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Abstract

Many binary code embedding techniques have been pro-
posed for large-scale approximate nearest neighbor search
in computer vision. Recently, product quantization that en-
codes the cluster index in each subspace has been shown to
provide impressive accuracy for nearest neighbor search.
In this paper, we explore a simple question: is it best to
use all the bit budget for encoding a cluster index in each
subspace? We have found that as data points are located
farther away from the centers of their clusters, the error
of estimated distances among those points becomes larger.
To address this issue, we propose a novel encoding scheme
that distributes the available bit budget to encoding both the
cluster index and the quantized distance between a point
and its cluster center. We also propose two different dis-
tance metrics tailored to our encoding scheme. We have
tested our method against the-state-of-the-art techniques on
several well-known benchmarks, and found that our method
consistently improves the accuracy over other tested meth-
ods. This result is achieved mainly because our method ac-
curately estimates distances between two data points with
the new binary codes and distance metric.

1. Introduction

Approximate Nearest Neighbor (ANN) search has been
an active research problem across many fields in computer
science. The problem is especially important for high-
dimensional and large-scale cases due to the efficiency re-
quirement by many practical applications. In this paper
we are mainly interested in applications for computer vi-
sion and thus restrict our discussion on approximate nearest
neighbor techniques tailored to computer vision.

Among prior ANN techniques, Product Quantization
(PQ) [13] and its recent improvement, Optimized Prod-
uct Quantization (OPQ) [5], have shown the-state-of-the-
art performance. Its high accuracy and efficiency is mainly
because (1) quantization in subspaces offers a strong repre-
sentational power and (2) distances between two data points
can be computed via a look-up table. Its input feature space
is divided into several disjoint subspaces, and each subspace
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Figure 1. The left and right figures show toy examples of parti-
tioned space and assigned binary codes for PQ and ours, respec-
tively, when using 4 bit binary codes. Our method allocates first
two bits for encoding a cluster index and another underlined two
bits for quantized distances, while PQ allocates all the bits for en-
coding a cluster index.

is partitioned into clusters independently. A data point is
then represented by an index of its corresponding cluster in
each subspace. The distance between two data points is ap-
proximated by the sum of distances of their cluster centers
computed in each subspace.

PQ and OPQ can effectively generate many clusters in
each subspace and thereby reduce the quantization distor-
tion. Nonetheless, we have found that their approach shows
marginal accuracy improvement in practice, as we increase
the number of clusters in each subspace. This is mainly be-
cause they encode only clusters containing data points, but
are not designed to consider how far data points are located
away from cluster centers.

Main contributions. To address aforementioned prob-
lems, we propose a new binary code encoding scheme,
Distance-encoded Product Quantization (DPQ), and two
different distance metrics tailored to the scheme. We fol-
low exactly the same procedure as in PQ and OPQ to gener-
ate subspaces, quantize them with unsupervised clustering
(i.e. k-means), and encode each data point with the index
of its nearest cluster center in each subspace. The novelty
of our method lies in that in addition to encoding the cluster
index, we use additional bits to quantize the distance from
the data point to its closest cluster center. Based on the new



binary encoding scheme, we propose two distance metrics,
statistics and geometry based distance metrics, for symmet-
ric and asymmetric cases. Especially, our geometry based
distance metric is based on novel geometric reasoning for
high-dimensional data spaces.

We have applied our method to three standard bench-
marks consisting of GIST and BoW descriptors. Results
show that our encoding scheme with our distance metrics
consistently outperforms the existing state of the art meth-
ods across tested benchmarks. Specifically, combined with
PQ our method improves results of PQ significantly, and
combined with OPQ, the improvement is even larger. This
indicates that our subspace encoding scheme is more useful,
when the subspace is constructed more optimally. These
improvements are mainly caused by both quantizing dis-
tances of points from cluster centers and well estimated dis-
tance metrics. Overall our method is simple, but results in
meaningful performance improvement over PQ and OPQ.

2. Related Work
In this section we discuss prior work related to large-

scale ANN search in a high dimensional space.

2.1. Hierarchical Methods

There have been many approaches that utilize hierarchi-
cal data structures for ANN search. Notable examples of
such tree structures include kd-trees [4]. In the computer
vision community, there have been a lot of efforts to opti-
mize kd-trees to efficiently index high-dimensional image
features or descriptors such as randomized kd-trees [20].

