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Abstract

The functional difference between a diffuse wall and a
mirror is well understood: one scatters back into all di-
rections, and the other one preserves the directionality of
reflected light. The temporal structure of the light, however,
is left intact by both: assuming simple surface reflection,
photons that arrive first are reflected first. In this paper,
we exploit this insight to recover objects outside the line of
sight from second-order diffuse reflections, effectively turn-
ing walls into mirrors. We formulate the reconstruction task
as a linear inverse problem on the transient response of a
scene, which we acquire using an affordable setup consist-
ing of a modulated light source and a time-of-flight image
sensor. By exploiting sparsity in the reconstruction domain,
we achieve resolutions in the order of a few centimeters for
object shape (depth and laterally) and albedo. Our method
is robust to ambient light and works for large room-sized
scenes. It is drastically faster and less expensive than pre-
vious approaches using femtosecond lasers and streak cam-
eras, and does not require any moving parts.

1. Introduction

Object reconstruction from real-world imagery is one of
the central problems in computer vision, and researchers
agree that the very mechanism of image formation (each
pixel measuring light flux as a multidimensional plenoptic
integral) is one of the main reasons why it is so challenging.
To overcome the limitations of standard monocular images
taken under uncontrolled illumination with respect to many
vision tasks, a wide range of novel capturing approaches
has emerged that extend the concept of digital imaging with
structured light or new sensing techniques involving masks,
filters or integral optics (light fields) [17].

Most recently, researchers have started probing the tem-
poral response of macroscopic scenes to non-stationary il-
lumination, effectively resolving light contributions by the
total length of the optical path [I, 11]. Experimental ev-
idence suggests that such unmixing of light contributions
will benefit many challenges in computer vision, including
the use of diffuse reflectors to image objects via the time

profile of reflections from ultra-short laser pulses, so-called
transient images [20, 7]. However, reconstruction of the
this data from transient images is a numerically ill-posed
problem, that is sensitive to the exact parametrization of the
problem as well as the priors and regularization terms that
are employed. In this paper, develop a new parametrization
for this inverse problem, and combine it with a novel set of
sparsity inducing priors to achieve a robust reconstruction
of geometry and albedo from transient images.

Another challenge in this work is that the instrumenta-
tion required to measure the transient images themselves
has traditionally suffered from severe practical limitations
including excessive hardware cost (hundreds of thousands
of dollars), long acquisition times (hours) and the difficulty
of keeping the sensitive system calibrated. In this work we
address this problem by building on our recent work on us-
ing widespread CMOS time-of-flight sensors for obtaining
the transient image. The inverse problems for transient im-
age reconstruction and geometry recover can be merged into
a single non-linear optimization problem that can be solved
efficiently. The result is a system that is by several orders
of magnitude more affordable and acquires data faster than
previous solutions. In summary, we make the following
contributions:

e We formulate a transient image formation model for in-
direct geometry reconstruction, and derive a framework
for its inversion, including a novel set of sparsity en-
hancing priors. This framework is largely independent
of the way the input transient image is acquired.

e Building on our earlier work [9], we propose an imag-
ing setup that is budget-friendly, robust to ambient illu-
mination, and captures the required data in only a few
minutes.

e We demonstrate the effectiveness of setup and compu-
tational scheme by reconstructing both a low-contrast
albedo and the geometry of hidden objects.

2. Related Work

Time-of-Flight (ToF) Sensors also known as Photonic
Mixer Devices are image sensors where each pixel can di-
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Figure 1. (a) top view schematic of our measurement scenario. All distances are in meters. A diffuse wall is illuminated by a modulated
laser beam and observed by a time-of-flight camera. From diffuse reflections, we infer the geometry and albedo of objects within a
bounding volume (green) that is completely occluded to both light source and camera, but visible from most locations on the wall. In this
example, the shape of two letters cut from cardboard (b) becomes clearly visible in the reconstruction (c,d) (see text for details).

rect the charge from incoming photons to two or more stor-
age sites within the pixel [19, 18, 13, 12]. This effectively
allows the incident illumination to be modulated with a peri-
odic reference signal. ToF sensors are typically used in con-
junction with periodically modulated light sources of the
same modulation frequency and in this setting measure the
phase-dependent correlation between the illumination and
the reference signal, from which the scene depth can be in-
ferred.

Recent improvements and extensions to PMD design
and operation include heterodyned modulation of light and
PMD sensor to improve resolution [3, 4], multi-path and
scattering suppression for depth estimation [5], as well as
tomography based on time of flight information [8]. Heide
et al. [9] recently showed that ToF sensors can also be used
to reconstruct transient images. In our work we use this ap-
proach to reconstruct geometry that is not directly visible
from the camera.

