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Abstract

In this paper, we consider the approximate weighted
graph matching problem and introduce stable and informa-
tive first and second order compatibility terms suitable for
inclusion into the popular integer quadratic program for-
mulation. Our approach relies on a rigorous analysis of
stability of spectral signatures based on the graph Lapla-
cian. In the case of the first order term, we derive an objec-
tive function that measures both the stability and informa-
tiveness of a given spectral signature. By optimizing this
objective, we design new spectral node signatures tuned
to a specific graph to be matched. We also introduce the
pairwise heat kernel distance as a stable second order com-
patibility term; we justify its plausibility by showing that
in a certain limiting case it converges to the classical ad-
jacency matrix-based second order compatibility function.
We have tested our approach on a set of synthetic graphs,
the widely-used CMU house sequence, and a set of real im-
ages. These experiments show the superior performance of
our first and second order compatibility terms as compared
with the commonly used ones.

1. Introduction
Graph matching techniques have been widely used in

computer vision in contexts such as 2D and 3D image anal-
ysis, object recognition, biomedical identification, and ob-
ject tracking. Most practical problems require using ap-
proximate matching algorithms that can extract meaning-
ful correspondences even when the graphs under consider-
ation are not isomorphic. Therefore, when using the com-
mon quadratic assignment formulation of graph matching
problem, it is desirable to have informative first and second
order compatibility terms that are stable to deviations from
isomorphism.

Spectral approaches [31, 6, 9, 12, 33, 8] have been
widely used in graph matching literature. Recently, spec-
tral node signatures (first order compatibility terms) such
as the heat kernel signature (HKS) [30] and the wave ker-

nel signature (WKS) [2] have been drawing significant at-
tention for matching of 3D shapes in computer graphics.
These constructions are inspired by physical processes (e.g.
heat propagation) on graphs, and are expected to inherit the
physical processes’ stability to perturbations of the under-
lying graph. However, the analysis of stability of spectral
signatures in general is lacking, which hinders the ability
to design spectral node signatures that are not derived from
physical processes. While there has been some work on
learning such signatures for 3D shapes [21, 1], they require
a training set of one form or another, which may be difficult
to obtain.

The goal of our work is to establish general theoretical
results about the stability of first and second order terms
constructed from graph Laplacians [14], and to use these
results in a practical graph matching framework; we are es-
pecially interested in designing node signatures tuned to the
graphs being matched. We start out with a family of spectral
node signatures, which we call the Laplacian Family Signa-
tures (LFS). This family is parametrized by a real-valued
function of two variables – the construction filter; particular
choices of the construction filter yield the HKS and WKS
as special cases. We first establish a stability result for the
LFS, obtaining an upper bound on how much the signature
of a node can change under perturbations of the underlying
graph. Next, we relax the bounds in our stability theorem,
which allows us to encode both the requirements of stabil-
ity and informativeness in a single objective function. By
optimizing this objective, we obtain a custom construction
filter and so a custom spectral node signature for matching
the graph under consideration.

While the steps above yield a stable first order compati-
bility term, stability of the second order compatibility term
is as important. Another contribution of this work is to in-
troduce the pairwise heat kernel distance as a second or-
der compatibility term suitable for inclusion into the Integer
Quadratic Program (IQP) formulation of the graph match-
ing problem. This term can be shown to be stable to per-
turbations of the underlying graph. To justify its use as a
second order term we prove that in a certain limiting case,
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the pairwise heat kernel distance reproduces the commonly
used term obtained from the adjacency matrices.

Our overall practical graph matching approach has a
number of benefits. First, our approach is based on rigor-
ous theoretical results on stability of node and edge signa-
tures, that are of independent interest. Second, despite the
fact that our construction filter is non-parametric, we obtain
a simple convex optimization problem that can be solved
efficiently. Third, in contrast to previous methods, e.g. [1],
we do not require a training set, but base our node signa-
ture optimization on the given graph to be matched. Ideally,
signature design should be based on a representative “aver-
age” graph of the collection of graphs arising in a specific
context. However, computing the average graph itself re-
quires reliable matchings between all graphs in the collec-
tion, leading to a chicken-and-egg problem. To circumvent
this, we hypothesize that an attempt to match a given graph
to other graphs in a collection – if it is to be at all successful
– is indicative of shared structure, and this should allow op-
timizing signatures based solely on the graph that is being
matched. Our experimental results confirm that signatures
optimized in such a way provide superior results over un-
optimized signatures in a number of settings.