The hierarchical k-means tree [18] has been proposed to
overcome the problem of the curse of dimensionality by us-
ing recursive k-means clustering. An automatic parameter
selection technique [17] for such hierarchical data structures
has been proposed for more accurate and faster search.

These hierarchical methods show high efficiency while
keeping reasonable search accuracy. However, they do not
provide compact data representations, and thus are less ef-
fective for handling large-scale image databases consisting
of billions of items.

2.2. Binary Code Embedding Methods

Recently binary code embedding methods have been ac-
tively studied, since they provide a high compression rate by
encoding high-dimensional data into compact binary codes,
and fast distance (i.e., similarity) computation with simple
bit-string operations or a pre-computed lookup table. We
categorize binary code embedding methods into two cate-
gories: projection and clustering based methods.

Projection based methods. These techniques map high-
dimensional data to the Hamming space by using pro-
jection functions. They can be categorized further into

data-independent and data-dependent methods. In data-
independent methods, the projection functions are defined
independently from the data. One well-known method is
Locality Sensitive Hashing (LSH) [11], for which projec-
tion functions are random vectors drawn from a specific dis-
tribution. Many extensions of LSH have been proposed for
min-hash [2] and kernelized version [14].

Data-dependent projection based methods consider the
data distribution for achieving higher accuracy. Some of
them applied spectral graph partitioning [22] and graph
Laplacian [16]. Gong and Lazebnik [6] have proposed a
binary code embedding method called ‘iterative quantiza-
tion’, which directly minimizes the quantization error by
computing an optimal rotation of PCA directions. Lee et
al. [15] used multiple bits for each projection to reduce the
quantization error. He et al. [7] have presented a joint opti-
mization framework of projection functions for both search
accuracy and time.

The distances among binary codes obtained with most
of the projection based methods mentioned above can be
efficiently computed by the Hamming distance, which can
be efficiently computed.

Quantization based methods. These techniques are
closely related to clustering. In these methods, a binary
code of a data point encodes the index of a cluster con-
taining the data point. Product Quantization (PQ) [13] de-
composes the original data space into lower-dimensional
subspaces and quantizes each subspace separately using k-
means clustering. It then computes a binary code as a con-
catenation of cluster indices, encoded in subspaces.

He et al. [8] have proposed k-means hashing, which op-
timizes cluster centers and their cluster indices in a way that
the Hamming distance between encoded cluster indices re-
flects distances between cluster centers. Recently, Ge et
al. have proposed Optimized PQ (OPQ) [5] that optimizes
PQ by minimizing quantization distortions with respect to
the space decomposition and code books. OPQ shows the
state-of-the-art results over other quantization and projec-
tion based methods. Norouzi and Fleet have presented
Cartesian k-means [19] that also reduces the quantization
distortions of PQ in a similar manner to OPQ.

Our encoding scheme is based on the product space that
PQ and OPQ are based on. Unlike PQ and OPQ, our method
quantizes distances from data points to their cluster cen-
ter for more accurately estimating distances between points
based on our encoded binary codes.

Hamming embedding [12] uses an orthogonal projec-
tion and thresholding projected values for computing bi-
nary codes only within a cluster. This approach provides
higher accuracy within each cluster and works for image
retrieval. On the other hand, this method is not designed
for accurately measuring distances between points that are
contained in different clusters.



3. Background and Motivations
Let us define notations that we will use throughout the

paper. We useX = {x1, ..., xn}, xi ∈ RD to denote a set of
n data points in a D-dimensional space, A binary code cor-
responding to each data point xi is defined by bi = {0, 1}L,
where L is the length of the code. We denote d(x, y) as the
Euclidean distance ‖ x− y ‖.

We first briefly review Product Quantization (PQ) [13]
that our work is built upon and its two distance measures.
Let us denote a point x ∈ RD as the concatenation of
M subvectors, x = [x1, ..., xM ]. For simplicity, we as-
sume that the dimensionality of data D is divisible by the
number of subspace M . Each ith subspace is encoded by
L/M bits and we thus have k(= 2L/M ) codebook vectors,
{ci1, ..., cik}.

A vector quantizer qi(xi) given ith subspace is defined
as following:

qi(xi) = argmin
cij

d(xi, cij).

