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Abstract

Standard geometric model fitting methods take
as an input a fixed set of feature pairs greedily
matched based only on their appearances. Inad-
vertently, many valid matches are discarded due to
repetitive texture or large baseline between view
points. To address this problem, matching should
consider both feature appearances and geometric
fitting errors. We jointly solve feature matching and
multi-model fitting problems by optimizing one en-
ergy. The formulation is based on our generaliza-
tion of the assignment problem and its efficient min-
cost-max-flow solver. Our approach significantly
increases the number of correctly matched features,
improves the accuracy of fitted models, and is ro-
bust to larger baselines.

1. Introduction
Many existing methods for model fitting and

3D structure estimation use pre-matched image
features as an input (bundle adjustment, homog-
raphy fitting, rigid motion estimation). Vice
versa, many matching methods (sparse/dense
stereo) often use some pre-estimated structural con-
straints, e.g. epipolar geometry, to identify cor-
rect matches/inliers. This paper introduces a novel
framework for simultaneous estimation of high-
level structures (multi-model fitting) and low-level
correspondences (feature matching). We discuss a
regularized formulation of the proposed fit & match
(FM) problem. That formulation uses a general-
ization of the assignment problem and we solve

it using an efficient specialized min-cost-max-flow
solver. This paper primarily focuses on jointly
solving multi-homography fitting and sparse fea-
ture matching as a simple show case for the FM
paradigm. Other applications would be rigid mo-
tions estimation, camera pose estimation, etc.

Related Work: An attempt to formulate an ob-
jective function for fitting-&-matching naturally
leads to a version of the assignment problem. The
majority of prior work could be divided into two
major groups: matching techniques using quadratic
assignment problems and FM techniques using lin-
ear assignment as sub-problems.

Quadratic assignment problem (QAP) normally
appears in the context of non-parametric matching.
For example, the methods in [16, 3, 12] estimate
non-rigid motion correspondences as a sparse vec-
tor field. They rely on a quadratic term in the ob-
jective function to encourage geometric regularity
between identified matched pairs. Such QAP for-
mulations often appear in shape matching and ob-
ject recognition. QAP is NP-hard and these meth-
ods use different techniques to approximate it. For
example, [7] approximates QAP by iteratively min-
imizing its first-order Taylor expansion, which re-
duces to a linear assignment problem.

If correspondences are constrained by some
parametric model(s), matching often simplifies to
linear assignment problem when model parame-
ters are fixed. In this case, the geometric regu-
larity is enforced by a model fidelity term (linear
w.r.t. matching variables) and pair-wise consisten-
cies [16, 3, 12] are no longer needed. Typically for
FM problems, feature matching as a linear assign-
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ment problem and model parameter fitting are pre-
formed in a coordinate descent fashion. For exam-
ple, SoftPOSIT [5] matches 2D image features to
3D object points and estimate camera pose in such
iterative fashion. Building on these ideas [15] fit
a single homography using geometric and appear-
ance priors with unknown correspondences.

Our work develops a generalization of linear as-
signment problem for solving FM problem when
matching is constrained by an unknown number of
geometric models. In contrast to [5, 15], we do
not assume that matches/correspondences are con-
strained by a single parametric model. Note that
in order to solve FM problem for multi-models, a
regularization term is required to avoid over fitting.
Unlike [15, 5, 16], our energy formulation includes
label cost regularization as in [6].

Another related approach, guided matching, is a
post-processing heuristic for increasing the number
of matches in case of single model fitting [9]. Simi-
lar to our approach, guided matching iteratively re-
estimates matches and refines the model. In con-
trast to our approach, guided matching pursues dif-
ferent objectives at refitting and re-matching steps1

and does not guarantee convergence. Our method
could be seen as an energy-based guided match-
ing with guaranteed convergence. Moreover, unlike
guided matching [9], our regularization approach is
designed for significantly harder problems where
data supports multiple models.

Contributions: We propose a fit-&-match energy
functional (1)-(2) for jointly solving the matching
and multi-model fitting problems. Our energy con-
sists of unary potentials term that describes geo-
metric model fitting errors and feature appearance
matching costs, and label cost term that discour-
ages over-fitting by penalizing the number of mod-
els/labels assigned to matched features.

