made by “overwriting” x by v:

(x(v))i =

{
vi, (i ∈ C)

xi, (i /∈ C)
(19)

Then for any x ∈ Bn and v ∈ BC , we have

EC(x
(v)) = EC(x) (20)

since EC(x) does not contain any variable xi with i ∈ C.
Also for any v ∈ BC , we have

min
x∈Bn,x|C=v

EC(x) = min
x∈Bn

EC(x) (21)

since any minimizer x of EC(x) can be overwritten by v.
Let x̃ ∈ Bn be a minimizer ofEC . Then for any v ∈ BC ,

min
x∈Bn

EC(x) = EC(x̃) = EC(x̃
(v)). (22)

Finally, since u is an ELC on C, there exists a v ∈ BC

satisfying (17).
Putting these together, we have

min
x∈Bn,x|C=u

E(x) = min
x∈Bn,x|C=u

(EC(x) + EC(x))

≥ min
x∈Bn,x|C=u

EC(x) + min
x∈Bn,x|C=u

EC(x)

> max
x∈Bn,x|C=v

EC(x) + min
x∈Bn

EC(x)

≥EC(x̃
(v)) + EC(x̃

(v))

=E(x̃(v))

≥ min
x∈Bn

E(x).

Assume that we would like to eliminate a higher-order
monomial αCxC in the energy. If we can find an ELC u ∈
BC , then we can raise the value of the energy by αC only
when x|C = u. By the theorem, no minimizer of the energy
takes u on C, hence raising the value in that case does not
affect the minimization problem. The only caveat is that we
must take care so that u has the right parity, so that raising
the value would correctly cancel the coefficient of xC .

Definition 2. We say u ∈ BC has an even (odd) parity if
there are even (odd) number of i ∈ C with ui = 1.

3.3. Our algorithm

More precisely, our algorithm is as follows.

1) To eliminate a higher-order monomial αCxC in the en-
ergy, do the following.

2) If αC < 0, find an ELC with odd parity if |C| is odd and
even parity if |C| is even; if αC > 0, find an ELC with
the opposite parity.

3) If such an ELC u is found, add the polynomial

ψ(x) = |αC |
∏
i∈C

{uixi + (1− ui)(1− xi)}. (23)

to the energy and obtain the new energy

E′(x) = E(x) + ψ(x). (24)

a) The new energy has the value

E′(x) =

{
E(x) + |αC | (x|C = u)

E(x) (x|C ̸= u).
(25)

Because u is an ELC, any minimizer x̃ of the original
energy E(x) has x̃|C ̸= u. Thus E(x) and E′(x)
have exactly the same minimizers.

b) The added polynomial ψ(x) has the highest-degree
monomial −αCxC and contain no other monomial
with degree ≥ |C|. Therefore, the monomial αCxC
in E(x) is eliminated in E′(x) and there is one less
monomial of degree |C|.

4) If such an ELC u is not found, use one of the known
algorithms to reduce the higher-order monomial.

3.4. Remarks

It is important that the condition (17) for ELC can be
checked relatively locally. That is, the polynomial EC(x)
contains those monomials that have at least one variable in
C and in a typical problem in vision, such a polynomial
is fairly localized. In general, however, it is possible that
EC(x) = E(x).



It is inevitable that in some cases no ELC exists. Af-
ter all, the variability of EC(x) with fixed x|C has no gen-
eral limit; thus it is possible that no matter how we chose
a pair of fixed vectors for x|C , the value ranges of EC(x)
for the pair always overwrap. However, in our experiments,
we found more than 94% of cubic monomials and 99% of
quartic monomials were eliminated.

3.5. Faster approximation

An incompleteness in the algorithm described above is
that it does not specify how to find the ELC. Our algorithm
in the experiments takes the brute force approach; and a
problem in the current implementation is the time it takes to
find the ELC. For a fixed x|C , we can delete the monomials
inEC(x) that contains the variables fixed to 0 and eliminate
the variables fixed to 1, thereby shrinking the polynomial
considerably. Then we have to find a pair of the ELC u
and its accompanying v; which we currently implement as
an exhaustive search. On the other hand, this part of the
algorithm can be easily parallelized, unlike the max-flow
algorithm that constitutes the main graph-cut algorithm.

Here, we introduce an approximation motivated by the
same intuition as the above algorithm. It does not have the
theoretical guarantee that the global minima are unmoved,
but in practice it makes the minimization much faster. That
is, we simply find the maximizer of the higher-order poten-
tial among the value-assignments with the right parity.

