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Abstract

We take a new approach to computing dense scene flow
between a pair of consecutive RGB-D frames. We exploit
the availability of depth data by seeking correspondences
with respect to patches specified not as the pixels inside
square windows, but as the 3D points that are the inliers
of spheres in world space. Our primary contribution is
to show that by reasoning in terms of such patches under
6 DoF rigid body motions in 3D, we succeed in obtaining
compelling results at displacements large and small without
relying on either of two simplifying assumptions that per-
vade much of the earlier literature: brightness constancy or
local surface planarity. As a consequence of our approach,
our output is a dense field of 3D rigid body motions, in con-
trast to the 3D translations that are the norm in scene flow.
Reasoning in our manner additionally allows us to carry
out occlusion handling using a 6 DoF consistency check for
the flow computed in both directions and a patchwise sil-
houette check to help reason about alignments in occlusion
areas, and to promote smoothness of the flow fields using
an intuitive local rigidity prior. We carry out our optimiza-
tion in two steps, obtaining a first correspondence field us-
ing an adaptation of PatchMatch, and subsequently using
α-expansion to jointly handle occlusions and perform reg-
ularization. We show attractive flow results on challenging
synthetic and real-world scenes that push the practical lim-
its of the aforementioned assumptions.

1. Introduction
The growing consumer-level availability of RGB-D

data—in particular since the introduction of the inexpen-
sive Microsoft Kinect camera—has made solving computer
vision problems by jointly exploring cues in color and depth
an increasingly practical pursuit. We present a substan-
tially new way of computing the dense 3D motion field be-
tween a pair of consecutive RGB-D frames of a (perhaps
non-rigidly) moving scene, making neither of the traditional
∗Michael Hornáček is funded by Microsoft Research through its Euro-

pean Ph.D. scholarship programme.

assumptions of brightness constancy or local surface pla-
narity. The assumption that corresponding pixels have the
same color is perhaps the most common simplifying as-
sumption in scene flow, and breaks down as displacements
become large. An alternative it to aggregate intensity in-
formation over patches of pixels. Traditionally, however,
patch-based methods have relied on motion models that as-
sume local surface planarity, which imposes limits on the
size of such patches over geometry that is not planar.

In stark contrast to previous patch-based scene flow tech-
niques, ours exploits the availability of 3D points in RGB-D
data by reasoning in terms of so-called ‘3D point patches’.
Our main contributions derive from how we reason about
patches. By identifying the points constituting our patches
as the inliers of spheres and relating such patches using
6 DoF 3D rigid body motions, we are able to: (i) overcome
the local surface planarity assumption, allowing for larger
patches over non-planar surfaces than are possible with tra-
ditional motion models; (ii) introduce a 6 DoF consistency
check for the flow recovered in both directions; (iii) in-
troduce a patchwise silhouette check to help reason about
alignments in occlusion areas; and (iv) introduce an intu-
itive local rigidity prior to promote smoothness. Finally, a
consequence of our approach is that (v) our output is a dense
field of 6 DoF 3D rigid body motions, rather than one of 3D
translation vectors as is the norm in scene flow.

1.1. Related Work

The term ‘scene flow’ is due to Vedula et al. [26], who in-
troduced it as a dense field of 3D translation vectors for each
point in the scene. Traditionally, scene flow has referred to
techniques that take RGB images as input and recover 3D
structure in addition to 3D motion. For rigid scenes, sparse
3D structure and 6 DoF motion can be obtained using struc-
ture from motion (cf. Pollefeys et al. [19]).

RGB scene flow methods include Huguet and Devernay
[15], Min and Sohn [18], Zhang and Kambhamettu [32],
Basha et al. [4], Čech et al. [25], and Vogel et al. [27].
Basha et al. use a 3D point cloud representation to directly
model the desired 3D unknowns, allowing smoothness as-
sumptions to be imposed directly on the scene flow and
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(a) Our 3D point patches.
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(b) Homography induced by the plane.