Our fit-&-match framework is based on a novel
generalization of linear assignment problem to
multi-model case, namely generalized assignment
problem (GAP), which jointly formulates feature-
to-feature matching and match-to-model assign-
ment. We propose a fast approach for solving the

1Geometric errors minimization vs. inliers maximization.

regularized GAP (in which the number of mod-
els are penalized) by generalizing min-cost-max-
flow techniques for bipartite weighted matching
[8]. Our main technical contributions are summa-
rized here:
• fit-&-match energy formulation (1)-(2)
• generalized assignment problem, GAP
• a fast solver for regularized GAP.

We compare our joint fitting-&-matching frame-
work with a state-of-the-art multi-model fitting al-
gorithm that uses pre-matched features [6] and a
variant of it that uses guided matching [9]. Our ap-
proach finds more matches, estimates models more
accurately, and is more robust to larger baselines
between cameras.

2. Fit-&-Match Energy
We will use the following notations. Fl and Fr

are the sets of observed SIFT features [13] in the
left and right images, respectively. L is the set of
indices to all models (labels). θ is the set of all
models’ parameters, θ = {θh|h ∈ L} where θh is
the parameters of model h ∈ L. In practice, θ could
be a set of randomly sampled models, e.g. homo-
graphies. f is a labelling of all features in the left
image, f = {fp|p ∈ Fl} where fp is the label as-
signed to feature p such that fp ∈ L. xpq is a binary
variable which is 1 if p and q are matched and 0 oth-
erwise. A matchingM is {xpq | (p, q) ∈ Fl×Fr}.
Q(p, q) is an appearance penalty for matching fea-
tures p ∈ Fl and q ∈ Fr based on the similarity of
their descriptors.

We define fitting and matching score between
features p ∈ Fl and q ∈ Fr for a given model θh as

Dpq(θh) = ||θh · p− q||+Q(p, q)

combining geometric error and appearance penalty
where || || denotes geometric error e.g. sym-
metric transfer error. A similar matching score
was used in computing the ground truth matching
in [14]. We use symmetric appearance penalty2

Q(p, q), e.g. the angle between the features’ de-
scriptors of p and q.

2In this work, Q(p, q) = 0 if the angle between two fea-
tures’ descriptors is less than π/4 and ∞ otherwise.



For simplification, we will introduce our energy
functional under the assumption that there are no
occlusions/outliers

E(f, θ,M)=
∑

p∈Fl, q∈Fr

Dpq(θfp) · xpq+β
∑
h∈L

δh(f) (1)

∑
p∈Fl

xpq = 1 ∀q ∈ Fr∑
q∈Fr

xpq = 1 ∀p ∈ Fl
xpq ∈ {0, 1} ∀p ∈ Fl, ∀q ∈ Fr

 (2)

where δh(f) = [∃p ∈ Fl : fp = h] and [·] are
Iverson brackets.

Occlusions/Outliers: Due to occlusions |Fl| 6=
|Fr| and that renders (1)-(2) unfeasible since the
one-to-one constraints could never be met. We add
||Fl|−|Fr|| dummy features, with a fixed match-
ing cost T , to the smaller set of features to ensure
feasibility. This is equivalent to changing a rectan-
gular assignment problem to a square one. Also, to
make our approach robust to outliers we introduce
an outlier model φ such that Dpq(φ) = T for any
p ∈ Fl and q ∈ Fr. The use of an outlier model
with a uniformly distributed cost T is a common
technique in Computer Vision [6, 10].

3. Overview of Our Approach

Energy (1)-(2) is NP-hard. We propose to find
an approximate solution by minimizing this energy
in a block coordinate descent fashion.

In general, to minimize a function via block co-
ordinate descent its coordinates (variables) are par-
titioned into n blocks, not necessarily mutually ex-
clusive. At each iteration the function is sequen-
tially minimized with respect to the coordinates in
each block while fixing other coordinates that are
not in this block. Intuitively, fixing different sets
of variables in (1)-(2) reduces the energy to special
cases which are easier to minimize.

In our case, the set of all variables {f, θ,M}
for energy (1) are partitioned into two blocks {f, θ}
and {f,M}. Note that labelling f is in both blocks
and, therefore, it is optimized at all steps.

