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Abstract

Dense 3D reconstruction of real world objects contain-
ing textureless, reflective and specular parts is a challeng-
ing task. Using general smoothness priors such as surface
area regularization can lead to defects in the form of discon-
nected parts or unwanted indentations. We argue that this
problem can be solved by exploiting the object class specific
local surface orientations, e.g. a car is always close to hor-
izontal in the roof area. Therefore, we formulate an object
class specific shape prior in the form of spatially varying
anisotropic smoothness terms. The parameters of the shape
prior are extracted from training data. We detail how our
shape prior formulation directly fits into recently proposed
volumetric multi-label reconstruction approaches. This al-
lows a segmentation between the object and its supporting
ground. In our experimental evaluation we show recon-
structions using our trained shape prior on several chal-
lenging datasets.

1. Introduction
In the last few years a lot of progress has been made in

the area of dense 3D reconstruction from images. The main
difficulty is imperfect input such as noisy, missing or am-
biguous data. Most approaches have in common that they
try to find a solution which follows the input data while be-
ing sufficiently regular with respect to a given smoothness
prior. These priors often penalize surface properties such as
e.g. area or curvature. Such approaches work well for data
which is mostly affected by noise. If it comes to defects
such as specularities, translucency or even reflections these
methods are prone to produce suboptimal solutions.

To overcome this problem strong domain specific pri-
ors are used. These can be priors on semantic classes, e.g.
building facades have to be vertical, or priors on the struc-
ture, e.g. the reconstruction has to form a tree. Recently also
3D object shape priors have been proposed.

One powerful approach to dense 3D reconstruction is
volumetric depth map fusion, where a set of depth maps
is combined into a volumetric representation. The volume
is segmented into the exterior (free space) and interior (oc-

Figure 1. Left: Cropped input image, depth map and baseline re-
sult. Right: Result with our shape prior formulation. Object and
ground are segmented by our formulation.

cupied space) of the object. In this work we propose to ex-
ploit anisotropic regularization to embed object shape pri-
ors into convex regularization formulations for volumetric
depth map fusion. The reasoning behind this is that object
classes have locally only a restricted distribution of surface
normals over different examples. The outline of a bottle is
always close to vertical but on the other hand there can be
regions such as the side mirrors of a car where a large set of
normals is likely. We capture these normal variations and
utilize them to formulate our shape prior.

1.1. Related Work

There is a broad literature on dense 3D reconstruction
from images. We focus on the most related ones to our ap-
proach and for a more detailed overview we refer the reader
to [15]. The main idea of volumetric depth map fusion is
to segment a volume into occupied and free space and ex-
tract the surface as boundary between the two regions. The
main difference between the various methods is how they
regularize the data. Approaches penalizing the surface area
have been proposed in the discrete optimization literature
[12] and also as continuous convex optimization [22]. The
main advantage of such continuously inspired formulations
is that they have an underlying continuous representation,
which leads to more isotropic behavior compared to discrete
approaches using graph-cuts.
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Given input images an oriented point cloud can be ex-
tracted using structure from motion approaches. Utilizing
anisotropic smoothness can then be used to align the final
reconstruction with the extracted normal directions leading
to a more faithful reconstruction of surface details [11].

While such general smoothness priors lead to faithful
reconstructions in the presence of well behaved data they
can be too general for very ill-conditioned cases. Therefore
other priors have been proposed.

Segmenting elongated structures, such as blood vessels,
are prone to be disconnected. To overcome this problem
connectivity priors have been introduced [18, 17].

Object shape priors have recently attained much atten-
tion in the field of dense 3D reconstruction [3, 5]. Both
works try to fit a parametric shape model into input data.
This allows the reconstruction of objects which are not well
represented in the input data such as highly reflective cars.