Figure 1. Our 3D point patches contrasted with the geometry of homography induced by the plane (cf. Hartley and Zisserman [12]). We
use the same rigid body motion g—recovered using our approach—for both examples. The local planarity assumption breaks down on
non-planar surfaces for large enough patch size. Note also for the overlaid matched points in (a) that because penguin 2 is illuminated
frontally but penguin 1 is illuminated from the side, the brightness constancy assumption likewise does not hold at this displacement.

structure. Čech et al. compute scene flow across sequences
of stereo pairs by growing correspondence seeds. Vogel et
al. carry out regularization by encouraging a locally rigid
3D motion field using a rigid motion prior, avoiding sys-
tematic biases of 2D isotropic regularization.

Pons et al. [20] introduce a variational framework for
multiple-view motion-stereo estimation that works directly
in world space, evolving a 3D vector field to register the in-
put images captured at different times. Carceroni and Kutu-
lakos [8] model the scene as a set of surfels, with each sur-
fel described by shape, reflectance, bump map, and affine
motion. They recover surfel parameters by maximizing
photoconsistency, but require knowledge of relative cam-
era parameters and of the illumination scenario. Devernay
et al. [9] likewise proceed by tracking surfels. In both cases,
surfels imply the local surface planarity assumption. Vogel
et al. [28] assign rigidly moving planes to image segments.

Spies et al. [24] introduce the range flow constraint and
recover 3D motion using a depth and intensity informa-
tion. They performed sparse motion estimation, which was
subsequently regularized to unestimated regions. Letouzey
et al. [17] claim novelty for using RGB-D data obtained
from a Kinect. They use sparse feature points to help guide
the motion field estimation for wide displacements and use
dense normal flow for short ones. Wedel et al. [29] ex-
plicitly decouple the position and velocity estimation steps
and estimate dense velocities using a variational approach
while reporting frame rates of 5 fps on standard consumer
hardware. Hadfield and Bowden [11] use a particle filter
while assuming brightness constancy. Herbst et al. [13]
compute RGB-D scene flow using a variational technique,
which they apply to rigid motion segmentation. Quiroga
et al. [21] use a variational technique combining local and
global constraints to compute RGB-D scene.

2. Algorithm

We begin by obtaining a dense 6 DoF correspondence
field from the first frame to the second and vice versa, using
a new variant of the PatchMatch algorithm building on the

work of Barnes et al. [2, 3], Bleyer et al. [5], and Hornáček
et al. [14]. We detail this step in Section 2.2. In Section 2.1,
we present our 3D point patches and the matching cost we
aim to minimize, from which the majority of our contribu-
tions derive. In Section 2.3, we detail the second step of our
algorithm, optimized using α-expansion, which refines the
correspondence fields by handling occlusions and promot-
ing 6 DoF smoothness.

2.1. 3D Point Patches

We carry out our correspondence search by reasoning
in terms of so-called ‘3D point patches’ under 6 DoF 3D
rigid body motions as in Hornáček et al. [14], but extend
the matching cost presented in their formulation to include
the influence of 2D image gradients recoverable from the
available RGB. Gradients allow for matching salient texture
features without relying on brightness constancy, while our
3D point patch formulation allows for better alignment of
such gradients over non-planar surfaces than is possible us-
ing traditional motion models that assume local surface pla-
narity (cf. Figure 1). Additionally, our formulation allows
us to compare depth between correspondences in a man-
ner that borrows from the ICP literature (cf. Rusinkiewicz
and Levoy [22]), which would also not be possible with
traditional motion models. Recognizing that object bound-
aries encoded in depth can be noisy or poorly aligned with
RGB, we additionally integrate an optional adaptive support
weighting scheme in our matching cost. Finally, we over-
come a shortcoming of the formulation in [14]—that tied
the number of inlier points constituting a 3D point patch to
its corresponding sphere’s depth (cf. Figure 2)—enabling us
to ensure a more uniform matching quality across the scene.