The sub-binary code, bi, computed from ith subspace
elements of x is computed by encoding an codebook index
of the nearest cluster:

bi = B
(
argmin

j
d(xi, cij),

L

M

)
,

where the function B(v, l) converts an integer v − 1 to a
binary string with a length l; e.g., B(6, 4) = 0101. PQ
then maps x to the concatenation of sub-binary codes, b =
[b1, ..., bM ].

PQ uses two distance computation schemes: Symmetric
Distance (SD) and Asymmetric Distance (AD). SD is used,
when both vectors x and y are encoded, and is defined as
following:

dPQ
SD(x, y) =

√√√√ M∑
i=1

d
(
qi(x), qi(y)

)2
. (1)

On the other hand, AD is used, when only data point x is
encoded, but query y is not, and is defined as following:

dPQ
AD(x, y) =

√√√√ M∑
i=1

d
(
qi(x), y

)2
. (2)

Recently proposed Optimized PQ (OPQ) [5] has the
same underlying scheme as PQ, but operating on a trans-
formed feature space obtained with an optimized projec-
tion matrix. OPQ shows the state of the art performance
in the field of approximate nearest neighbor search. Carte-
sian k-means (ck-means) and OPQ are based on a very sim-
ilar generalization of PQ, as stated in [19]. Our method is
independent from clustering and construction methods for
subspaces. Our method, therefore, can be built on the sub-
spaces created by ck-means in the same manner to what we
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Figure 2. The left figure shows the empirical quantization distor-
tions as a function of the number of clusters in each subspace. M
indicates the number of subspaces used. The right figure shows
mAP curves of 1000-nearest neighbor search with varying num-
bers of clusters for each subspace. We use OPQ on the GIST-960D
dataset for the experiments.

do for OPQ. In this paper we explain our concept and its
benefits of our method on top of PQ and OPQ for the sake
of succinct explanations.

3.1. Motivations
Quantization distortion has been identified to be closely

related to the search accuracy [5]. OPQ directly aims to re-
duce the quantization distortion of PQ. In general we can
reduce the quantization distortion by allocating longer bi-
nary codes, i.e., having more clusters. In particular, we
have studied the relationship between the number of clus-
ters and quantization distortion, ξ, which is defined as fol-
lows [13, 5]:

ξ =
1

M

M∑
i=1

1

n

n∑
j=1

d
(
xij , q

i(xij)
)2
.

We experimentally measure quantization distortions as a
function of the number of clusters (Fig. 2(a)). As expected,
the quantization distortion reduces as we have more bits.
However we observe that the decreasing rate of the quanti-
zation distortion is marginal with respect to the number of
centers. Similarly we observe the same diminishing return
of having more clusters for the search accuracy, as shown in
Fig. 2(b).

Once a data point is encoded as a compact code, a re-
constructed position from the code is set as the center of the
corresponding cluster of the code. Distances between en-
coded binary codes at the search phase are estimated only
with such center positions. One can easily see that the error
of estimated distances depends on the quantization distor-
tion. Specifically, it has been shown previously that the dis-
tance is biased and the error is statistically bounded by two
times of the quantization distortion [13]. It is also observed
that error-corrected versions of distance measures can re-
duce the bias, but increase the distance variance, resulting
in even worse search accuracy.



Figure 3. This figure visualizes errors of the symmetric distances.
We sample two random points, x and y, in a randomly selected
subspace. The x-axis indicates the distance between xi and its cor-
responding cluster’s center qi(xi), and y-axis shows similar infor-
mation for y. The vertical axis is the difference between the actual
distance d(xi, yi) and its estimated distance d(qi(xi), qi(yi)).
The errors of estimated distances tend to be higher as the dis-
tance between data points and their corresponding clusters be-
comes larger. We use OPQ to define subspaces and clusters with
the GIST-960D dataset.

We have empirically studied a functional relationship be-
tween the errors of estimated distances and the actual dis-
tance of data points from centers of their corresponding
clusters (Fig. 3). We have found that the estimated distances
tend to have higher errors, as data points are further away
from centers of their corresponding clusters.

These results suggest that by reducing quantization dis-
tortions, we can predict the distances between data points
more reliably, i.e. lower variance. Motivated by this, we al-
locate additional bits to directly encode the distances of data
points from their corresponding cluster centers in each sub-
space, instead of constructing more clusters and encoding
data with them.