Multi-label segmentation methods have only recently
emerged. The work of [4] proposes a spatially continuous
formulation of multi-label segmentation with a discrete la-
bel space. While anisotropic smoothness can be directly
applied to this formulation, the main restriction is that the
smoothness needs to form a metric over the label space.
A comparison of discrete formulations and the discretized
version of the continuous formulation revealed that the dis-
cretized formulation does not suffer from this problem [20].
The most closely related work to our shape prior formula-
tion is [9]. They propose to introduce semantic informa-
tion into volumetric 3D reconstruction by utilizing convex
multi-label segmentation. The main idea is that the vol-
ume is no longer segmented into free and occupied space
but rather into multiple semantic classes. This allows the
semantic classes to be penalized differently, e.g. ground
should be less penalized when in a horizontal direction, as
this is a more likely direction for ground.

Our approach to shape priors is driven by the observa-
tion that, for many real life objects, the local distribution
of normals is limited. For example the doors of a car can-
not be horizontal but this is a very likely direction for the
hood. Therefore, we propose to incorporate a shape prior
by locally penalizing the surface directions anisotropically
dependent on the distribution of normals given in training
data. A more direct approach for volumetric shape priors
might be to just derive a location specific prior on the oc-
cupancy state of a voxel. However, this does not allow the
capturing of that e.g. the roof of the car needs to be close to
horizontal, which is nicely captured by our direction based
prior.

Often the reconstructed object is standing on a support-
ing ground. To be able to handle the data costs induced by
the ground, which do not fit to the shape prior, we propose
to use multi-label segmentation to treat the ground differ-
ently. This directly enables us to also segment the object
and the ground.

1.2. Our Contributions
• We propose a novel way to incorporate shape pri-

ors based on surface normal distributions into con-
vex multi-label optimization. The driving force of our
method are spatially varying anisotropic smoothness
priors (c.f . Sec. 2.3). The formulation is based on
more general anisotropic smoothness priors as the ones
that have been used in recent convex multi-label seg-
mentation approaches.

• An efficient way to derive the shape priors from train-
ing data is detailed in Sec. 2.4.

• Due to the multi-label formulation we can segment the
object from its supporting ground in a natural way (see
Fig. 1).

2. Shape Priors
Our approach is based on recently published convex

multi-label segmentation methods [16, 4, 20]. Before we
explain how we can incorporate shape priors, we need to
summarize the optimization framework.

2.1. Convex Multi-Label Segmentation

The ultimate goal of surface reconstruction is to find
the most probable surface which fits the given noisy data.
In convex approaches for surface reconstruction, the sur-
face is often implicitly represented in a volumetric form.
Traditionally, the volume is separated into two areas, free
space and occupied space [12, 19] and the resulting sur-
face is described by the boundary between free and occu-
pied space. An extension of this formulation to multiple
semantic classes was proposed in [9]. We follow a similar
approach by dividing the reconstruction into the object it-
self, on which the shape prior should be applied, and the
ground, if there is any. This leads to a segmentation of the
volume into three regions: free space, object and support-
ing ground. This allows us to handle the often strongly ob-
served ground which does not fit to the object shape prior.
Additionally, this directly gives the segmentation between
the reconstructed object and the supporting ground.

The main ingredients of the formulation are: a unary and
a smoothness term plus a set of constraints linking them to-
gether. The unary potential is computed from the observed
data and will be called data term. A smoothness term is re-
quired to tackle the noise in the observed data. It can be seen
as a prior on the expected surface and is therefore named
smoothness prior.

The convex multi-label segmentation formulation pre-
sented in the following originates from continuous opti-
mization [4]. The main drawback of the purely contin-
uous formulation is that it does not allow for non-metric
smoothness priors. It has been pointed out that this can be
overcome by only considering discrete domains in [20]. As
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we are inherently bound to the discrete domain and the un-
derlying continuous formulation is not required for the un-
derstanding of this manuscript, we directly present the dis-
cretized version of the formulation. However some mech-
anisms need to be understood as a discretization of the un-
derlying continuous formulation.

More formally, a discretized volumetric domain Ω ⊂ R3

is given. The task of the label assignment is to assign
one out of the three labels free space, object or support-
ing ground L = {0, 1, 2} to each location (voxel) s ∈ Ω.
It is represented as soft indicator vectors xs ∈ [0, 1]|L| with
xis = 1 if and only if label i is assigned at s. In the fol-
lowing, we will use subscripts to denote the spatial position
of a variable and superscripts to denote label indices. ek
denotes the k-th canonical basis vector and (·)k is used to
extract the k-th component of a vector. Having this nota-
tion in place, we can now state the objective of the utilized
convex minimization problem.