The rest of the paper is organized as follows. After re-
viewing previous work in Section 2, we introduce and ana-
lyze the first order compatibility terms in Section 3. The
second order compatibility term is introduced in Section
4. The IQP for quadratic assignment formulation of graph
matching problem is set up in Section 5. We present our ex-
perimental results on three different graph matching tasks
in Section 6.

2. Related Work
Node-based signatures have been popular in the context

of graph matching. Joilli et. al. [16] proposed a signature
composed of the degree of the a node followed by the or-
dered weights of each incident edge and padded with zero
if necessary. Gori et. al. [12] constructed node signa-
tures from the steady state distributions of simulated ran-
dom walks similar to PageRank. Eshera [10] built signa-
tures for attributed relational graphs (ARG). Shokoufandeh
et. al [28] constructed feature-based node signatures for
bipartite matching. The same authors [29] later proposed
a topological signature vector (TSV) for directed acyclic
graphs (DAG). Hu et. al [15] considered graph matching
from the learning of a signature-based proximity matrix
using disclosed known correspondences without explicitly
computing the signatures themselves.

Node signatures used in our work are most closely re-
lated to spectral methods for graph matching. Among
the pioneering works is Umeyama’s [31] weighted graph
matching algorithm , which was later generalized to graphs
of different sizes [22, 37]. Robles-Kelly et. al. [25] or-

dered the nodes from the steady state of Markov chain with
the edge connectivity constraint and matched using edit dis-
tance; in [26], they ordered the nodes using the leading
eigenvector of the adjacency matrix. Qiu et. al [24] con-
sidered using Fiedler vector to partition the graph for hier-
archical matching; their method, however, works only on
planar graphs. Cho et. al. [5] constructed reweighted ran-
dom walks similar to personalized PageRank on the associ-
ation graph with the addition of an absorbing node. They
computed its quasi-stationary distribution and discretized
the continuous solution to find a matching. Emms et. al. [9]
built an auxiliary graph from the two graphs and simulated
a quantum walk. Particle probability of each auxiliary node
was used as the cost of assignment for a bipartite matching.

In a broader sense of relatedness to our work are other
relaxation-based matching algorithms. Gold and Rangara-
jan [11] proposed the well-know Graduated Assignment
Algorithm. van Wyk et. al. [32] designed a projection
onto convex set (POCS) based algorithm to solve IQP by
successively projecting the relaxed solution onto the con-
vex constraint set. Schellewald et. al. [27] constructed a
semidefinite programming relaxation of the IQP. Leordeanu
et. al. [19] proposed a spectral method to solve a relaxed
IQP where they drop the linear inequality constraint dur-
ing relaxation and only incorporate it at the discretization
step. The idea was further extended by Cour et. al. [6],
where they added an affine constraint during relaxation. Za-
slavskiy et. al. [35] approached the IQP from the point of
a relaxation of the original least-square problem to a con-
vex and concave optimization problem on the set of doubly
stochastic matrices. Leordeanu et. al. [20] proposed an
integer projected fixed point (IPFP) algorithm to solve the
quadratic assignment problem. Zhou et. al. [38] proposed a
factorized graph matching algorithm to solve IQP problem
by factorizing the affinity matrix into the Kronecker product
of smaller matrices.

3. First Order Compatibility
In this section, we introduce the Laplacian Family Sig-

natures (LFS) as a structural descriptor for graph nodes. We
then establish a stability theorem showing the robustness of
these descriptors to perturbations of the graph. Next, for a
given graph, we will show how the bounds established by
our stability theorem together with considerations of infor-
mativeness can be used to choose an optimal signature from
this family of signatures.

3.1. Laplacian Family Signatures

Consider one of the graphs to be matched, say G =
(V,E). Let w be the weights on edges, i.e. w : E 7→ R+.
The graph Laplacian is defined as L = D − A, where A
is the graph adjacency matrix, and D is a diagonal matrix
of total incident weights, i.e. Dii =

∑
j Aij . L has nu-



merous useful properties [3], of which most relevant to us
is its symmetry and positive semi-definiteness. This makes
it possible to consider the eigen-decomposition of L; we
denote by {λk, φk}|V |k=1 the eigenpairs (eigenvalue and as-
sociated eigenvector) of the graph Laplacian matrix L.