Formal Definition. Let g = (R, t) ∈ SE(3) denote a
6 DoF rigid body motion in 3D, where R ∈ SO(3) and
t ∈ R3. Given one of the two input views, let the 3D point
patch Sx denote the subset of the set of 3D points P ⊂ R3

encoded in the depth map and situated within a radius rx of
the point Px = Zx · K−1(x>, 1)> ∈ R3, where Zx is the
depth encoded at the pixel x = (x, y)> and K is the 3 × 3



Figure 2. Apparent spatial extent of 3D point patches. Left: fixed
sphere radius r renders apparent spatial extent a function of sphere
depth. Right: proposed per-pixel radius rx, obtained as a function
of the depth Zx of Px. In this manner, spheres can be expected
to contain a more uniform number of inlier points than for fixed r,
thereby providing more uniform matching quality.

camera calibration matrix (cf. Hartley and Zisserman [12]).
Our goal is to assign a rigid body motion gx to each valid
pixel x, mapping Sx in the source view to its analogue in
the destination view. A pixel x is deemed valid only if a
depth value is encoded at x in the input depth map.

Radius rx. It is easy to show that the distance in world
space between two points both situated at depth Z and pro-
jecting to neighboring pixels in image space is given by
Z/f ,1 where f is the camera’s focal length in units of pixels.
Accordingly, the number of points constituting a 3D point
patch given a fixed radius r can on average be expected to
decrease as depth increases (cf. Figure 2), and with it so too
can confidence in the strength of any matching score based
on such points. In order to alleviate this problem of rea-
soning in terms of a fixed radius r, we proceed instead by
assigning a tailored radius rx for each pixel x:

rx = rpix · Zx/f, (1)

where rpix is a fixed radius in pixels. In this manner, each
sphere appears to have equal size from the viewpoint of the
camera, and thus the spheres can be expected to contain a
more uniform number of inlier points than for fixed r.

Matching Cost. Let I, I ′ and G,G′ be the source and
destination color and gradient images, respectively, and
let π, π′ denote projection into the source and destination
views. We compute gradient similarity by projection and
interpolation, promoting sub-pixel accuracy with respect to
salient texture edges in image space:

Cgr
x (g) = (2)
∑

P∈Sx
w(x, π(P)) · ‖G(π(P))−G′(π′(g(P)))‖22 ,

where w(x,x′) = exp (−‖(I(x)− I(x′))‖2/γ) imple-
ments a form of adaptive support weighting (cf. Yoon and
Kweon [31]), which is valuable when object boundaries in

1We provide a derivation in the supplementary material.

the depth map are noisy or poorly aligned with RGB. We
compute L2 color distance for adaptive support weighting
in the CIE L*a*b color space. Let NNS(P) denote the
nearest neighbor point to P in the set S ⊂ R3. We compute
3D point similarity by

Cpt
x (g) =

∑

P∈Sx
w(x, π(P)) · ‖g(P)−NNP′(g(P))‖22 ,

(3)
where P ′ denotes the set of points encoded in the depth
map of the destination view. Reasoning in terms of near-
est neighbors in 3D for point similarity allows for han-
dling shot noise and invalid pixels without special treat-
ment, which would not be possible by projection and in-
terpolation. Moreover, it allows for a natural delineation of
boundaries at depth discontinuities, insofar as object bound-
aries encoded in the input depth maps are of reasonable
quality. We compute the final matching cost according to

Cx(g) =

{
Cpt

x (g) + α · Cgr
x (g) if x is valid

∞ otherwise , (4)

where α is a fixed weight.