Transient Imaging a.k.a. Light-in-Flight Imaging [!]
refers to a novel imaging modality in which short pulses of
light are observed “in flight” as they traverse a scene and
before the light distribution achieves a global equilibrium.
Specifically, a transient image is a rapid sequence of im-
ages representing the impulse response of a scene. Starting
with Kirani et al.’s original work [1 1], there have been sev-
eral proposals to use transient images to capture surface re-
flectance [ 4], or simply to visualize light transport in com-
plex environments to gain a better understanding of optical
phenomena [21]. Wu et al. [22] proposed to use transient
images together with models of light/object interaction to
factor the illumination into direct and indirect components.

Transient images have also been proposed as a means of
reconstructing 3D geometry that is not directly visible to ei-
ther the camera or the light sources (“Looking around the
corner”, [15, 20, 7]). In our work, we aim to perform this
kind of indirect geometry reconstruction without the signif-
icant hardware complexity usually associated with transient
imaging. Using standard ToF sensors, we build on Heide et

al.’s work [9] to devise an image formation model, objec-
tive function, and optimization procedure to directly recon-
struct geometry from indirect illumination measured with
ToF cameras.

3. Image Formation Model

We make several assumptions for the image formation
process in the scene (see Figure 1 (a)):
e The hidden scene is modeled as a diffuse height field,
which in turn is represented as a collection of differential
patches dx with orientation ny inside a volume V.

e The camera points at a section of the diffuse wall, and is
in focus.

e Light is emitted as a laser ray from position 1y and illu-
minates a single point 1 on the diffuse wall, outside the
field of view of the camera. Radiometrically, we treat
this point as a single, isotropic point light emitting a ra-
diance L.(1).

e From 1, the light illuminates the scene, and after a sin-
gle bounce returns to the diffuse wall. Patches dw on
the wall are chosen such that there is a one-to-one cor-
respondence between patches and camera pixels.

e Occlusion in the height field is ignored.
3.1. Stationary Light Transport
With these assumptions, and starting from the diffuse

Rendering Equation [10], we can therefore model the sta-
tionary (i.e. time independent) light transport as follows.

L(1) =L.(1)
L(x) =L.(1)p(x) G(1,x)

ey
2)
L(w) :/ L.(Dp(x)G(,x)p(W)G(x,w)dx (3)
v
with p(.) denoting the diffuse albedo of a patch, and the
unoccluded geometry term
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We re-write the radiance at a wall patch (Equation 3) as

LW0=LﬁMWO/g@M&Mx 5)

where the geometry term

cos £(x —1,my) - cos £(x — w,ny)

9(x) = (6)
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is independent of both the albedo and orientation of the
patch dx, while

v(x) = p(x) - cos L(l —x,nyx) - cos L(w —x,ny) (7)

is a term that isolates both of these unknown quantities. We
can interpret v(x) either as a generalized albedo term or as
a continuous volume occupancy that indicates whether or
not a given voxel location is occupied by the surface to be
reconstructed. Note that in this parametrization, the image
formation process is linear in v(x).

3.2. Transient Light Transport

The transient version of Equation 5 is obtained by adding
a time coordinate ¢ and counting only light contributions
such that ¢ is the sum of emission time ¢y and the travel
time 7 for a given light path from the laser 1 to a camera
pixel c. In our image formation model, the relevant light
paths only differ in the position of the surface element dx,
ie. t =ty + 7(x).

Recalling that we assume a one-to-one correspondence
between wall patches w and camera pixels c, we obtain the
transient image formation model

t
L(c, t):/ L.(1, to)p(w)/5(t0+7(x)7t)g(x)v(x) dx dty,
0 %
®)
where the travel time 7(x) is given as the total path length
divided by the speed of light c:

7(x) = (o = [+ 1 = x|+ [x = w|+|w —c[])/c (9

We note that this transient image formation model is inde-
pendent of the way the transient image has been acquired.
It therefore applies to all known approaches for generat-
ing transient images, including femtosecond imaging [20]
as well as correlation-based measurements with PMD sen-
sors [9].