4. Our Approach
In this section we explain our binary code encoding

scheme, Distance-encoded Product Quantization (DPQ),
and two distance metrics tailored to the scheme.

4.1. Our Binary Code Encoding Scheme

Our encoding scheme can be used with any hashing
techniques that encode cluster indices in computed binary
codes. For simplicity we explain our method by following
the PQ framework. Combining our method with OPQ is
straightforward, since we only need to apply an estimated
rotation projection to the input feature space.

Suppose that the binary code length assigned for encod-

ing the information in each subspace is L/M bits, where
L and M indicate the overall binary code length and the
number of subspaces, respectively. In each subspace, our
method encodes the distance of a data point from the cen-
ter of its cluster containing the point as well as the index of
the cluster. Fig. 1 shows a visual example of our encoding
method. Specifically, we allocate lc bits for encoding the
cluster index, and ld bits for the distance from its cluster
center. We define h(= 2ld) different distance thresholds,
tij,1, ..., t

i
j,h, for cij , the center of the cluster j in ith sub-

space. The binary code of a data point, x, for the ith sub-
space is then the concatenation of the nearest center index,
ĵ, and the quantized distance index, k̂, as follows:

bi(xi) = [B(ĵ, lc), B(k̂, ld)],

where
ĵ = argmin

j
d(xi, cij),

and k̂ is the value satisfying the following:

ti
ĵ,k̂−1 ≤ d(x

i, ci
ĵ
) < ti

ĵ,k̂
.

tij,0 and tij,h are defined as 0 and∞, respectively. We also
use P i

j,k to denote a set of data points that are encoded by
the cluster j with threshold k in ith subspace. We use P i

j to
denote all the data points of the union of P i

j,1, ... , P i
j,h.

Computing thresholds. In order to choose distance
thresholds determining h disjoint regions within each clus-
ter, we identify points |P i

j | contained in the cluster j in ith

subspace. We then construct distances of those points from
the cluster center, cij . For choosing thresholds, we first com-
pute h different regions in a way that we minimize the vari-
ances of distances of points contained in each region, i.e.,
minimizing the within-region variance.

It is also important to balance the number of points con-
tained in each region. To achieve this, we enforce the num-
ber of points in each P i

j,k to be between (|P i
j |/h−|P i

j |/h2)
and (|P i

j |/h + |P i
j |/h2); in this equation we use h2 to

achieve a near-balance among the numbers of points al-
located to regions. Each cluster has a small number of
points, and the search space of the candidate set for com-
puting thresholds given the balancing criterion are small.
As a result, we can efficiently find thresholds that minimize
the within-region variance even by exhaustively searching
the optimal one. Alternatively, we can also use balanced-
clustering techniques such as [1] for accelerating the afore-
mentioned process of computing thresholds.

4.2. Distance Metrics
We propose two distance metrics, statistics and geome-

try based metrics, that consider quantization distortions for
achieving higher accuracy.
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Figure 4. This figure shows the distribution of differences from the
ground-truth distances to estimated results from statistics based
distance metrics used for our method and PQ. We draw 100 K pairs
of samples randomly chosen from the GIST-1M-960D dataset.
Our method shows the bias of 0.0091, which is reduced from
0.0096 of PQ. Similarly, the variance of our method is 0.0099,
while PQ has 0.0133.

Statistics based distance metric. Jegou et al. [13] have
discussed the quantization distortion of each cluster and
suggested error corrected versions for Symmetric Distance
(SD) and Asymmetric Distance (AD).

For AD, we start with the following distance metric,
Error-Corrected AD (ECAD), considering the quantization
distortion of x [13] :

dPQ
ECAD(x, y)

2
= dPQ

AD(x, y)
2
+

M∑
i=1

ξij(x
i), (3)

where ξij(x
i) is a pre-computed error correcting term for

the cluster j containing xi. The error correcting term ξij(·)
is defined as the average distortion of the cluster j in the ith

subspace:

ξij(x
i) =

1

|P i
j |

|P i
j |∑

w=1

d(pw, c
i
j)

2,

where pw is wth point of P i
j . We can similarly define an

Error-Corrected distance metric for SD (ECSD) considering
quantization distortions of both x and y.