2.2. Dense 6 DoF Matching via PatchMatch

We turn to PatchMatch (cf. Barnes et al. [2, 3]) to carry
out our dense 6 DoF matching, building primarily upon the
PatchMatch variant introduced in Hornáček et al. [14] for
depth super resolution, and upon that introduced in Bleyer
et al. [5] for stereo. Our goal is to assign a rigid body mo-
tion gx to each valid pixel x, mapping the 3D point patch Sx
in the source view to its analogue in the destination view.
We begin with a semi-random initialization step, assigning
a first guess to each valid pixel. Next, for i iterations, we
visit each x, carrying out (i) spatial propagation, (ii) j ad-
ditional semi-random initializations, (iii) k refinements, and
(iv) view propagation. In each of the steps (i-iv), a candidate
rigid body motion is adopted at x if doing so yields equal or
lesser matching cost. For the first of the two views, we visit
its pixels in scanline order, upper left to lower right for even
iterations, lower right to upper left for odd. A contribution
of ours—applicable to stereo as well as to scene flow—is
to promote convergence via view propagation by traversing
the pixels of the second view in the opposite order, in par-
allel with the first view. We describe the individual steps in
greater detail below.

Semi-Random Initialization. For each valid pixel x in
the source view, we randomly pick a point Px′ in the desti-
nation view within a maximum search radius v of Px, giv-
ing a translation vector Px′−Px (3 DoF). Additionally, we
obtain candidate translations by matching SURF features in
image space. We obtain the remaining 3 DoF by computing
the rotation minimizing arc length between the surface nor-
mal vector at Px and that at Px′ (2 DoF), and choosing a
random around-normal angular perturbation (1 DoF).



Spatial Propagation. Given a traversal from upper left
to lower right, we consider at x the rigid body motions
gxn

, gxw
, where xn = (x, y − 1)>,xw = (x − 1, y)>, and

adopt a motion if doing so yields equal or lesser matching
cost. Analogously, for a traversal from lower right to upper
left, we consider gxs , gxe , where xs = (x, y + 1)>,xe =
(x + 1, y)>. The geometric rationale behind spatial propa-
gation in our 6 DoF setting can be understood by observing
that if two objects are related by a rigid body motion, then
any corresponding pair of 3D point patches is related (mod-
ulo noise or sampling) by precisely the same motion.

Refinement. We aim of to improve upon gx by gently per-
turbing the motion. We build our candidates as in the semi-
random initialization step, but try different combinations of
changing the translation by hopping to a neighboring point
in the destination view (3 DoF), altering the rotation to re-
flect a different destination normal (2 DoF), or modifying
the around-normal rotation (1 DoF). With each try, we adopt
the resulting candidate motion if doing so gives equal or
lesser matching cost, and progressively reduce the allowed
range of deviation from the current best.

View Propagation. As a last step when visiting a pixel x,
we project gx(Px) to the nearest integer pixel x′ in the des-
tination view, where we evaluate the inverse g−1x of gx pro-
vided that x′ is valid. We adopt g−1x at x′ if doing so gives
equal or lesser matching cost. Since we carry out Patch-
Match in parallel in both directions while traversing pixels
in opposite order, by the time a pixel is reached in one view
the most recent match available from the other has already
been propagated. In contrast, Bleyer et al. [5] treat views
sequentially, with the effect of carrying out their form of
view propagation after a full iteration is completed.

2.3. Occlusion Handling and Regularization

The dense correspondence search algorithm from Sec-
tion 2.2 is reasonable only over points visible in both views,
and can be expected to fail in areas where occlusions arise.
We introduce a 6 DoF consistency check in the aim of dis-
tinguishing good matches from bad. In a first occlusion
handling step, we assign to each valid pixel x that failed
the check for gx the motion gx′ , such that Px′ is the nearest
neighbor point to Px corresponding to the subset of pixels
that passed, drawn from the same view. Next, we carry out
regularization of the motion field, which we reduce to a la-
beling problem optimized using α-expansion (cf. Boykov
et al. [6]) over unary and pairwise potentials. Recogniz-
ing that over pixels that failed the consistency check, our
unary potentials cannot rely on any criterion derived from
our matching cost, we introduce a silhouette check to pro-
mote at least patchwise edge alignment from the viewpoint
of the camera. We introduce an intuitive local rigidity prior
as our pairwise potential. In contrast to Section 2.2, we
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Figure 3. 6 DoF consistency check for g at x. We project g(Px) to
the nearest integer pixel x′ in the destination view, where we ob-
tain the assigned motion gx′ . We transform a unit tripod centered
on the point Px (black) forward by g (blue) and then backward
by gx′ (red). The check fails if any one of the distances in world
space indicated by the three dashed lines exceeds a threshold.

carry out all steps in this section sequentially: first for the
first view, then for the second.