The eigenvalues and eigenvectors of the Laplacian ma-
trix carry a wealth of structural information about the under-
lying weighted graph. Our goal is to use this information to
obtain signatures for nodes of the graph that are both stable
and informative. We first start with a very general definition
of a family of signatures.

Definition 1 For a given real valued function h(·; ·) :
R2

+ → R, the Laplacian Family Signature (LFS) of a node
i ∈ V is a one-parameter family of structural node descrip-
tors that is defined by

si(t) =
∑
k

h(t;λk)φk(i)2. (1)

We refer to h(·; ·) as the construction filter.

The Laplacian Family Signatures describe a given node’s
structural relationship to its neighborhood at large (see e.g.
physical interpretation of signatures in the next subsection).
Note that the signature of a given node i ∈ V is itself a
function si(·) : R+ → R. Thus, two nodes i and a from the
same or different graphs can be compared by using any kind
of distance/norm between the functions si(·) and sa(·).

A number of particular choices of the construction fil-
ter have been considered in previous work. Choosing
h(t;λk) = exp(−tλk) results in the heat kernel signature
(HKS) [30], and selecting h(t;λk) = exp(− (t−log λk)2

2σ2 ),
one obtains the wave kernel signature (WKS) [2]; these sig-
natures were shown to have desirable properties for appli-
cations in 3D shape analysis and matching. Assuming that
h(t;λk) = g(tλk) is a band-pass filter with a special behav-
ior as in [13], we can easily obtain another signature – the
wavelet kernel signature.

It is clear that a plethora of such descriptors can be ob-
tained by simply varying the construction filter. An impor-
tant question is then what choice of the filter is optimal in
one or another sense. We address this issue in the follow-
ing two subsections by considering two conflicting require-
ments – the informativeness and stability of signatures.

3.2. General Stability Result

The LFS signatures are naturally intrinsic: if two graphs
are isomorphic, then the signatures of corresponding nodes
are the same. However, for a signature to be practically use-
ful, it should also be stable under perturbations of the graph.
Stability of existing signatures, such as HKS and WKS, are
derived from intuitive considerations based on physical in-
terpretations. For example, HKS has an interpretation in

terms of a simulated heat diffusion process [30]: for each
node, this signature captures the amount of heat left at the
node at various times (here t) assuming that a unit amount
is put on the node initially (t = 0). WKS also has a phys-
ical interpretation in terms of a quantum mechanical pro-
cess on the graph [2]. The stability then follows from the
assumption that these physical processes are stable under
small perturbations of the underlying graph.

One of our main results is to establish the stability of
LFS signatures in general without a recourse to a physical
interpretation. Importantly, we obtain upper bounds on how
much the signatures may change, and we consider both the
case of distinct and repeating eigenvalues.

Theorem 1 Let A,A′ be the adjacency matrices of a pair
of graphs, and L,L′ be the induced Laplacians. Let the
size of the graph be n, and λ1 < · · · < λk denote the k
distinct eigenvalues of L. Let si(t) and s′i(t) denote the
LFS’s of node i. Assume λj+1 − λj ≥ δ, ∀j, ‖A−A′‖F ≤
ε√
n+1

< δ, and h(·; ·) ∈ C2(R2
+). If k = n (non-repeating

eigenvalues), we have

|s′i(t)− si(t)| ≤ C0(δ, t)ε,

where C0(δ, t) is a constant independent of ε. If k < n
(repeating eigenvalues), we have

|si(t)− s′i(t)| ≤ C1(t)

(
δ

δ − ε
− 1

)
+ C2(t)ε,

where C1(t), C2(t) are constants depending only on t.

See the supplementary material for a proof. Even a more
general stability result when the number of graph nodes
changes can be obtained using lifting ideas similar to [29].

3.3. Signature Optimization

In addition to stability, a practically useful signature has
to be informative. For compact Riemannian manifolds, both
HKS and WKS have been shown to fully characterize the
shapes up to manifold isometry (see Theorem 1 in [30]).
We cannot expect to obtain such strong guarantees in the
case of general graphs, as one can find counter-examples
where non-isomorphic graphs induce the same node signa-
tures. As a result, our goal is to maximize the informa-
tion content of our signatures. Note that instead of a sin-
gle number, the LFS describes a node i ∈ V by a function
si(·) : R+ → R, but this does not directly guarantee the
informativeness of the signature – the function values si(t)
may be strongly correlated with each other at different val-
ues of t, reducing the information content of the descriptor.