We can easily extend these error-corrected distance met-
rics to our encoding scheme. For our method we define a
new error correcting term, ξij,k(x

i), with xi ∈ P i
j,k, which

contains points in the kth region of the cluster j in the ith

subspace:

ξij,k(x
i) =

1

|P i
j,k|

|P i
j,k|∑

w=1

d(pw, c
i
j)

2. (4)

Interestingly, [13] reported that the error-corrected dis-
tance metrics did not improve accuracy over metrics with-
out the error correcting terms, mainly because the error-
corrected distance metrics have higher variances. In con-
trast, our encoding scheme with our error-correcting terms
(Eq. 4) shows higher accuracy over ours without the terms.
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Figure 5. This figure shows two points x and y on the hyper-
spheres centered at cx and cy respectively. rx and ry represent
the radii of hyper-spheres.

In order to identify reasons why the similar error-correcting
terms result in contrasting results between our encoding
scheme and PQ, we have measured the bias and variance
of these two distance estimators. As can be seen in Fig. 4,
the variance and bias of our error-corrected distance metric
are reduced from those of PQ. Since our encoding scheme
quantizes the distance of a data point from its correspond-
ing cluster, our error correcting term (Eq. 4) reduces the
bias and, more importantly, the variance of the distance es-
timates effectively.

Geometry based distance metric. We now propose a
novel geometric approach to develop distance metrics for
our encoding scheme. Suppose that two high dimensional
points x and y are randomly chosen on the surfaces of two
hyper-spheres centered at cx and cy , respectively, with rx
and ry radii (Fig. 5). Given these geometric configurations,
the vector x− y is reformulated as:

x− y = (cx − cy) + (x− cx) + (cy − y). (5)

Our goal is to estimate the length of the vector x − y with
available information within our encoding scheme.

As the dimension of data points goes higher, the surface
area of the hyper-sphere becomes closer to the length of
its equator. One may find this is counter-intuitive, but this
has been proved for high dimensional spaces [10]. Given a
D dimensional hyper-sphere, a cross section of the hyper-
sphere against a horizontal hyperplane isD−1 dimensional
hyper-sphere. The length of the cross section is longest in
the equator. It then exponentially decreases with a function
of D−1 degree, as the cross section gets closer to the north
pole. As a result, as we have a higher dimensional space,
the length of the equator takes a more dominant factor in
the surface area of the hyper-sphere.

Given those x and y points, we rotate our randomly cho-
sen points such that x is located at the north pole. By
applying the above theorem, we have a higher probability
that another point y is located on the equator of the rotated
hyper-sphere, as we have higher dimensional space. As a re-
sult, we can conclude that it is highly likely that two vectors
x − cx and y − cy are orthogonal, when these data points
are in a high-dimensional space. Similarly, we can show



that these two vectors are also orthogonal to another vector
cy − cx. We have also experimentally checked its validity
with a benchmark consisting of 960 dimensional GIST de-
scriptors. For this we have measured the average angle be-
tween two randomly chosen points (i.e. 100K pairs) from
a random cluster. On average their average angle is 89.81◦

with the standard deviation of ±7.1◦.
Since cx − cy , x − cx, and cy − y are highly likely to

be mutually orthogonal in a high-dimensional space, the
squared magnitude of the vector x − y can be computed
as follows:

‖ x− y ‖2=‖ (cx − cy) + (x− cx) + (cy − y) ‖2

≈‖cx − cy‖2 + ‖x− cx‖2 + ‖cy − y‖2 .(6)

The first term, ‖ cx− cy ‖2, is pre-computed as the distance
between different clusters. The second and third terms in-
dicate how far x and y are located from the centers of their
corresponding clusters.

In our encoding scheme, the second term can be esti-
mated by using points pw ∈ P i

jx,kx
, where jx and kx are

encoded cluster and threshold indices for x, respectively.
Specifically, the second term is estimated as the average dis-
tance, rijx,kx

, from the center cijx to pw ∈ P i
jx,kx

:

rijx,kx
=

1

|P i
jx,kx
|

|P i
jx,kx

|∑
w=1

d(pw, c
i
jx). (7)

The third term of Eq. 6 is estimated in the same manner
with points in P i

jy,ky
, where jy and ky are chosen cluster

and threshold indices for y.
We then formulate our distance metric based on Eq. 6

and Eq. 7. Our GeoMetry based squared Symmetric Dis-
tance (GMSD) between two points x and y is defined as:

dDPQ
SD (x, y)

2
=

M∑
i=1

(
d
(
q(xi), q(yi)

)2
+rijx,kx

2
+rijy,ky

2)
. (8)

Our GeoMetry based squared Asymmetric Distance
(GMAD) between encoded data x and query y is defined
similarly as:

dDPQ
AD (x, y)

2
=

M∑
i=1

(
d
(
q(xi), y)

)2
+ rijx,kx

2)
. (9)

Note that rij,k is precomputed and stored as a lookup table
as a function of i, j, and k values.