3.3. Discretization

The problem of reconstructing geometry from indirect
light amounts to recovering the diffuse height field repre-
sented as the continuous voxel densities v(x). To this end,
we discretize the volume v(x) from Equation 8 into a Eu-
clidean voxel grid, and represent it as a vector v of size

M. The transient image (radiance) is represented as a vec-
tor i € RN, where N is the number of camera pixels/wall
patches, and 7' is the number of time steps. The discrete
version of Equation 8 is then given as

i—Pv (10)
with the light transport tensor P € RNTXM

3.4. Transient Model with PMD Sensors

Unlike Velten et al. [20], in our implementation we do
not measure the transient image directly. Instead, we build
on-top of our recent work on transient imaging with low-
cost sensors [9]: using a standard time-of-flight sensor with
a modulated illumination source, we obtain a sequence of
modulated exposure measurements h using different modu-
lation frequencies and phases. The transient image can then
be recovered as a linear inverse problem:

h = Cj, 1)

where the correlation matrix C is obtained through a
straightforward calibration step. Substituting Equation 10
for i, we arrive at our full image formation model:

h = CPv (12)

4. Inverse Problem

The image formation model from Equation 12 cannot be
inverted directly, since both the light transport matrix P is
poorly conditioned, as is the correlation matrix C (see [9]).
It is therefore necessary to include additional regularization
terms and solve a non-linear optimization problem. These
steps are described in the following.

4.1. Objective Function

We formulate the inverse problem as the optimization
problem

1
Vopt = argmin 5 ||ICPv — hH; +I(v), (13)
which is regularized with three terms:

L(V) =AY IVayvell, +0[Wv +w) inde(va,)
z z,y
. e (14)
From left to right, the individual terms represent:

e A sparse spatial gradient distribution in the height field,
implemented as the /1 penalized spatial gradients for all
volume depths z.

e A sparse volume v, justified by our assumption of height
field geometry. This term is implemented as a weighted
¢1 norm of the volume itself. The weight matrix W will
be obtained using an iteratively reweighted ¢; scheme
(IRL1, see Section 4.2).



e An explicit enforcement of the height field assumption,
by constraining the volume to have at most one non-
zero entry for each 2D (z, y) coordinate. We encode this
prior using a projection onto an indicator set of possible
depth values for each (x, y) coordinate:

0 ifpecC with

inde(p) = { oo else (15)

C={deR*card(d) =1A1"d =1Tp}

We note that the second and third term of the regular-
izer both have the purpose of encouraging a single surface
reflection along the z-dimension of the reconstruction vol-
ume. The term from Equation 15 is stronger than the ¢;
regularization, since it prefers exactly single-non-zero so-
lutions (in contrast to just sparse solutions). On the other
hand, it makes the overall optimization non-convex as C is
a non-convex set. So having both terms enables us to trade
the convexity of our objective function for the sparsity of
our model by adjusting the weights 6, w from Equation 14.

In order to solve the optimization problem from Equa-
tion 13, we split the regularization term into a linear opera-
tor K and a function F(.): T'(v) = F (Kv), with

K = [D?, DY, WI”,1"]" (16)

where D, D, are derivative operators for the x,y dimen-
sions for all z coordinates (stacked on-top of each other)
and [ is the identity matrix. We note that the minimum of
I'(v) is obtained by independently minimizing F' for each
component of Kv.

Having reformulated our optimization problem using K,
we have now mapped our problem to one that can solved
efficiently using a variant of the alternate direction method
of multipliers method (ADMM) in Algorithm 1.

Algorithm 1 Our ADMM algorithm

v . (PTCTCP —i-,uﬂ)_l (PTCTh+ vk
p (KTKv* — K7j%) + KTAF) //v-step

2 jFtL = ProX(;/ (KvFHL — Xk /p) 1/ j-step

3 A= 2 p (KA — R /1 \-step

1:

A detailed derivation and description of Algorithm 1 and
the proximal operator prox; ) can be found in the ap-
pendix and supplement.

4.2. Enhancing Volume Sparsity

To further enhance the sparsity of the convex ¢;-
regularized part of our objective, we have placed a weight
‘W on the individual components of the ¢; volume penalty
(second term in Eq. (14)).

This approach has been proposed by [2]. The idea is
that the weights W capture the support of our sparse so-
lution. This support is estimated iteratively from the last
solution, which allows for improved recovery of the sparse
non-negative components. As proposed in [2], we use the
update rule

, 1
Wit .= di e 17
() o

where the division is here point-wise. The iteration variable
7 from above is for an outer iteration on top of our original
iteration from Algorithm I.