E(x) =
∑
Ω∈s

∑
i

ρisx
i
s +

∑
i,j:i<j

φijs (xijs − xjis )

 (1)

In addition to the per voxel soft-indicator vectors xis the ob-
jective also contains vectors xijs ∈ [0, 1]3. They are un-
derstood as follows: the k−th component of the vector xijs
equals 1 if and only if there is a transition from label i to
label j along the k-th canonical direction of the grid. The
functions φijs : R3 → R+

0 define the smoothness prior and
need to be convex and positively 1-homogeneous. Their
arguments xijs − xjis are aligned with the surface normal
if they are on the segmentation boundary. They are an
anisotropic extension of standard surface area based penal-
ization used in continuous segmentation formulations (c.f.
[7, 23]). Note that originating from a discretized continuous
formulation, the arguments of the objective are generally
non-binary around the optimal surface. This is a necessary
behavior to allow the vectors xijs − xjis to point in arbitrary
directions, and the main reason why these formulations are
less prone to metrication artifacts than purely graph based
approaches. The ρis are the unary data costs giving a local
preference at voxel s for the label i. To ensure that the edge
indicator variables xijs and the node indicator variables xis
are consistent and in a valid configuration, the objective in
Eq. 1 is subject to the following marginalization, normal-
ization and non-negativity constraints.

xis =
∑
j

(xijs )k, xis =
∑
j

(xjis−ek)k k ∈ {1, 2, 3}

xs ∈ ∆, xjis ≥ 0 (2)

The marginalization constraints ensure that the per node and
per edge variables agree on the assigned labels. Constrain-
ing the per-node variables to lie in the unit probability sim-
plex ∆ = {

∑
i x

i
s = 1, xis ≥ 0} ensures that exactly one

label is assigned at each position s.

ρ

0

β

ẑ

Figure 2. Data term entered into the grid along a viewing ray.

2.2. Data Term

The unary data term gives a local preference for a cer-
tain label. In our formulation, we have two different labels
denoting occupied space: object and ground. It has been
shown that such multi-label segmentation can be done based
on per image class scores in [9]. We choose a slightly dif-
ferent approach and do not compute any class specific data
term. The segmentation of object and ground is solely based
on the shape prior detailed in Sec. 2.3. The only input for
the data term is a set of potentially noisy depth maps. This
leads to only one data term describing a local preference
for occupied space ρs := ρ1

s = ρ2
s. The local preference

for free space is implicitly encoded as penalty for occupied
space, therefore ρ0

s = 0.
In the following we consider a particular voxel s and its

associated data cost ρs. The projective depth of s with re-
spect to one of the input depth maps is denoted as zs and its
observed depth in the depth map is denoted as ẑs. We then
define the data term as

ρs =


β if zs < ẑs, ẑs − zs < δ

−β if zs > ẑs, zs − ẑs < δ

0 otherwise .
(3)

This is based on the assumption that in front of an observed
depth ẑ a voxel s should be assigned free space and in a
neighborhood behind occupied space. The weights ρ along
a viewing ray are depicted in Fig. 2. Note that we are mini-
mizing our energy and therefore a negative ρs means prefer-
ence for occupied space. This specific choice for ρs corre-
sponds to an exponentially distributed noise assumption for
depth inliers (see also [9, 19]). Also note that we have only
specified our data term for a single observed depth ẑs. It re-
mains to be mentioned that the final data term is formed by
summing up all the weights from all the input depth maps.

2.3. Novel Shape Prior Formulation

Unlike recent works on shape priors that fit a parametric
shape model to given data [3, 5] we are taking a somewhat
different approach. The main drawback in the aforemen-
tioned works is that using a parametric shape model brings
the additional difficulty that details not represented by the
prior need to be added in an additional refinement step. In
this section we will detail our shape prior formulation.