One may find that our geometry based distance metric
using the average distance (Eq. 7) of points from their clus-
ter have a similar form to our statistics based distance metric
using the error correcting term (Eq. 4). One can theoreti-
cally show that our statistics based metric generates a dis-
tance equal or larger than that of the geometry based met-
ric, and their value difference is the variance of distances
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Figure 6. This figure shows the recall curves with respect to the
number of retrieved data. Our geometry based distance metric,
Ours w/ GMAD, improves our statistics based metric, Ours w/
ECAD, and the PQ method, PQ w/ ECAD. The results are ob-
tained with GIST-1M-960D dataset and the number of ground
truth K=100. We use 64 bits in this experiment and PQ uses 8
bits for each subspace to define 256 centers. Our method uses 7
bits for the center and 1 bit for the distance quantization.

between data points and their corresponding clusters. It is
hard to theoretically tell which approach is better, but these
two different metrics consider different aspects of input data
points; the statistics based metric considers the variance of
distances, while the geometry based one does not.

Empirically we, however, have observed that the geome-
try based metric shows better performance, 6%, on average
over our statistics based metric (Fig. 6). Furthermore, when
we integrate our geometry based distance metric within PQ,
we have observed that our geometry-based distance metric,
PQ w/ GMAD, shows higher accuracy over the statistics
based one proposed for PQ, PQ w/ ECAD. These results
demonstrate benefits of our geometry-based distance met-
ric.

5. Evaluation
In this section we evaluate our method for approximate

nearest neighbor search and compare its results to the state-
of-the-art techniques.

5.1. Protocol

We evaluate our method on the following public bench-
marks:

• GIST-1M-960D: One million 960D GIST descriptors
that are also used in [13, 5].
• GIST-1M-384D: One million 384D GIST descriptors,

a subset of Tiny Images [21].
• BoW-1M-1024D: One million 1024D Bag-of-visual-

Words (BoW) descriptors, which are subsets of the Im-
ageNet database [3].

For all the experiments, we use 1000 queries that do
not have any overlap with the data points. We compute
K = 1000 nearest neighbors for each query point. Also



Bits Num. of Subspaces
lc ld 2 4 8 16

OPQ baseline 6 0 0.045 0.117 0.238 0.408
Ours+OPQ 6 2 0.101 0.230 0.408 0.584

OPQ baseline 7 0 0.061 0.144 0.276 0.459
Ours+OPQ 7 1 0.106 0.236 0.415 0.595

OPQ baseline 8 0 0.077 0.171 0.315 0.500

Table 1. This table shows mAPs with different bit budgets. mAPs
are measured with the asymmetric distances in GIST-1M-960D
dataset. ‘OPQ baseline’ is provided here to see how much our
scheme improves the performance by using quantized distances.

we compute the ground truth for each query by performing
the linear scan. The performance of different methods is
measured by the mean Average Precision (mAP). To verify
benefits of our method we compare the following methods:

• PQ: Product Quantization [13]
• OPQ: Optimized Product Quantization [5]. We use the

non-parametric version, because it shows better accu-
racy than the parametric version.
• Ours+PQ: Our method using the same subspaces and

clustering method as used for PQ, and the geometry
based distance metrics.
• Ours+OPQ: Our method using the same subspaces,

projection matrix, and clustering method, as used for
OPQ, and the geometry-based distance metric.

For all the methods, 100K data points randomly sam-
pled from the dataset are used in the training stage, and we
allow 100 iterations in the k-means clustering. We assign 8
bits for each subspace as suggested in [13, 5]. PQ and OPQ
then have 256 centers in each subspace, and the number of
subspace M is L/8, where L is the given code-length. We
also use public source codes for all the compared methods
including PQ and OPQ. For PQ and OPQ we use sym-
metric and asymmetric distances (Eq. 1 and Eq. 2), which
achieved the best accuracy according to their original pa-
pers [13, 5]. On the other hand, the proposed binary encod-
ing scheme and our geometry based distance metrics (Eq. 8
and Eq. 9) are used for Ours+PQ and Ours+OPQ.