The first block {f, θ} fixes matchingM and en-

ergy (1)-(2) reduces to

E(f, θ) =
∑
p∈Fl

Dp(θfp) + β
∑
h∈L

δh(f) (3)

where Dp(θh) = Dpq(θh) for all h ∈ L provided
that M assigns q to p, i.e. xpq = 1. Energy (3)
could be efficiently minimized over f and θ us-
ing standard multi-model fitting methods for fixed
matching, e.g. PEARL [6].

The second block {f,M} fixes parameters θ.
We separately consider two cases: β=0 and β>0.
In case β = 0 the optimization problem could be
optimally solved in polynomial time and the corre-
sponding algorithm is used as a building block for
the more general case β > 0. Thus, we first discuss
the simpler case β = 0 when energy (1)-(2) does
not penalize the number of models. It reduces to

E(f,M)=
∑

p∈Fl, q∈Fr

Dpq(θfp) · xpq (4)

subject to constraints (2). We will refer to (4)-(2) as
the generalized assignment problem (GAP). GAP
is a weighted matching problem over a fixed set of
models that match features and assigns each match
to a model3. Furthermore, GAP is an integral lin-
ear program, see our proof in [11]. Section 4.1 de-
scribes a solver for GAP that finds its global mini-
mum in polynomial time.

The more general case β > 0 of the block coor-
dinate descent for (1)-(2) with respect to variables
{f,M} reduces to optimization of energy

E(f,M)=
∑

p∈Fl, q∈Fr

Dpq(θfp) · xpq+β
∑
h∈L

δh(f) (5)

subject to constraints (2), which is NP-hard. We
will refer to (5)-(2) as regularized-GAP. Section 4.2
introduces Local Search-GAP (LS-GAP) approxi-
mation algorithm for energy (5)-(2). It uses our
GAP solver in a combinatorial local search fash-
ion iteratively exploring different subsets of models
and selecting solutions reducing energy (5) which
requires solving a series of similar GAP instances
efficiently.

3Our definition of GAP is different from some generaliza-
tions of the assignment problem in the optimization literature.



Our Energy-based Fitting & Matching (EFM)
algorithm for energy (1)-(2) can be summarized as

Energy-based Fitting & Matching (EFM)
Initialization: Find an initial matchingM using
standard matching techniques
repeat

1-Given matchingM, minimize (3) using
PEARL [6] to find labelling f and models’
parameters θ.

2-Given models’ parameters θ, minimize
(5)-(2) using LS-GAP, see Sec. 4.2, to
find matchingM and labelling f .

until energy (1) converges

EFM finds an initial matching using standard
matching techniques, e.g. standard SIFT match-
ing [13]. Then, it iteratively optimizes energy (1)-
(2) by alternatively minimizing energy (3) over
labelling f and models’ parameters θ for fixed
matching M, and minimizing energy (5)-(2) over
f and M for fixed θ. Although EFM is guaran-
teed to converge since energy (1) is bounded below,
i.e. (1) ≥ β, it is not trivial to derive a theoretical
bound on the convergence rate and approximation
ratio for EFM. However, in Section 5, we empiri-
cally show that EFM converges in a few iterations
to a near optimal solution.

4. Optimization
Section 4.1 shows how to optimally solve

GAP (4)-(2) and a series of similar GAP instances
efficiently. Section 4.2 covers Local Search-GAP
(LS-GAP) algorithm for energy (5)-(2) that re-
quires solving many similar GAP instances.

4.1. Solving GAP

There are alternative ways to solve GAP [11].
This section describes an approach that we find
most efficient. We reduce GAP to standard Lin-
ear Assignment Problem (LAP) and propose an ef-
ficient solver for sequences of similar problems.
Reducing GAP to LAP: GAP (4)-(2) reduces to
LAP since f and M are independent: any pair
(p, q) has optimal label fp = argmin

h∈L
Dpq(θh) in-

dependently from the value of xpq . Then, optimal

M in (4)-(2) is found by solving the following LAP

E(M)=
∑

p∈Fl, q∈Fr

Dpq · xpq (6)

subject to (2) where Dpq := min
h∈L

Dpq(θh).

LAP as MCMF (overview): LAP (6)-(2) can
be equivalently formulated as a standard min-cost-
max-flow (MCMF) problem with known efficient
solvers [1]. This problem is defined as follows.
Let G = (V, E) denote a graph with vertices V and
edges E where each edge (v, w) ∈ E has a capacity
u(v, w) and cost c(v, w). Let z be a flow function
such that 0 ≤ z(v, w) ≤ u(v, w) for over all edges
in E . The cost of an arbitrary flow function z is
defined as cost(z) =

∑
(v,w)∈E c(v, w) · z(v, w).