Approximation Algorithm.

1) To eliminate a higher-order monomial αCxC in the en-
ergy, do the following.

2) Collect the monomials in the energy that consists of vari-
ables in C and make a polynomial:

ϕ(x|C) =
∑
D⊂C

αDxD. (26)

3) If αC < 0, find the maximizer u of ϕ(u) among the u’s
with odd parity if |C| is odd and even parity if |C| is
even. If αC > 0, find the maximizer u of ϕ(u) with the
opposite parity.

4) Add the polynomial

ψ(x|C) = |αC |
∏
i∈C

{uixi + (1− ui)(1− xi)}. (27)

to the energy.

This approximation eliminates the monomial with the high-
est degree in ϕ(x|C) and reduces its degree by one; as well
as raising ϕ(u). Since ϕ(u) is the maximum among the half
of possible values of ϕ, it is unlikely that u is part of a min-
imizer of the entire energy. But there is no guarantee. On
the other hand, it proved to speed up the minimization in the
experiments.

4. Experimental results
Ever since the performance of the clique reduction algo-

rithm in [10, 11] was compared with that of earlier belief
propagation algorithms [18, 21], some authors [6, 12] who
proposed different algorithms for minimizing higher-order
energies have also compared the performance of their algo-
rithms using the same benchmark on image denoising using
the FoE model. Therefore, we used the same benchmark to
compare with these state-of-the-art methods.

The FoE model represents the prior probability of an im-
age as the product of several student-T distributions:

p(I) ∝
∏
C

K∏
i=1

(
1 +

1

2
(Ji · IC)2

)−αi

. (28)

where C runs over the set of all 2× 2 patches in the image,
and Ji is an 2×2 filter. The parameters Ji and αi are learned
from a database of natural images.

For the details of the particular FoE energy and the fu-
sion move formulation used in the benchmark, see [11]. The
algorithms compared here have the same basic structures
and minimize the same third-order multiple-label energy.
They are iterative algorithms in which a proposal configu-
ration is generated in each iteration, and fused with the cur-
rent configuration by minimizing a third-order energy with
binary labels. This third-order energy is converted into first-
order energy by various reduction methods. We compared
the following reductions:

• [ELC+HOCR] the proposed reduction using the ELC,
followed by the reduction in [10, 11] to reduce the
higher-order terms that do not have any ELC with the
correct parity,

• [ELC+Fix et al.] the proposed reduction followed by
the method by Fix et al. [6], to reduce the leftover
terms,

• [ELC Approx.] the approximation described in 3.5,
which reduce all the higher-order terms,

• [HOCR] the reduction in [10, 11], and

• [Fix et al.] the method by Fix et al. [6], which is the
state of the art.

The resulting energy of the reduction is minimized using the
QPBO algorithm, which may or may not label each vari-
able. The ratio of those labeled is an important measure of
the quality of the reduction.

4.1. Results

Figure 1 compares the average number of variables in
the first-order energy after the reduction. It can be seen that
the proposed ELC reduction produces an energy with much
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Figure 2. Energy vs. iteration (left), energy vs. time (middle), and the percentage of pixels labeled (right). ‘ELC+HOCR’ is the ELC
reduction followed by the reduction in [10, 11]; ‘ELC Approx.’ is the approximation algorithm we propose in 3.5; ‘HOCR’ is the reduction
in [10, 11]; and ‘Fix et al.’ is the reduction in Fix et al. [6]. The ELC reduction followed by the reduction in Fix et al. [6] was also tested,
but is omitted here because it is almost identical with ‘ELC+HOCR’.

less variables: the new algorithms result in about fifth of the
variables as the state of the art. This results in more efficient
energy minimization: Figure 2 shows the plot of the energy
against iteration (left), energy against time (middle), and the
percentage of pixels labeled (right).

The main observation is that the approximation algo-
rithm is superior to the state of the art (Fix et al. [6]) in
all respect, at least in this problem. Using the approxima-
tion, more than 98% of the pixels are labeled from the be-
ginning, compared to about 75% with Fix et al. As a result,
the approximation algorithm decreases the energy more in
each iteration. It also takes less time for each iteration than
Fix et al., so that the plot of the energy with time shows
even larger difference between the proposed approximation
algorithm and Fix et al. [6].