In our method, we have parameter ld (the number of bits)
for the distance quantization. We observe that ld = 1 or
ld = 2 gives reasonable performance across tested bench-
marks. Experimental results with these parameter values
are given in Tab. 1. Although the performances with ld = 1
and ld = 2 are both similarly good, we pick ld = 1 for all
the following tests. In other words, we use 128 centers in
each subspace and 2 distance quantizations for each cluster.

5.2. Results

Fig. 7 and Fig. 8 show mAPs of nearest neighbor search
for all the tested methods on GIST-1M-960D and GIST-
1M-384D datasets, respectively. Ours+OPQ shows better

0

0.1

0.2

0.3

0.4

0.5

16 32 64 128

m
AP

bits

Ours+OPQ
OPQ
Ours+PQ
PQ
SpH (SHD)
ITQ

(a) Symmetric distance

0

0.1

0.2

0.3

0.4

0.5

0.6

16 32 64 128

m
AP

bits

Ours+OPQ
OPQ
Ours+PQ
PQ

(b) Asymmetric distance

Figure 7. Comparisons on GIST-1M-960D. The left and right
graphs show the mAP curves with symmetric and asymmetric dis-
tances, respectively.
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Figure 8. Comparisons on GIST-1M-384D. The left and right
graphs show the mAP curves with symmetric distances and asym-
metric distances, respectively.

results over all the tested methods across all the tested code
lengths ranging from 16 bits to 128 bits. Moreover, our
methods Ours+OPQ and Ours+PQ consistently improve
both PQ and OPQ in all the tests, respectively. In addition,
we show mAPs of some of well-known binary embedding
techniques, iterative quantization (ITQ) [6] and spherical
hashing (SpH) [9] with its distance metric, SHD, for sym-
metric distance cases. Since these results are lower than
PQ, we do not show them in other tests. This improvement
clearly demonstrates the merits of our proposed binary code
encoding scheme and the new distance metrics.

It also shows an interesting trend that in general the rel-
ative improvement of our method over the baseline PQ and
OPQ is more significant for the higher dimensional cases,
e.g. 960D vs 384D. Furthermore, performance improve-
ment for Ours+OPQ is in general larger than Ours+PQ,
which indicates that better subspaces would provide more
benefit for our method.

We also perform the same experiments with another
popular global image descriptor Bag-of-Words (BoW) on
BoW-1M-1024D, and its results are shown in Fig. 9 with
SD and AD cases. Since BoW descriptors are also used with
the vector normalization according to L2 norm, we test the
normalized data too. Our method robustly provides better
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Figure 9. Comparisons on BoW-1M-1024D. The left and right
graphs show results for original and L2 normalized data with sym-
metric and asymmetric distance metrics.

performance compared to OPQ.
Finally, we measure the computational times with GIST-

1M-960D dataset at 64 bits encoding. Ours+PQ takes
94.34s to encode one million data, 21ms for one million
SD computations, and 819ms for one million AD compu-
tations, while PQ takes 187.45s, 21ms, and 829ms, respec-
tively. Since our method uses less number of cluster centers,
it has a faster encoding performance. Also, distance com-
putation time of our methods are similar to that of PQ.

6. Conclusion

We have presented a novel compact code encoding
scheme that quantizes distances of points from their cor-
responding cluster centers in each subspace. In addition,
we have proposed two different distance metrics tailored for
our encoding scheme: statistics and geometry based met-
rics. We have chosen the geometry based metrics, since it
consistently show better accuracy over the statistics based
one. We have tested our method against the-state-of-the-
art techniques with three well known benchmark, and have
demonstrated benefits of our method over them.

Many interesting research directions lie ahead. Our cur-
rent encoding scheme uses a fixed bit length for quantizing
distances from all the clusters. A clear improvement would
be to use a variable bit length for different clusters depend-
ing on quantization distortions of them. The key challenge
is to design an effective optimization for deciding the bit
distributions between encoding clusters and quantizing dis-
tances. We leave it as future work.
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