MCMF is a valid maximum flow z from s to t in
V that has minimum cost.

To formulate LAP (6)-(2) as MCMF problem we
build graph G=(V, E) with nodes

V ={s, t} ∪ {p | p ∈ Fl} ∪ {q | q ∈ Fr},

edges

E = {(s, p), (q, t), (p, q)|p ∈ Fl, q ∈ Fr},

capacity u(v, w) = 1 for all edges (v, w) ∈ E , and
cost c(p, q) = Dpq for edges (p, q) ∈ Fl × Fr
and 0 for other edges. The optimal M and f for
GAP can be obtained from MCMF flow z∗ for G
as xpq = z∗(p, q) for all (p, q) ∈ Fl × Fr and
fp=argmin

h∈L
Dpq(θh) if p, q are matched, xpq=1.

Solving MCMF (overview): There are many al-
gorithms for finding MCMF for a given graph [1].
We overview the Successive Shortest Path (SSP) al-
gorithm [1] in order to introduce our flow recycling
technique for efficiently solving similar GAP in-
stances. SSP successively finds the shortest path
w.r.t. edge costs from s to t and augments these
paths until the network is saturated. For unit ca-
pacity graphs, augmentation of an edge reverses
its direction and flips its cost sign. Finding the
shortest path with negative costs is expensive. In-
stead of the original costs SSP uses reduced costs
cπ(v, w) := c(v, w)−π(v)+π(w) ≥ 0 where π(v)



is the potential of node v. Initially set to zero, node
potentials are updated after each path augmentation
to ensure that the reduced costs non-negativity con-
straints are satisfied, see [1] for more details. Let
n= |Fr|= |Fl| be the number of features. A short-
est path w.r.t. cπ could be found inO(n2) using Di-
jkstra’s algorithm. By construction, we need to find
n paths. Thus, SSP is O(n3) when solving LAP.

Solving a Series of GAPs: We propose O(n2)
method for solving MCMF corresponding to a
modified LAP (6)-(2) after changing one or all edge
costs associated with one feature in Fl. Assume
MCMF z for G and node potential function π that
satisfy the reduced costs non-negativity constraints
on the residual graph Gz. Changing edge costs as-
sociated with feature p may violate reduced cost
non-negativity constraints involving p. To regain
feasibility after dropping the no longer needed arti-
ficial nodes s and t and their edges, we reverse the
flow through (p, q) where p and q are matched by
z and update π(p)

π(p) = min c(p, v) + π(v) ∀v ∈ Fr.

Finally, we push one unit of flow from p to q,
i.e. find the shortest path w.r.t. cπ , to maximize
the flow. The reduced cost optimally theorem [1]
grantees that the resulting flow is MCMF. In case
m features inFl had their associated costs changed,
the new MCMF could be found in O(mn2) by ap-
plying the steps above sequentially to each feature.
These steps could be used with any LAP [4] or
MCMF solver not just SSP. Given an optimal so-
lution for LAP (6)-(2), it is possible to compute op-
timal node potentials that satisfy reduced cost non-
negativity constraints in polynomial time [1, 11].

4.2. Local Search-GAP (LS-GAP)

Now we introduce a local search algorithm that
solves regularized GAP (5)-(2) using GAP algo-
rithm introduced in Section 4.1 as a sub-procedure.
Assume that L is the current set of possible mod-
els4. Let Lc be an arbitrary subset of L and
Mf (Lc) denote the GAP solution when the label

4In practice, we restrict L to be the set of models that were
assigned to at least one matched pair of features in (3) solution.

space is restricted to Lc. Note that GAP ignores
the label cost term in (5) but we could easily evalu-
ate energy (5) forMf (Lc). The proposed LS-GAP
algorithm greedily searches over different subsets
Lc ∈ L for one such that Mf (Lc) has the low-
est value of energy (5). Our motivation to search
for minima of (5)-(2) only among GAP solutions
comes from an obvious observation that a global
minima of (5)-(2) must also solve the GAP if the
label space is restricted to the right subset of L.