Interestingly, the requirements of informativeness and
stability are conflicting. Indeed, our stability theorem shows
that the signatures are more stable when the construction
filter is smooth. On the other hand, the information content



is maximized when the construction filter concentrates as
much as possible (like a delta function) at a given eigen-
value, thereby allowing to extract information from non-
overlapping frequency bands of eigenvectors.

Both of these conflicting requirements can be captured
by relaxing the bounds established in Theorem 1. As
can be seen (c.f. supplementary material) in both distinct
(k = n) and repeated (k < n) eigenvalue cases, the up-
per bound depends on two terms, namely maxj |h(t, λj)|
and maxj | ∂∂λh(t, λj)|. Taking the L1-norm as the dis-
tance metric for comparing signatures (d(·, ·) below), we
can bound the change in signature of a node i ∈ V under
perturbation (c.f. Theorem 1) as

d(si, s
′
i) =

ˆ
|si(t)− s′i(t)|dt

≤ 2ε

δ

(ˆ
max
j
|h(t;λj)| dt

)
+ε

(ˆ
max
j

∣∣∣∣ ∂∂λh(t;λj)

∣∣∣∣ dt) (2)

To minimize this upper bound, we, nevertheless, have two
contradicting terms unless we use the trivial solution h ≡ 0
everywhere. The first term requires h(t;λ) concentrate on
λ, i.e. it should be as narrow as possible on each distinct fre-
quency λj (informativeness). The second term, on the other
hand, requires h(t;λ) to be smooth at λ, i.e. it should be as
wide as possible at each distinct frequency λj (stability).

When a meaningful matching between two graphs exists,
it is natural to assume that one of the graphs is a perturbation
of the other. Based on this intuition, we pick one of the
graphs as the source graph, and determine an optimal (with
respect to the upper bound above) construction filter h(t;λ)
for the source graph. Then the graphs are matched using
this optimal filter on both the source and target graphs.

To find the optimal construction filter h(·; ·) for a given
source graph, we will minimize the upper bound above. To
simplify our optimization problem, note that for informa-
tiveness, we need h(t;λ) to be large at λ while fading away
farther from λ, and so we assume h(t;λ) to be of the form
h(|t − λ|) with h(0) = 1. We will also restrict h to be
positive and uniformly decreasing. Finally, the requirement
of h(·) ∈ C2(R2

+) is achieved by putting a bound on the
second derivative h′′(·).

The simplified optimization problem becomes that of
finding h : R+ → R solving

min µ
´

maxj h(|t− λj |)dt+
´

maxj |h′(|t− λj |)|dt
s.t. h(0) = 1, h(x) ≥ 0, h′(x) ≤ 0, |h′′(x)| ≤ ch

where the parameter µ = 2
δ is expressed in terms of the

eigen-gap δ. In practice, we set δ to be the average eigen-
gap of the eigenvalue sequence. Clearly, in addition to the
eigen-gap, the optimal filter will depend on the entire eigen-
value distribution of the Laplacian.

The minimization problem above can be straightfor-
wardly discretized and solved numerically as a convex op-
timization problem. In practice, w.l.o.g., we consider h(|t|)
to be non-zero only on [−T, T ]. Symmetric as it is, we
only need to evenly sample h on [0, T ] as a vector of val-
ues h = [h0, · · · , hN ]

>, with h0 = 1, hN = 0. Let ∆t
be the step between samples; the first and second order

derivative are estimated as h′ =
[
h1−h0

∆t , · · · , hN−hN−1

∆t

]>
and h′′ =

[
h2−h0

∆t2 , · · · , hN−hN−2

∆t2

]>
. Let hj , h′j , h

′′
j be

the λj-shifted version of h, h′, h′′ (padded with zeros as
needed). The discretized optimization problem could there-
fore be written as

min µ1>max(h1, · · · ,hk) + 1>max(h′1, · · · ,h′k)

s.t. hi ≥ 0, h′i ≤ 0, − ch ≤ h′′i ≤ 0, h0 = 1, hN = 0

where 1 is the unit vector and max(·) is the element-wise
max among its arguments.