For many real world objects, the distributions of normals
in a set of given examples is locally restricted. For exam-
ple, the outline of a bottle is always close to vertical. We
exploit this observation to define our shape priors in terms
of surface normal distributions. The main idea is to use a
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spatially varying anisotropic penalization of the surface.
This can be included in the convex volumetric multi-

label segmentation formulation by utilizing smoothness pri-
ors φijs (·) that penalize the surface according to the expected
surface orientation at each location s in our volume Ω. For
the remainder of the paper, we assume that the domain Ω
is aligned with the object’s bounding box. At this point,
we would like to mention that the smoothness priors φijs (·)
need to be defined for all the possible transitions between
the three labels (free space, object and ground). However,
the shape prior is only applied to transitions involving the
object label, meaning the transitions object ↔ free space
and object ↔ ground. In the remainder of this section we
therefore omit the label indices and implicitly refer to the
relevant transitions.

Any positively 1-homogeneous convex function can be
used as a smoothness prior φs. Choosing functions fulfilling
these properties can be difficult, therefore we do not define
them directly but use the primal-dual formulation (c.f. [7])

φs(x) = max
p∈Ws

(pTx). (4)

Ws denotes the so-called Wulff shape and can be any
closed, bounded and convex set which contains the ori-
gin. Using this formulation, we transformed the problem of
specifying a suitable function to specifying a convex shape
which guarantees the definition of a valid smoothness prior.

This idea has been used before, but only a restricted set
of possible shapes was taken into account [23, 9]. Namely,
one that prefers a certain direction and one that prefers all
the directions that are orthogonal to a given direction. This
may be sufficient in these works, but in our case, in order
to capture the distribution of normals present on the ob-
ject’s surface faithfully, we need to allow for more general
smoothness priors. Therefore, we propose to use a more
general parameterization of Wulff shapes.

We start with the following fact: any convex shape can
be described as an intersection of a set of half spaces. We
choose a discrete set of half spaces Hs and call the in-
duced shapeWHs the discrete Wulff shape. The half spaces
hs ∈ Hs are defined by a normal direction n ∈ S ⊂ S2 and
distances to the origin dns . S2 denotes the three dimensional
unit sphere and S a discrete subset thereof. The distances
dns are indexed by the normal direction n. This is not a
restriction as only one half space per direction can be ac-
tive (having a joint boundary with Ws) in the Wulff shape
defined by the intersection of all hs ∈ Hs. The set of nor-
mal directions S is chosen to be spatially homogeneous and
therefore not indexed by the position s. By using a suffi-
ciently fine grained discretization for the normal directions
in S, any valid Wulff shape can be represented with high
accuracy. Fig. 3 shows visualizations of some examples of
possible shapes.

In our experiments, we use a geodesic sphere, which is
generated as a iterative subdivision of an icosahedron, to
define the set of normal directions S. The number of direc-

Figure 3. Discrete Wulff shapes, from left to right: isotropic, pre-
ferring one main direction, more complex shape that penalizes a
segment of normals much more strongly than the rest.

tions used is |S| = 162. The actual distances dns used for
the individual directions n are determined by training data.
This step is detailed in the Sec. 2.4.

For the transitions between ground and free space, which
are not covered by the shape prior we use a prior preferring
the ground to be horizontal as done in [9].

For objects that only touch the ground at specific places
e.g. the four wheels of a car, the position of the support
points are known from the training data. This allows us to
utilize the shape prior only in a neighborhood around the
area where the interaction is expected to happen. Outside
that region we use a strong isotropic penalization. In Sec.
4 it is shown that this enables the optimization to properly
segment cars from the ground.

2.4. Training of the Discrete Wulff Shapes

The aim of training the Wulff shapes is to determine the
parameters of the shape prior based on training data. Our
training data are mesh models that we downloaded from the
Internet. Often realistic models also contain the geometry in
the interior of the object. In our case we are only interested
in the outline shape of the models, more specifically only
in the normals of the outline shapes at all positions s ∈ Ω.
To separate the outline shape from the rest we first render
depth maps from the given mesh and run volumetric depth
map fusion [19] using the rendered depth maps in order to
finally extract the outline shape’s normals.