Consistency Check. For a motion g under consideration
at a pixel x—by analogy to the left-right consistency check
over disparity in stereo (cf. e.g. Bleyer et al. [5])—we
project g(Px) to the nearest integer pixel x′ in the des-
tination view and fail our check if x′ is not valid or if
the distance in image space between x and the projection
of gx′(g(Px)) back into the source view exceeds 1 pixel.
However, such a check is by itself unsatisfactory: the dis-
tance in world space corresponding to a pixel displacement
in image space grows as depth increases, and such a check
ignores the rotational components of g, gx′ . Accordingly,
we additionally fail the check if ∃v ∈ {̂i, ĵ, k̂} such that

‖(Px + v)− gx′ (g(Px + v))‖2 > δ, (5)

where î, ĵ, k̂ are the standard (unit) basis vectors for R3. We
set δ to Zmed/f (cf. Section 2.1), where Zmed is the median
depth across both views, however this does not preclude al-
ternative schemes for choosing a threshold. An illustration
of the geometry of (5) is provided in Figure 3. Finally, we
fail the check if |Sx| < n or |Sx′ | < n in order to ensure a
minimum matching support.

Initial Labeling. Each valid pixel x that passed the con-
sistency check for gx is assigned its own unique label l. For
each valid pixel x that failed the consistency check, we in-
stead assign to x the label assigned to the pixel x′ such that
Px′ = NNP̃(Px), where P̃ denotes the set of points cor-
responding to the set X̃ of valid pixels that passed the con-
sistency check for the view under consideration.

Silhouette Check. Pixels occluded in the destination
view are likely to fail the consistency check, as our match-
ing cost function makes sense only over patches visible in
both views. For such pixels, we want to at least promote
patchwise alignment of depth edges. The silhouette check
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Figure 4. Silhouette check for g at x. The check is passed if the
points g(Sx) all project into the pixel mask in the destination view
corresponding to the inlier points of the sphere of the same ra-
dius rx, but centered on g(Px) (emphasized in green). Note that
Sx is partly self-occluded in the further penguin.
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Figure 5. Local rigidity prior. Given a pixel x and a neighboring
pixel x′, {x,x′} ∈ N , and the rigid body motions glx , glx′ corre-
sponding to the labels lx, lx′ , the prior returns the sum of squares
of the distances in world space indicated by the three dashed lines.

is passed at x for g if all points g(Sx) project into the pixel
mask corresponding to the points in the opposite view that
are inliers of the sphere of radius rx centered on g(Px), as
illustrated in Figure 4. Optionally, this mask can be dilated
morphologically in order for the check to be more permis-
sive towards sampling artifacts or noisy object boundaries.

Regularization. We formulate our regularization as an
energy minimization problem, taking the form:

E(l) =
∑

x∈X
Dx(lx) +

∑

{x,x′}∈N
V{x,x′}(lx, lx′), (6)

where X denotes the set of pixels in the image and N the
set of its 4-connected pixel neighbors, and where Dx(lx)
denotes the unary potential at x and V{x,x′}(lx, lx′) the pair-
wise potential between x,x′. For pixels x that are not valid,
we set Dx(lx) = 0. Otherwise, if the consistency check
was passed at x for the motion gx assigned in our dense
matching stage, Dx(lx) takes the form Dp

x(lx):

Dp
x(lx) =

{
0 if glx passes consistency check at x
ρ otherwise ,

(7)
where ρ reflects the trust we lend to the assigned motions
that satisfied the consistency check, recognizing that they

were the strongest matches that PatchMatch succeeded in
finding. In future work, we plan to address the merits of set-
ting Dp

x(lx) to our matching cost when the check is passed;
here, we opt instead for an approximation with the advan-
tage of speed. If the consistency check was failed at x for
gx, Dx(lx) instead takes the form Df

x(lx):