5. Implementation and Parameter Selection

Parameters. For Algorithm 1, we use the parameters
p=11and p=0.5x1/(p|K|3), which produced good
results for all of our tested datasets. Note that K changes
for every outer IRL1 iteration, and thus y has to be recom-
puted for every iteration. We estimate ||K||3 by running the
power method for K7 K with random initialization. We use
3 outer IRL1 iterations and an update weight of € = 0.1.

Implementation of the v-step. For a very high resolu-
tion sensor and reconstruction volume, storing P would be
infeasible. In this scenario one can implement P as the
procedural operator performing the transient light transport
exactly as described in Section 3.2. The transient render-
ing operation parallelizes very well over each input pixel.
One can implement its transpose P7 similarly as the dot
product of each transient image for a considered voxel ac-
cumulated over the whole voxel volume. Thus again only
transient rendering and some additional dot-products are re-
quired. Finally, the v-step from Algorithm 1 can be imple-
mented using conjugate gradient (CG). Instead of applying
explicit matrix multiplication inside CG, we replace each
of the products with P or PT with the operations defined
above.

We implemented this version first. However, since our
sensor only has a very low resolution of 120 x 160, we were
actually able to fully precompute and efficiently store P (in
< 8GB RAM) as a sparse matrix which speeds up the recon-
struction dramatically. Note that this approach would not be
possible if the sensor or reconstruction resolution were sig-
nificantly higher.

Pre-factorization for Speedup. Instead of minimizing
|CPv — h||2 as a data term one can also pre-factor the
optimization and first solve for a transient image C~'h and
then use this as an observation in the changed data term
|Pv — C~'h||3. We have used the i-step from Heide et
al. [9] to pre-factor the optimization and did not notice a no
strong difference in reconstruction quality in comparison to
using the not pre-factored version. The advantage of pre-
factoring is that the method gets sped up even more since



all matrix application of C have been handled before and C
itself can be inverted more efficiently than the full CP.

6. Results
6.1. Experimental Setup

Our instrumentation comprises a modulated light source
and a PMD detector, as first used for the purpose of transient
imaging by Heide et al. [9].

The detector is based on a filterless version of the
time-of-flight development kit CamBoard nano by PMD
Technologies, and extended with an external frequency-
controllable modulation source (a workaround in lack of
access to the FPGA configuration for the CamBoard). We
determined that for our setup an integration time of 10
milliseconds to delivers the optimal signal-to-noise ratio,
which we further improve by averaging over multiple mea-
surements (see also Section 6.3).

The light source consists of six 650 nm, 250 mW laser
diodes with collimation optics and custom driving hardware
to emit pulses of approximately 2-3 nanoseconds duration
at variable repetition rate. The primary difference to the
hardware setup by Heide et al. [9] is that in our setup, the
diodes are not diffused to act as a spot light. Instead, we
focus each laser diode with individual optics onto a single
spot 1 on the wall (Figures 1, 2). Their overall duty cycle
during capture is less than 1%, allowing operation with only
the lens holders doubling as heat sinks.

Our reconstruction volume has a size of
1.5mx1.5mx2.0m and is distanced 1.5m from the
flat, diffuse wall. The camera and illumination are about
2m from the wall; please see Figure 1 (a) for the exact
spatial arrangement.

6.2. Qualitative Reconstruction Results

Geometry. Our first test is to reconstruct the geometry of
two letters cut out of cardboard that was painted with white
color, and placed at different depths (Figure 1). We show
two visualizations of the recovered depth information in the
volume. In the second image from the right we treat the
voxels as an occupancy probability and simply the expected
value of the distribution for each pixel, i.e. the sum of dis-
tances weighted by the occupancy probability.

Since the expected value is not robust to outliers, we
show in the rightmost image the depth value with the
strongest peak for each (z,y) pixel. This amounts to the
voxel with the highest probability of occupancy in our re-
construction. Note that in this image we threshold the vol-
ume such that all pixels with a very low albedo/occupancy
probability for all depths are shown as grey.

Albedo. The next experiment 3 shows the recovery of a
spatially varying albedo on a flat surface. The color-coded
depth map shows the depth of the strongest density in the

reconstructed volume for each pixel (z,y) as before. The
left of the figure shows the albedo v(x) sampled exactly at
the depth map positions (the position of the strongest peak).

Figure 3. Albedo reconstruction example: Reconstruction of scene
image with a flat surface but varying albedo (right). Left: the
color-coded depth map of strongest peak along z-coordinate visu-
alized shows an essentially flat geometry. Middle: Albedo image,
reconstruction value exactly at the depth map’s depth.