The parameters that need to be determined during train-
ing are the parameters of the discrete Wulff shapes, namely
all the distances dns for all the normals n ∈ S at all the po-
sitions s ∈ Ω. Naturally, the terms φijs in the energy func-
tion in Eq. 1 correspond to negative log-probabilities. The
standard approach for the training would be to find a max-
imum likelihood estimation of the distances dns given a set
of training normals. As we need to estimate a set of param-
eters at each position s a gradient descent based maximum
likelihood estimation would be too slow.

To make the problem tractable we discretize the space
of directions xijs − xjis to the ones that are aligned with the
discrete set of normals S. Therefore we have for each unit
length normal direction n ∈ S at position s a direct map-
ping between the probability Ps(n) and the corresponding
dns by

Ps(n) = e−φ
ij
s (n) = e−maxp∈WHs

(pTn) = e−d
n
s (5)
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and it follows that

dns = − log (Ps(n)) . (6)

To get an estimate for Ps(n) we generate histograms
over the input normal directions weighted by their respec-
tive surface area in the training data. The bin centers are
set to be n ∈ S . Now the empirical probabilities can be di-
rectly extracted from the histograms and define the dns . For
robustness against non observed directions in the training
data we impose a maximum on the values dns . At this point
we need to make a few remarks.

• In Eq. 5 the arguments to φijs (·) are unit length nor-
mal vectors. However, the arguments yijs := xijs −
xjis are in general non-normalized gradient directions
from [−1, 1]3. From 1-homogeneity it follows that
φijs (yijs ) = ‖yijs ‖2φijs (yijs /‖yijs ‖2). And ‖yijs ‖2 corre-
sponds to the area of the surface element in the under-
lying finite-difference discretization (c.f. [9]). There-
fore the surfaces are naturally penalized by their sur-
face area.

• It can happen that an actual half space hs is not active
(does not share a boundary with WHs ) in the trained
discrete Wulff shape. This means that the correspond-
ing direction n will be penalized less then the training
data suggests. This is not an issue as it does not happen
for the most probable directions. This behavior can ac-
tually be beneficial if a single empty histogram bin is
surrounded by much more probable ones.

• In the training process we restricted the directions to
the normals n ∈ S. We can still allow for arbitrary
directions during the optimization as we generate a
valid Wulff shape which assigns a cost to all directions
xijs − xjis .

Overall, this way of training the parameters leads to an es-
timate that penalizes the most probable directions n ∈ S
with the corresponding empirical probability and smoothly
blends for directions in between. The training is very effi-
cient as it only involves the computation of a normal his-
togram while getting an accurate penalization for the most
likely directions. In Fig. 4 the shape prior trained on a set
of bottles is visualized.

3. Optimization

For the optimization we use the preconditioned first or-
der primal-dual algorithm presented in [14]. In order to ap-
ply the algorithm we need to rewrite the optimization prob-
lem in its primal-dual saddle point form. This is done by in-
serting the primal-dual formulation of the smoothness prior
from Eq. 4 into Eq. 1 and introducing Lagrange multipliers
for the constraints (Eq. 2). The optimization problem can
then be stated as

(a) Full slice on the left, closeups in the middle (left side of the bottle
neck) and on the right (bottom corner of the bottle).

(b) Full slice on the left, closeup of the lower left part on the right.

Figure 4. Slices through the bottle shape prior in vertical direction
(a) and horizontal direction (b). Isotropic Wluff shapes for posi-
tions s where there was no training data available are shown in
light gray. Trained discrete Wulff shapes are shown in dark gray.

Epd(x, p, λ, γ, µ) =
∑
s

(∑
i

ρisx
i
s + µs

(∑
i

xis − 1

))

+
∑
s,i,k

(λis)k

∑
j

(xijs )k−xis)

+
∑
s,i,k

(γis)k

∑
j

(xjis−ek)k−xis)


+
∑
s

∑
i,j:i<j

((pijs )T (xijs − xjis )) (7)

subject to pijs ∈ Wij
s , µs ≥ 0, xijs ≥ 0, xis ≥ 0. The ob-

jective is minimized with respect to x and maximized with
respect to p, λ, γ and µ. The Wulff shapes Wij

s define the
smoothness prior and describe depending on the labels i and
j; either our shape prior, or an isotropic or horizontal direc-
tion preferring prior.