Df
x(lx) =

{
0 if glx passes silhouette check at x
κ otherwise ,

(8)
where κweighs the influence of the silhouette check against
the pairwise potentials. Our pairwise potentials reduce to
3D point SSD analogously to (3), but are computed over
the axes of a unit tripod transformed according to the mo-
tions glx , glx′ :

V {x,x′}(lx, lx′) = β{x,x′}· (9)
∑

v∈{̂i,̂j,k̂}

∥∥glx(P̄{x,x′} + v)− glx′ (P̄{x,x′} + v)
∥∥2
2
.

We set β{x,x′} to a fixed weight β if both x,x′ are valid
and ‖Px − Px′‖2 ≤ rpix · Zmed/f (cf. Section 2.1), to
0 otherwise. This has the effect of regularizing only over
pixels whose corresponding points could both be inliers of
a sphere at depth Zmed. Our manner of proceeding does
not preclude alternative schemes for choosing a maximum
radius. We set P̄{x,x′} = (Px +Px′)/2, noting that the en-
ergy formulation in (6) implies that V{x,x′} = V{x′,x}, and
that the local effect of the motions glx , glx′ on P̄{x,x′} can
be expected to approximate their effect on Px,Px′ when
the two points are spatial neighbors in 3D belonging to the
same object, which is precisely the target scenario. We il-
lustrate the geometry of our local rigidity prior in Figure 5.

We minimize our energy via the α-expansion algorithm
of Boykov et al. [6], using QPBO (cf. Lempitsky et al. [16])
to compute the expansions. Labels l are drawn at random
(without replacement) from the set of pixels for which the
consistency check was satisfied in the initial labeling.

3. Evaluation
There exists at present no benchmark tailored to eval-

uating RGB-D scene flow. In Section 3.1, we accord-
ingly give a quantitative evaluation following the example
of Huguet and Devernay [15] by using the color images and
ground truth disparity maps available with frames 2 and 6
of the Middlebury Cones, Teddy, and Venus (cf. Scharstein
and Szeliski [23]) stereo data sets, respectively, to compare
against the known ground truth motion. In Section 3.2, we
present qualitative results for the Middlebury data, and for
challenging synthetic and real-world (Kinect) data sets.

3.1. Quantitative Evaluation

The 3D scene motion for the static Cones, Teddy, and
Venus data sets is due entirely to the motion of the camera



and is purely translational in the X-direction of the camera
coordinate frame, in the magnitude of the chosen baseline.
While that motion in 3D is simple, the matching problem
is nevertheless confounded by occlusions and geometry of
varying complexity. We compare against Huguet and Dev-
ernay [15] and Basha et al. [4]—who use only RGB images
as input—in end point error (RMS-OF) and average angu-
lar error (AAE) over the 2D optical flow vectors obtained by
projecting the output 3D displacements to image space. Fol-
lowing the example of Hadfield and Bowden [11],2 we addi-
tionally give disparity change error (RMS-Vz) for the RGB-
D scene flow techniques, namely for Hadfield and Bowden
[11], Quiroga et al. [21], and our method. For reference, we
compute numbers for the RGB optical flow techniques of
Brox and Malik [7] and Xu et al. [30]. Our results placed
our method as the top performer among scene flow algo-
rithms considered in our quantitative evaluation. Numbers
and additional explanation are provided in Table 1.