We define sets of all possible add, delete and
swap combinatorial search moves as

N a(Lc) = ∪h∈L\Lc
{Lc ∪ h}

N d(Lc) = ∪h∈Lc
{Lc \ h}

N s(Lc) = ∪ h∈Lc

`∈L\Lc

{Lc ∪ ` \ h}.

These are three different local neighbourhoods
around Lc. We also define a larger neighbourhood
N ? around Lc as the union of N a(Lc), N d(Lc)
and N s(Lc). LS-GAP uses a combination of add,
delete and swap moves, similar to the work in [2],
to greedily find a set of labels near current set Lt
that is better w.r.t. energy (5).

Local Search-GAP (LS-GAP)
Lt ← φ, Nt ← N ?(Lt)

while ∃ Lc ∈ Nt

if energy (5) ofMf (Lc) <
of energy (5)Mf (Lt)

Lt ← Lc, Nt ← N ?(Lt)
else
Nt ← Nt \ Lc

return GAP solutionMf (Lt)

5. Evaluation
In this section, we discuss some of the EFM

framework properties, e.g. convergence rate etc.
Then we compare the matching quality of our pro-
posed EFM framework to standard SIFT matching
[13]. We also compare the matching quality and the
accuracy of models estimated by the EFM frame-
work, Energy-based multi-model Fitting (EF) al-
gorithm [6, 10], and EF followed by guided match-
ing [9] (EF+GM). Carrying out these experiments



requires knowing the ground truth of the dataset
at hand. We computed ground truth; matching
MGT , model estimates θGT and labelling fGT as
described in [11].

The effect of EFM iterations on energy (1) for
different |L| is shown in Fig. 1(a). For each |L| the
experiment is repeated 50 times. On the average
each iteration took 1 min., and most of the energy
was reduced in the first three iterations. EFM con-
verged on the average after 5 iterations.

EFM is non-deterministic as it uses a set of ran-
domly sampled models L. Figure 1(b) shows final
energy histograms to different sizes ofL. As shown
the bigger |L| is the more likely the final energy
is going to be small, i.e. better solutions. Using a
large |L| helps EFM avoid local minima.

Our matching evaluation criterion is based on
Receiver Operating Characteristics (ROC) of the
True Positives Rate vs. the False Positives Rate.
The ROC attributes for an estimated matching M
and ground truth matchingMGT are defined as fol-
lows: Positives (P) number of matches in MGT ,
Negatives (N) number of potential matches that
were rejected by MGT , True Positives (TP) num-
ber of matches in M and MGT (intersection),
False Positives (FP) number of matches in M but
not in MGT , True Positives Rate (TPR) TP

P , and
False Positives Rate (FPR) FPN .

A basic comparison between the matching qual-
ity of EFM and standard SIFT matching is shown in
Fig. 2. The ROC curve, in Fig. 2, of SIFT matching
[13] is achieved by varying the threshold on the sec-
ond best ratio (SBR) 5. For EFM we show a scatter
plot since it is non-deterministic. We also related
the EFM scatter plot to the achieved final energy
by colour coding it. As can be seen, for EFM the
lower the final energy (blue is low energy) the bet-
ter the matching quality. Also, EFM outperformed
SIFT matching by reaching high TPR values.

5SBR is the ratio of the distance between a left feature de-
scriptor and its closest right feature descriptor to the distance of
its second closest

(a) Energy vs Time

(b) Effect of |L| on the final energy

Figure 1: Best seen in Colour, Fig. (a) shows the effect
of EFM iterations on energy (1). EFM converged on the
average after 5 iterations, and each iteration on the av-
erage took 1 min. Figure (b) shows multiple histograms
of the final energies for different sizes of initial set of
proposals—blue indicates a large set of proposals. The
larger the set of initial proposals L the more likely that
EFM will converge to a low energy.

Figure 2: Best seen in Colour, Fig. (a) shows ROC curve
for standard SIFT matches by varying SBR threshold,
and the scatter plot represents EFM results for different
sizes of initial set or proposals. As can be seen, the lower
the final energy (blue) the better the matching.