The updates of the primal-dual algorithm [14] are gradi-
ent steps followed by projections to the feasible area. The
main difficulty is the projection to the discrete Wulff shapes
WHs which define our shape prior. We detail this step in
the following section.

3.1. Projection onto Discrete Wulff Shapes
At each iteration of the algorithm the dual variables ps

need to be projected back to the feasible area. In case of the
discrete Wulff shapes WHs

this has to be done whenever
ps lies outside one or multiple of the half spaces hs ∈ Hs.
In the following we denote such half spaces hs as violating
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half spaces. In our procedure we exploit that in practice
only a few half spaces per Wulff shape are violated in each
iteration of the optimization.

As a preprocessing step that only has to be done once
for each shape prior we compute the intersection of all the
half spaces hs ∈ Hs and store for each half space, in case
it is forming a facet of the intersection, the neighboring half
spaces along the boundary of the facet. Computing the in-
tersection of the half spaces can be done by utilizing point
plane duality (c.f. [6]). For each half space we take the
plane defining its boundary, π = [n −d] and map it to
a dual point π̄ = (1/d)n. A subsequent computation of
the convex hull [1] of the dual points reveals the intersec-
tion of the planes. The convex shape can then be extracted
by transforming back to the primal representation. Note
that this way of computing the intersection of half spaces
is only valid because the origin is always contained within
the shape.

For the projection
p′s = arg min

p′s∈WHs

‖ps − p′s‖2 (8)

of a dual point ps to the Wulff shape WHs we use the fol-
lowing observation.

If a point ps lies outside WHs
, its projection p′s lies on

the boundary of one of the violating half spaces. This can
be seen by case distinction. The projection either lies on a
facet, edge or vertex ofWHs , and for all three cases the area
where the point ps needs to be located to project to p′s is at
least outside of one of the half spaces incident to p′s.

In our projection we first find the set of violating half
spaces. Due to the above observation the projection can
then be reduced to an exhaustive check of all the violated
half spaces (remember in practice only very few half spaces
are violated). At this point we would like to make a few
remarks:

• Finding the set of all violating half spaces can be
expensive. By storing the closest distance dmin

s :=
minn∈S d

n
s for eachWHs we can first check if ps lies

withing the dmin
s -ball and only do the expensive check

if it does not. This considerably speeds up the opti-
mization.

• At many positions s in the volume there is no training
data available because the surface never passes through
s. In this case an isotropic prior with a high smooth-
ness cost is utilized. To reduce the memory usage
we do not store a discrete Wulff shape but a perfect
isotropic prior with the corresponding weight.

4. Experiments
Before presenting the results we obtained on challeng-

ing real-world datasets we show a synthetic experiment that
shows how our shape prior handles shape variations. Often
shape variations within a certain class are still constrained to
a set of normals which can be captured by our shape prior.

For example looking at a door with respect to the frame,
or the door of a car with respect to the car, the different
opening angles induce big shape variations that cannot be
captured by simply capturing the statistics of the occupancy
state of a voxel. To demonstrate that our prior is able to
capture such variations we trained a shape prior based on
synthetic data.

We use a box which is centered at the origin and rotate
it around the z-axis. For the training data we use 32 equally
spaced angles. Our shape prior can now reconstruct this
box with an fully random rotation angle around the z-axis.
This is demonstrated by generating a box using a random
rotation angle as test data. We rendered eight depth maps
where we only keep 4% of the depth values and add Gaus-
sian distributed noise to the remaining depth values.

For all our experiments we use standard volumetric fu-
sion [19] as a baseline method. The data costs for the result
with and without shape prior are identical up to a scaling
factor which is necessary to account for the different regu-
larization.