3.2. Qualitative Evaluation

We visualize the recovered correspondence fields by pro-
jecting the 3D displacements to 2D optical flow vectors, and
coloring those vectors in the conventional manner (cf. Baker
et al. [1]). In Figure 6, we show our intermediate and final
results, contrasted with ground truth colorings. In Figures 7,
8, and 9, we show analogous results for large displacement
Kinect data sets of varying complexity, and compare against
the results of the RGB-D scene flow techniques of Hadfield
and Bowden [11], Herbst et al. [13], and Quiroga et al. [21].
In Figure 10 we visualize our results—in a manner akin to
Vedula et al. [26]—by flowing all 3D points in both frames
for our final results on the data set in Figure 9 to interme-
diate points in time, demonstrating the visual credibility of
our recovered motions. Finally, in Figure 11 we provide
our results for four pairs of the penguins data set, showing
outstanding flow results on complex non-planar geometry
at large displacements.

3.3. Algorithm Parameters

Radius rpix was set to 15. For PatchMatch, j was set
to 3, k to 5. Number of iterations i was 2 for Kinect data,
1 otherwise. Search radius v was set to comfortably ex-
ceed the maximum displacement across the data sets. Since
Cpt

x is a function of point depth, the weight α between Cgr
x

and Cgr
x in (4) was set by effectively first scaling the two

terms by (approximately) their maximum possible value,
respectively, and then applying a relative weight. We ap-
proximated the maximum for Cpt

x by (Zmed/f)
2 (cf. Sec-

tion 2.1), where Zmed is the median depth across both
views. The relative weight we gave to Cgr

x after scaling
was 100. We set γ for adaptive support weighting to 10 like

2Additional details on evaluation methodology are provided in the dis-
sertation of Hadfield [10].

Bleyer et al. [5]. For regularization, κ was fixed to 1, and
ρ and β were set to 10000 and 5 for Kinect data (giving a
large degree of trust to the output of PatchMatch, with gen-
tle regularization), to 1 and 10000 otherwise (promoting a
heavily regularized solution). Minimum sphere inlier count
n was 10. Pixel masks for the silhouette check were dilated
by 5 pixels for Kinect data (owing to poor edge quality in
Kinect depth maps), 1 otherwise. We considered 25 labels
per view.

4. Conclusion

We presented a technique for computing dense 6 DoF
scene flow between a pair of consecutive RGB-D frames.
Rather than rely on brightness constancy or local surface
planarity as in most previous work, our main contribution
is to reason instead in terms of patches of 3D points identi-
fied as inliers of spheres, which we match under 6 DoF 3D
rigid body motions. We showed compelling results on the
Middlebury Cones, Teddy, and Venus data sets as well as on
challenging synthetic and real-world scenes.

References
[1] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and

R. Szeliski. A database and evaluation methodology for op-
tical flow. IJCV, 2011. 6

[2] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Gold-
man. PatchMatch: A randomized correspondence algorithm
for structural image editing. SIGGRAPH, 2009. 2, 3

[3] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkel-
stein. The generalized PatchMatch correspondence algo-
rithm. In ECCV, 2010. 2, 3

[4] T. Basha, Y. Moses, and N. Kiryati. Multi-view scene flow
estimation: A view centered variational approach. IJCV,
2013. 1, 6, 8

[5] M. Bleyer, C. Rhemann, and C. Rother. PatchMatch Stereo
- Stereo matching with slanted support windows. In BMVC,
2011. 2, 3, 4, 6

[6] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts. PAMI, 2001. 4, 5

[7] T. Brox and J. Malik. Large displacement optical flow: De-
scriptor matching in variational motion estimation. PAMI,
2011. 6, 8

[8] R. L. Carceroni and K. N. Kutulakos. Multi-view scene cap-
ture by surfel sampling: From video streams to non-rigid 3d
motion, shape and reflectance. IJCV, 2002. 2

[9] F. Devernay, D. Mateus, and M. Guilbert. Multi-camera
scene flow by tracking 3-D points and surfels. In CVPR,
2006. 2

[10] S. Hadfield. The estimation and use of 3D information, for
natural human action recognition. PhD thesis, University of
Surrey, 2013. 6

[11] S. Hadfield and R. Bowden. Scene particles: Unregularized
particle based scene flow estimation. PAMI, 2013. 2, 6, 8



Matching (1 Iter.) Initial Labeling Our Final Output Ground Truth (GT) Matching (1 Iter.) Initial Labeling Our Final Output Ground Truth (GT)

Figure 6. Middlebury Cones, Teddy, and Venus. 2D optical flow coloring by projection of 3D displacements to image space, for the left
(blue) and right (red) views. Numbers in Table 1 correspond to the left view. Figure best viewed magnified in the electronic version.