Figure 1a shows the optimal filters for several types of
randomly generated graphs1. The LFS with our optimized
kernel is named ”adaLFS” (for adaptive LFS) in all the fig-
ures that follow. The improved matching results on some
well-known datasets can be seen in Figures 1b, 1c, and will
be more thoroughly discussed in Section 6.

4. Stable Second Order Compatibility
In this section, we introduce a second order compatibility

term based on the heat diffusion process on graphs. Specif-
ically, consider the graph heat kernel kt(i, j), which mea-
sures the amount of heat transferred from node i to node j
after time t, assuming a unit amount was placed at i in the
beginning (t = 0). The heat kernel has the following repre-
sentation in terms of the eigen-decomposition of the graph
Laplacian:

kt(i, j) =
∑
k

exp(−tλk)φk(i)φk(j).

Using an argument similar to the proof of Theorem 1,
one can establish stability of kt(·, ·) to perturbations (see
supplementary material). Therefore, it provides a natural
choice for a second order compatibility term.

Definition 2 Let kt and k′t be the heat kernels of G =
(V,E) and G′ = (V ′, E′) respectively. For i, j ∈ V and
a, b ∈ V ′, the pairwise heat kernel distance is defined as

dKt (i, j, a, b) = |kt(i, j)− k′t(a, b)| .
1The random graphs tested in Figure 1a are as follows: 1) complete

graph with uniformly distributed edge weights; 2) complete graph with
exponential distributed edge weights; 3) complete graph with half normal
distributed edge weights; 4) preferential attachment model [23] with uni-
formly distributed edge weights, with the number of new connections be-
ing 2. The mean edge weight for all random graphs is the same.



We will compare this term with the commonly used term
based on the adjacency matrices A,A′ of the graphs G,G′:

dA(i, j, a, b) = |Aij −A′ab| .

The following theorem shows that the pairwise heat kernel
distance dKt is a stable approximation of the pairwise adja-
cency distance dA (see supplementary material for a proof).

Theorem 2 Let dKt (i, j, a, b) and dA(i, j, a, b) be the pair-
wise heat kernel distance and pairwise adjacency distance
for graph G and G′, then the following holds:

lim
t→0

dKt (i, j, a, b)

t
= dA(i, j, a, b).

When t is small, dKt is a good approximation of dA; as
t increases, dKt is smoothed out. In this way it becomes
stable, because in the ideal case when the graphs are iso-
morphic, dA should be zero everywhere for matched pairs.

5. Matching Scheme
To directly compare the performance with other node

signatures and also within our family of signatures, the
problem is cast as a bipartite graph matching problem as in
existing node signature based matching work [28, 12, 16],
where costs are set as the distances between signatures. The
problem is solved using the Hungarian algorithm [17].

For practical matching, in addition to node signatures,
we use the pairwise heat kernel distance dKt as the sec-
ond order constraint and formulate the problem as an in-
teger quadratic program (IQP). Namely, for two graphs
G = (V,E) and G′ = (V ′, E′) to be matched and nodes
i ∈ V, a ∈ V ′, let d(i, a) be the distance between their
node signatures. We construct the compatibility matrix
W ∈ R|V ||V ′|×|V ||V ′| as

Wia,jb =

{
dKt (i, j, a, b) i 6= j, a 6= b

αd(i, a) i = j, a = b

Letting X ∈ {0, 1}|V |×|V ′| be the one-to-one mapping
matrix, and x ∈ {0, 1}|V ||V ′| its vectorization, the IQP can
be written as

x∗ = arg min(x>Wx)

s.t. x ∈ {0, 1}|V ||V
′|, ∀i

∑
a∈V ′

xia ≤ 1, ∀a
∑
i∈V

xia ≤ 1

As is well-known, this problem is NP-complete and there
is a large literature of approximation algorithms. In our ex-
periments, we selected a recently proposed algorithm, the
reweighed random walk matching (RRWM) [5] because of
its superior performance compared with other state-of-the-
art approximation algorithms, including SM [19], SMAC

[6], HGM [36], IPFP [20], GAGM [11], SPGM[32]. While
finding a good solver for IQP is an interesting problem per
se, we will not explore possibilities in this direction as it
will inevitably shift the focus of our paper.