Albedo and Geometry. Figure 4 shows an example of vari-
ation in both geometry and albedo. In this case, the planar
surface in the front could not be reconstructed in the depth
map due to the low albedo limiting the reflected light.

o

Figure 4. Simultaneous albedo and geometry reconstruction exam-
ple: Reconstruction of scene image with varying albedo (letter on
plane in the front) and varying depth for the letter in back (right).
Albedo image, reconstruction value exactly at the depth position
from the depth map (left). Color-coded depth map of strongest
peak along z-coordinate visualized (middle).

Different Materials. In the supplemental material we show
several examples of reconstructions with non-Lambertian
surfaces. We find that Lambertian scenes result in very
sparse volume reconstructions that clearly represent a
height field structure. With increasingly non-Lambertian
surfaces the energy is spread out more and more through-
out the volume (as our model is violated).

6.3. Effects of Ambient Light and Frame Averaging

One of the advantages of Heide et al.’s method for recon-
structing transient images [9], is that it is rather insensitive
to ambient illumination. We tested whether this robustness
also applies to our approach for reconstructing geometry
(Figure 5) and albedo (Figure 6). In both cases we per-
formed our capture once with the ceiling lights in the room
switched off, and once with them switched on. We can see
that there is only a minor effect on the overall sharpness and
reconstruction quality in both cases.

As mentioned before, we average several measurements
before reconstruction. This improves SNR, since the mea-
sured indirect reflection results in very low light levels.



Figure 2. Left: 3D model of our setup (to scale). Center: Photo of our capture setup facing the diffuse wall (light source covered with black
photo board). To the left, behind an occluder, lies the reconstruction volume. Right: Close-up on the light source without cover.

Figure 7 shows different depth and albedo reconstructions,
where each measurement respectively is the average of 10
or 500 individual ToF images with a specific modulation
frequency and phase. We see that we still get a reason-
able reconstruction by averaging only 10 images. The cor-
responding capture time of 4 minutes (200 minutes for av-
eraging 500 measurements) could be significantly improved
by better synchronizing the PMD camera and light source so
that the camera can capture at video rates. Still, even with
the current setup, our capture times compare very favorably
to those reported for femtosecond laser setups [20].

6.4. Quantitative Measurements

To evaluate our reconstruction results, we compared the
distance maps with manually measured scene geometry.
Figure 8 shows a quantitative evaluation for the geometry
reconstruction example shown above.

Lateral resolution. In order to evaluate the spatial reso-
lution, we show an image of the measured scene geometry
of the flat targets. The same discretization as for the shown
depth map has been used. Having in mind that our recon-
struction volume for all results in this paper had a size of
I.5m x 1.5m x 2.0m (x X y X z), we see that we can
achieve an (z,y) resolution of approximately +5cm. The
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Figure 5. Effects of ambient illumination on albedo reconstruc-
tion: All lights in room off (top) and lights on(bottom). We see
that we still get a reasonable reconstruction with strong ambient
illumination
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Figure 6. Effects of ambient illumination on albedo reconstruc-
tion: All lights in room off (top) and lights on(bottom). We see
that we still get a reasonable reconstruction with strong ambient
illumination

accuracy of the reconstruction varies with different materi-
als. Materials that have little or no overlap in the space-time
profile (e.g. mirror example in the supplement), allow for
high reconstruction precision (around +2 cm for the mirror
example). The precision for more complex materials de-
graded to around +15 cm tolerance. Overall the spatial res-
olution is limited by the low resolution of our sensor (which
was only 120x 160 pixels).

Note that due to our robust measurement and reconstruc-
tion procedure we are able to achieve the shown results for
significantly larger scenes than previously possible in with
the femtosecond laser approach demonstrated in [20]. Vel-
ten et al. report distances of up to 25 cm from object to the
wall and a reconstruction volume of (40 cm)® due to the low

Figure 7. Effects of frame averaging on albedo (left) and geometry
(right). The left image in each pair is based on averaging 500 ToF
images for each measurement, while the right image in each pair
uses only 10.
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Figure 8. Quantitative evaluation: Reconstruction of scene image
with letter "L’ and ”F” cut out of white painted cardboard (right).
Color-coded depth map of strongest peak along z-coordinate vi-
sualized with color bar for depth in m (left). (z,y) ground truth
geometry acquired from scene measurements (middle).

SNR for large distance bounces, whereas we demonstrate
for the first time much larger room-sized environments.