Herbst et al. [13]Matching (2 Iter.) Initial Labeling Our Final Output Hadfield+Bowden [11] Quiroga et al. [21]

Figure 7. Large displacement motion (Kinect), in large part towards the camera. Our algorithm and that of Quiroga et al. [21] do not fail
on the forward motion as does that of Herbst et al. [13]; our output does not suffer from the haze artefacts present in that of Quiroga et al.

Matching (2 Iter.) Initial Labeling Our Final Output Hadfield+Bowden [11] Herbst et al. [13] Quiroga et al. [21]

Figure 8. Large displacement motion (Kinect). We best capture the non-rigid motion of the arms while appropriately filling the pixels of
the occluded background, again avoiding the haze artefacts present in the output of Quiroga et al. [21].

Herbst et al. [13] Quiroga et al. [21]Matching (2 Iter.) Initial Labeling Our Final Output Hadfield+Bowden [11]

Figure 9. Large displacement motion (Kinect). All three of our competitors fail altogether on the motion of the arm. We visualize our
results in Figure 10, demonstrating the visual credibility of our recovered motions.

Figure 10. Visualization of our final results for the Kinect data set in Figure 9. We flow all points encoded in the two input frames to a
common point in time, in a manner akin to Vedula et al. [26]. Visualization shown at a novel viewpoint.



Cones Teddy Venus

RMS-OF RMS-Vz AAE RMS-OF RMS-Vz AAE RMS-OF RMS-Vz AAE

Brox and Malik [7] (RGB only) 2.83 1.75† 0.39 3.20 0.47† 0.39 0.72 0.14† 1.28
Xu et al. [30] (RGB only) 1.66 1.15† 0.21 1.7 0.5† 0.28 0.3 0.22† 1.43

Basha et al. [4] (RGB only) 0.58 N/A 0.39 0.57 N/A 1.01 0.16 N/A 1.58
Huguet and Devernay [15] (RGB only) 1.10 N/A 0.69 1.25 N/A 0.51 0.31 N/A 0.98

Hadfield and Bowden (RGB + GT Depth) [11] 1.24 0.06 1.01 0.83 0.03 0.83 0.36 0.02 1.03
Quiroga et al. (RGB + GT Depth) [21] 0.57 0.05 0.42 0.69 0.04 0.71 0.31 0.00 1.26
Our Method (RGB + GT Depth) 0.54 0.02 0.52 0.35 0.01 0.15 0.26 0.02 0.53

Table 1. Quantitative evaluation on RMS-OF (end point error), RMS-Vz (disparity change error), and AAE (average angular error). The
topmost two methods are RGB optical flow algorithms; the next two are RGB scene flow algorithms that compute 3D translational flow and
depth jointly. The remaining three are RGB-D scene flow techniques. Results were computed over all valid pixels, here meaning that GT
disparity is nonzero and the pixel is marked as unoccluded in the Middlebury GT occlusion map. † indicates that RMS-Vz was computed
by estimating 3D translational flow by interpolating depth encoded at the start and end points given its 2D flow vector. Accordingly, for the
two optical flow techniques, we also ignored pixels at which the recovered 2D flow pointed to pixels with GT disparity of 0, since no end
point depth could be interpolated. For Hadfield and Bowden, we additionally deemed pixels for which no flow was recovered as invalid.
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Figure 11. Large displacement synthetic data set from Hornáček et al. [14] for which assumptions of brightness constancy and local surface
planarity (for discriminative patch size) fail pronouncedly. We run our algorithm on consecutive penguin pairs and visualize our results at a
novel viewpoint by flowing all points, respectively, to an intermediate point in time. Original points shown with transparency for reference.
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