Figure 3 shows the denoising examples. Each row
shows, from left to right, the noise-added image, the de-
noised image using HOCR [10, 11], the denoised image us-
ing Fix et al. [6], and the denoised image using the approxi-
mation algorithm proposed in 3.5. Each denoising was done
only for 10 seconds on a machine with Intel Core i7-4770K
CPU with clock speed 3.5GHz. The resulting energy values
are shown below each image. Our result obtains consis-
tently lower energy in the same amount of time.

4.2. Approximation quality

We also empirically evaluated the quality of the approx-
imation by the algorithm in 3.5.

For each cubic or quartic term, the algorithm takes the
polynomial ϕ that consists of all the monomials in the en-
ergy that contain only the variables in the term, and then
finds the local configuration u that maximizes ϕ(u), and
uses u instead of the ELC, i.e., raises the energy value by a

constant only when u is a part of the global configuration.
We found on average u is in fact an ELC for 88% of cu-
bic terms and 97% of quartic terms, which means that the
energy was correctly reduced for these terms even in the
approximation algorithm.

Even if u is not an ELC, it is still possible that raising
ϕ(u) does not affect the minimization problem, i.e., that u is
not a part of a global minimizer. To see the extent that this is
the case, for each term that the maximizer configuration u is
not an ELC, we checked if it is a part of a global minimizer.
We used the Fix et al. reduction for the original energy and
minimized the reduced energy using the QPBO (roof dual)
algorithm. Because of the persistency, when variables are
labeled, they are part of a global minimizer. About 65%
of the cubic terms and 58% of the quartic terms for which
u is not an ELC had all their variables labeled. For very
few (0.02% for cubic terms and 0.003% for quartic terms)
among them, u was in fact a part of the global minimizer.

In general, quartic terms seem more likely to be reduced
correctly; this is to be expected since there are more possi-
ble configurations of variable assignments for quartic terms
than for cubic terms (24 vs. 23) , and thus less probability
that the chosen maximizer configuration turns out to be a
part of a global minimizer. Thus, for terms of even higher
order, we can expect the approximation algorithm to work
even better.

Comparing pixel by pixel, about 83.3% of them are la-
beled both using the approximation algorithm and using the
Fix et al. algorithm. Among them, only 0.00012% were
labeled differently.
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Figure 3. Image denoising examples. From the left, the noise-added image, denoised using HOCR [10, 11], Fix et al. [6], and the
approximation algorithm proposed in 3.5. To show the difference in speed, the denoising was done for 10 seconds in each case.

5. Discussion

There have been some objections to the logic of our argu-
ment in this paper. On one hand, we argue that higher-order
energies are essential for inference problems in vision; on
the other, we just approximate the higher-order energy by a
lower-order one and minimize it. This may seem to indicate
that higher-order energies are mostly not necessary.

However, it is not that simple. The actual energy that
represents the inference problem is often, as in the case of
the FoE example, not directly reducible to lower order by
the present method or others, since it has more labels than
two. The binary energy in each iteration only arises in the
process of fusion, after some proposal is chosen. So we
can only reduce the resulting binary energy after there is

some interaction between the current configuration and the
proposal; and it does not mean that the original multi-label
energy can always be of first order.

Also, the multi-label energy itself is a combination of
different factors such as the prior and the likelihood. In the
case of FoE, the higher-order part is the prior that is learned
from a database of natural images. The important point here
is that the learned prior contains the information that is use-
ful for inference based on any given natural image. Thus it
is entirely possible that, even if the combination of the prior
and the given image somehow produces an instance of the
inference problem that can be approximated by a first-order
energy, the prior itself must be of higher-order to maintain
the information on the distribution of all the natural images.



6. Conclusion
In this paper, we introduce a method to reduce the or-

der of potentials in an MRF energy without adding any new
variables. For that, we raise a value of the potential only
when its variables take a particular configuration that satis-
fies a certain condition so that the highest-order monomial
in the polynomial representation of the potential vanishes.
We investigate the condition so that this modification of the
potential can be done without affecting the minimizer of the
energy. While this condition is not always satisfied, in ex-
periments on the same FoE dataset used in previous work,
more than 94% of cubic terms and more than 99% of quar-
tic terms satisfied the condition and thus could be reduced
without adding new variables. We also introduce an approx-
imation algorithm that raise the value without checking the
condition, which turns out to be more efficient than the state
of the art in experiments.
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