Depth resolution.  For the temporal resolution achieved
in the above example of Fig. 8, we see from the given color
bar a depth distance of approximately 0.6m, where the mea-
sured distance was 0.75m. For all similarly diffuse materi-
als we reach also roughly a tolerance of £15¢m. For sim-
ple strong reflectors like the mirror we have less temporal
superposition, so for the mirror example we obtain a high
temporal resolution of below 5cm error in our 2 m depth
range, with more complex materials producing a precision
of around 20 cm.

As shown above the resolution of our approach depends
on the scene content. The achievable resolution should in
the future scale linearly with the availability of higher res-
olution ToF cameras, such as the upcoming Kinect 2. We
have shown that our method degrades somewhat gracefully
with using different materials, although a certain scene de-
pendence is inherent in the non-linear nature of the inverse
problem we solve.

7. Conclusions

We have presented a method for reconstructing hidden
geometry and low contrast albedo values from transient im-
ages of diffuse reflections. This approach involves hard in-
verse problems that can only be solved using additional pri-
ors such as sparsity in the geometry, and our primary con-
tribution is to identify a linearized image formation model,
regularization terms, and corresponding numerical solvers
to recover geometry and albedo under this difficult scenario.

Despite these numerical challenges, we show that our
method can be combined with our recent work on tran-
sient imaging using inexpensive time of flight cameras [9],
which itself involves a hard inverse problem. We demon-
strate that it is possible to combine these two inverse prob-
lems and solve them jointly in a single optimization method.
As a result our approach has several advantages over previ-
ous methods employing femtosecond lasers and streak cam-
eras [20]. These include a) low hardware cost, b) no mov-
ing parts and simplified calibration, c) capture times that
are reduced from hours to minutes, and d) robustness un-

der ambient illumination in large room-sized environments.
We believe that, as a result, our method shows promise for
applications of indirect geometry reconstruction outside the
lab.
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A. Solving the Optimization Problem

This section describes how to derive Algorithm 1 after
having introduced I'(v) = F' (Kv) in Eq. (16). For an ex-
panded version see the supplement.

To derive our ADMM method, we rewrite the problem
as

Vop =argmin G (v) + F (j)st. Kv=j (13

and can then form the augmented Lagrangian
‘CI) (Vaja A) :G (V) + F (j) +

A (kv -5+ 2w gy

where ) is a dual variable associated with the consensus
constraint. ADMM now minimizes £, (v,j, A) w.r.t. one
variable at a time while fixing the remaining variables. The
dual variable is then the scaled sum of the consensus con-
straint error. For more details see, for example [16]. The
minimization is then done iteratively, by alternatingly up-
dating v, j, and the Lagrange multiplier A. The key steps of
this algorithm are as follows:

k+1

v =argmin £, (v,jk,)\k)
v

1
=argmin 3 |ICPv — hHg + (AT (Kv —j%) +
P sk ||2
2 v - 51
1
Azargmin 3 |ICPv — hH; +(\HT (Kv — j%) + (20)
Tre ok Tek\T H k|2
p (KTKvE = K1) vt S flv = v
— (PTCTCP + ul) ' (PTCTh + pvh—
p (KTKvF — KTj") + KTA)

Note that in the third line we have made an approxi-
mation that linearizes the quadratic term from the second
line in the proximity of the previous solution v¥. This lin-
earization approach is known under several different names,
including Linearized ADMM or inexact Uzawa method

(e.g. [23, 6]). The additional parameter p satisfies the re-
lationship 0 < 11 < 1/ (p[|K[[3).



j**! =argmin L, (Vk""l,j7 )\k)
2
2y
=argmin F (j) + g

(Kvk+l _ )\7]@ > _ j
j p 2

Both F'(.) and the least square term can be minimized
independently for each component in j. Using the slack
variable j, the minimization involving the difficult function
F" has now been turned into a sequence of much simpler
problems in just a few variables.

To derive the specific solutions to these problems, we

note that the last line in Equation 21 can be interpreted as a
proximal operator [16]:

/\k
jk+1 — prOX(1/p)F <Kvk+l _ p) )

Proximal operators are well-known in optimization and
have been derived for many terms. For our problem, we
require the proximal operators for the ¢/; norm and for the
indicator set. These are given as

(22)

prox, | (a) =(a —7)+ — (-a—7)+

(23)
ProX. inde(-) (CL) =Il¢ (a)

The first term is the well-known point-wise shrinkage
and the second is the projection on the set C.

The final step of the ADMM algorithm is to update the
Lagrange multiplier by adding the (scaled) error:

Ak‘—i—l = )\k _|_p (Kvk+l _jk+1)
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