GQ ROC
med. mean var. TPR FPR

sm
al

l

ba
se

lin
e EFM 1.01 1.01 4E-6 0.98 2E-6

EF 1.04 1.05 1E-3 0.78 5E-6
EF + GM 1.01 1.02 3E-4 0.96 2E-5

m
ed

iu
m

ba
se

lin
e EFM 1.02 1.02 1E-6 0.97 3E-6

EF 1.20 1.30 9E-2 0.33 4E-6
EF + GM 1.07 1.12 2E-2 0.94 4E-5

la
rg

e

ba
se

lin
e EFM 1.05 1.07 2E-3 0.96 2E-6

EF 1.90 2.24 1E+0 0.06 6E-7
EF + GM 1.49 1.78 9E-1 0.90 7E-5

Table 1: Graphite VGG Oxford dataset, single model
and increasing baseline. The table shows the averages of
GQ and ROC attributes, over 50 runs, for EFM, EF, and
EF+GM model estimates.

The plots in Fig. 1 and 2 are shown for Ox-
ford’s Merton College example of Fig. 3(b), to il-
lustrate the characteristics/behaviour of the EFM
algorithm. Note that it will be meaningless to av-
erage these plots over different examples as they
would not share the same energy scale.

For measuring the accuracy of an estimated
model θh, we used the following geometric er-
ror ratio GQ(θh) = STE(θh,fGT ,MGT )

STE(θGT ,fGT ,MGT ) where
STE(θh, f,M) is the Symmetric Transfer Error
of θh computed for labelling f and matching M.
A perfect model estimate will have GQ = 1.

Table 1 shows the effect of increasing the cam-
eras’ baseline on the quality of estimated models
and matching for EFM, EF and EF+GM methods.
For small baseline, EFM and EF+GM results were
comparable. For larger baselines, unlike the EF and
EF+GM, the EFM model estimates’ accuracy and
matching quality did not deteriorate. In general,
EF+GM was prone to higher false positive rates
compared to EFM.

As a multi-model show case example, Fig. 3(a)
and (b) show the labelling f result of EF and EFM
on one of the stereo images, respectively. EFM, on
the average of 50 runs, found double the number of
matches compared to EF which takes SIFT match-
ing as an input. Figures 3(c-f) are the enlargements
of the segments shown in (a) and (b) as white rect-
angles. Figures 3(g) and (h) show part of the feature

(a) EF left image result (b) EFM left image result

(c) Segment 1 in (a) (d) Segment 1 in (b)

(e) Segment 2 in (a) (f) Segment 2 in (b)

(g) EF matching (h) EFM matching

Figure 3: Best seen in Colour, Fig. (a) shows EF
labelling result (average TPR=0.51 and FPR=1.6E-05)
and (b) shows EFM labelling result (average TPR=0.98
and FPR=9.1E-06). Features assigned to the same
model/label are drawn in the same colour and unmatched
features are shown as white x. Figures (c-f) show the en-
largement of segments 1 and 2 in (a) and (b). Figures (g-
h) show the matching, between two small regions in the
stereo images, of the EF and EFM results, respectively.

matching between the left and right images of the
EF and EFM results, respectively.

More results are shown in Fig. 4. In general,
EFM found more matches, but in particular, EFM
outperformed EF in two examples: graphite ex-
ample (second row) with a the large baseline be-
tween camera positions, and redbrick house exam-
ple (third row) with repetitive texture reduced the
discriminative power of SIFT. EFM found approxi-
mately 5% to 8% more matches than EF+GM. The
EF+GM results are not shown as they where visu-
ally similar to EFM.

6. Conclusions

We introduced regularized energy functional
that jointly formulates multi-model fitting and



Figure 4: Best in Colour, the first column shows one
of the stereo images for each example, second and third
columns show the EF and EFM labelling results super-
imposed on the images shown in the first column, respec-
tively. On average of 50 runs, EFM found 0.75, 10.53,
3.31, 0.44, and 0.68 times more inliers than EF. EFM
and EF+GM results where comparable, EFM found ap-
proximately between 0.05 and 0.08 times more matches.

matching problems, and a framework to optimize
it. Our results show that the framework finds near
optimal matching, and when compared to state-
of-the-art multi-model fitting algorithm our frame-
work finds better models’ estimates and more ro-
bust to large baselines. We also showed how to
efficiently find optimal feature-to-feature match-
ing and match-to-model assignment for a given
set of models with label cost. Furthermore, our
framework can be used with more complex models,
e.g. fundamental matrices, without affecting the
framework’s complexity, unlike [15]. Currently,
our framework requires initial matching for future
work we aim to alleviate the need for it.
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