6. Experiments
We tested our descriptor on three different datasets: 1)

synthetically generated random graphs; 2) CMU House se-
quence for point matching; 3) feature matching using real
images.

6.1. Synthetic Random Graphs

In this section, following the experimental protocol of
[5], we synthetically generate random graphs and perform
a comparative study. In the first part of the experiment,
we use random graphs from Erdös-Rényi model G(n,m),
where m edges are randomly selected from all possible
n(n−1)

2 edges. For each selected edge, we add a uniform
random weight in the range [0, 1]. The graph is then per-
turbed by adding random Gaussian noise N (0, σ2) on se-
lected edges.

In this test, we compare the performance within our
LFS and with existing node signatures, namely degree
vector signature (DVS) [16], local histogram signature
(LHS) [34], random walk signature (RWS) [12]. For
comparisons within LFS family, we do not limit our-
selves to HKS and WKS, which are known special
cases of LFS. Noticing that both HKS and WKS con-
struction filters are continuous probability density func-
tions (pdf) of some distribution, we include a number of
other pdfs: i) Gamma distribution (tλi)

k−1 exp (−tλi/θ),
ii) Gaussian distribution exp

(
−(t− µ(λi))

2/2σ2
)
, iii) t-

distribution
(
1 + (tλi)

2/θ
)−(k+1)/2

, iv) Rayleigh distri-
bution (tλi)

k−1 exp
(
−(tλi)

2/2θ2
)
, and v) Inverse Chi-

square distribution (tλi)
−k/2−1 exp (−θ/2tλi). This set of

construction filter choices are by no means exhaustive; we
hope, however, it will illustrate the improved performance
of our adaptive LFS (adaLFS).

First, to directly compare the performance of node sig-
natures, we use bipartite matching as the matching scheme.
In the experiment, we set n = 50 and m is uniformly in
[400, 1000], and generate 100 pairs of graphs. Fig. 1b
shows the average accuracy (i.e. the fraction of correct
matches over ground truth matches) over the amount of
noise added to the graph. As can be seen, our adaLFS ex-
hibits best performance of all node signatures considered.
Since WKS is the second best signature, we will include it
in all of the comparisons that follow.

Second, we test different node signatures together with
dKt as the pairwise constraint in the IQP setting. The ran-
dom graphs are generated according to [5] using their pub-
licly available code. For a pair of graph G1 and G2, they
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Figure 1: (a) Optimal construction filters for different types of random graphs (red) and an image key points graph (blue). (b)
Signature comparison for G(n,m) random graphs. (c) Matching accuracy for CMU House sequence.
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Figure 2: Matching accuracy of in the IQP setting.

share nin common nodes and n(1)
out and n(2)

out outlier nodes.
Edge weights are randomly distributed in [0, 1], and random
Gaussian noise N (0, σ2) is added.

In this experiment, we test the matching performance
where the IQP compatibility matrix W includes: i) only
dA(i, j, a, b), ii) only dKt (i, j, a, b), iii) dKt (i, j, a, b) with
different node signatures, on three different settings: 1. dif-
ferent level of deformation noise σ; 2. different number
of outliers; 3. different edge densities ρ. Fig. 2 shows
the average matching accuracy. The baseline, shown in red
solid curve, is RRWM using pairwise adjacency distances
dA only. With dKt substituting dA, the matching perfor-
mance is more tolerant to noise. Comparing Fig. 1b and
Fig. 2a, it can be seen that the large performance gap among
node signatures, however, was marginalized out because of
the second order compatibility constraint dKt . As shown in
Fig. 2, the matching accuracy of our proposed method is su-
perior to the baseline algorithm (red solid line) in all three
noisy settings.

6.2. CMU House Sequence

In this experiment, we use the CMU House sequence to
test our descriptors. This sequence has been widely used

to test different graph matching algorithms. It consists of
110 frames, and there are 30 feature points labeled consis-
tently across all frames. We build fully connected graphs
purely based on the geometry of the feature points, taking
the exponential of the normalized Euclidean distance of the
key points as the weights between pair of feature points.
Note this graph setup is different from [5]. In their origi-
nal work, they use the Euclidean distance as edge weights,
which could be seen as a dissimilarity measure. In con-
trast, our framework needs a similarity measure, and so we
used the normalized exponential of the dissimilarity as a
our similarity measure. IQP compatibility matrices W are
set up similarly as in Section 6.1. In the first part of the
experiments, we compute the average matching accuracy of
each frame to the rest of frames in the sequence. Fig. 1c
shows the accuracy of the matching. It can be seen that the
matching performance improves when dKt is used to substi-
tute dA. With adaLFS as the first order compatibility the
matching accuracy is improved even further. Fig. 3 shows
an example of the matching between the first and the last
frames of the sequence.

In the second part of the experiments, we explore how
outliers could potentially affect the performance of our
matching framework. We follow the protocol in [5], by ran-



(a) RRWM (b) WKS+dKt RRWM (c) adaLFS+dKt RRWM

Figure 3: Example matching on House sequence. Yel-
low lines are correct matches, and red lines are incorrect
matches.

domly selecting a subset of the nodes in one of the graphs
to be matched. Across the sequence, we match all possible
image pairs, spaced by 10, 20, 30, 40, 50, 60, 70, 80, 90,
and 100 frames, and compute the average matching accu-
racy per sequence gap.

Figure 4a and 4b show the matching performance for 25
(i.e. number of outliers is 5) and 20 (i.e. number of out-
liers is 10) randomly selected subset of nodes. It can be
seen that with our optimized kernel and the proposed heat
diffusion distance, our matching performance is greatly im-
proved from the baseline RRWM algorithm. Note that our
RRWM matching results are different from ones presented
in [5] due to our use of a different graph structure. The pur-
pose of our comparison is to show the improvement from
using our proposed first order and second order compatibil-
ities with respect to the baseline adjacency matrix, and the
construction of adjacency matrices from images is outside
the scope of our paper. The matching accuracy drops when
the number of outliers increases (from 5 to 10), and when
the gap increases. For smaller gaps with outliers, WKS per-
forms subomptimally: WKS has a relatively wide kernel
which makes it more noise tolerant but at the same time
less informative. As a result, when the gaps are small, the
smoothness of the WKS kernel reduces the matching per-
formance instead of enhancing it. On the contrary, we see
that our optimized kernel adapts to these different scenarios
much better.
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Figure 4: Matching with random subset in House sequence.

6.3. Real Image Feature Matching

In this experiment, we test our descriptor on the real
image dataset used in [5]. This image dataset consists of
30 pairs of images with labeled feature points. In their

original paper, the IQP affinity matrix Wfeat was built con-
sidering the similarity between the appearance-based fea-
ture descriptors and the geometric transformations. Let
dfeat(i, j, a, b) be these compatibility functions from [5]. We
add our spectral descriptors as additional structural compat-
ibility, and set up the affinity matrix W as

Wia,jb =

{
dfeat(i, j, a, b) + αdKt (i, j, a, b) i 6= j, a 6= b

βd(i, a) i = j, a = b

This is done so that we can evaluate the effect of our struc-
tural descriptors on the matching results. In our experi-
ments, we tested different combination of α and β. If only
considering dKt , α = 1, β = 0 gives the best average ac-
curacy, and by adding WKS/adaLFS as a node signature
constraint, α = 1, β = 10 gives the best average accuracy;
Table 1 lists the average accuracies of different methods.
Fig. 5 shows examples of matching results.

Table 1: Average accuracy of real image matching.

RRWM dKt WKS+dKt adaLFS+dKt
69.92 70.68 70.70 72.57

(a) RRWM (2/8) (b) WKS+dKt (2/8) (c) adaLFS+dKt (8/8)

Figure 5: Matching on real images.

7. Conclusion
In this paper, we have considered the common quadratic

assignment formulation of weighted graph matching prob-
lem, where we used LFS and the pairwise heat kernel dis-
tance as the first and second order compatibility terms. We
have rigorously analyzed their stability properties; in the
case of the first order terms we derived an objective func-
tion that measures both the stability and informativeness of
a given spectral descriptor. By optimizing this objective, we
designed new spectral node signatures tuned to a specific
graph to be matched. Our experiments confirmed that these
signatures outperform the existing spectral node signatures.

This work suggests a number of directions for future re-
search. For exampe, instead of optimizing the signatures
using solely the graph being matched, it would interesting
to explore possibilities for computing representative graphs
for graph collections arising in a given context. Another di-
rection is to extend our constructions to higher order terms
in the matching scheme [7, 4], or to use them for hypergraph
matching [18].
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