The results of the experiments are shown in Fig. 5. Not
using a shape prior we cannot reconstruct the box but us-
ing our shape prior the box is nicely reconstructed for an
arbitrary rotation angle.

In our experiments using real-world data we computed a
shape prior for two classes of objects, bottles and cars. Both
of the classes share the difficulty that objects are highly re-
flective and contain transparent elements such as the win-
dows of cars. We trained our priors on mesh models down-
loaded from the Internet; for the bottle prior the training set
size was 48, and for the car prior we used 32 instances.

To underline that our shape prior can be used on arbitrary
shapes within the trained object class, we took several real
world datasets of bottles and cars of varying shapes. For
cars we used real cars as well as toy cars. As a first step
the camera poses are computed using the publicly available
structure from motion software [21]. We then use our plane
sweep stereo matching implementation to compute a depth
map for each of the images as a reference view. The match-
ing is done on 5 images at once. Zero mean normalized
cross correlation (ZNCC) matching scores are computed be-
tween each of the images and the reference view and oc-
clusions are handled using only the best K = 3 matching
scores.

In order to be able to apply the shape prior, the domain
Ω needs to be aligned with the bounding box of the object.
This can be done based on image based object detectors e.g.
[8] and optimization over all the input images [2, 10, 13].
As our work focuses on the actual shape prior formulation
we omit this step and annotate the bounding box manually.

In Fig. 6 we present the results for the bottle datasets.
The same shape prior was used for all the results. Due to the
specular, reflective and translucent areas, an isotopic prior,
as used in the baseline, is not faithfully modeling the shapes
of the bottles. Our shape prior is general enough to recover
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Figure 5. Synthetic experiment. First two images, two out of 32 training shapes. Third image, center part of a horizontal cut through the
shape prior. Last two images the reconstruction without and with shape prior, respectively. In the case of not using a shape prior stronger
regularization removes the reconstruction entirely.

Figure 6. Reconstructions of the bottle datasets. From left to right: cropped input image, cropped depth map, baseline result [19] and our
result using the shape prior with the object and ground segmented. Number of images used, from left to right and top to bottom: 28, 21, 27
and 26.

Figure 7. Reconstructions of the car datasets. On the first and second row real cars reconstructed using 80 and 62 images, respectively and
on the third row a toy car reconstructed using 27 images. From left to right, cropped input image, cropped depth map, baseline result [19]
and our result using the shape prior with the object and ground segmented.
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the different shapes present in the input data. Also note that
the actual bottle and the ground are segmented through our
three label formulation.

Our results on the the car datasets are depicted in Figs. 1
and 7. While a toy car already gives a faithful result in the
baseline, applying our shape prior does not change much
on the actual shape of the car. Note that details such as
the side mirrors and the door handles are present even when
utilizing the shape prior. This illustrates that our shape prior
is able to allow for a higher variation of normals where they
are expected. Additionally, applying the shape prior allows
us to segment the ground from the car. Real cars are more
challenging then toy cars. Through the transparent windows
details in the interior are present in the depth maps, leading
to defects on the front wind-shield and the side windows.
These issues are fixed by applying our shape prior.

5. Conclusion
We present an approach to include shape priors in con-

vex multi-label segmentation for volumetric 3D reconstruc-
tion. It is driven by using spatially varying anisotropic
smoothness priors to guide the optimization to the right
shape. In order to have a general enough parameteriza-
tion for anisotropic smoothness we define a discrete Wulff
shape, which is formed by the intersection of a discrete
number of half spaces. An efficient approach to train the
parameters of the discrete Wulff shapes is used to derive the
prior from given training data.

On synthetic data we show that our shape prior is capable
of capturing big shape variations. Furthermore, we demon-
strate the applicability of our formulation on two challeng-
ing real world object classes. The prior is able to gener-
alize to different shapes present within a class of objects.
We underline this, by showing reconstructions for several
examples of each category. Compared to a state-of-the-art
baseline not using a shape prior we are able to improve the
reconstructions considerably.

Future work needs to examine the possibility of apply-
ing such shape priors within reconstructions of larger scenes
also containing the surrounding of the object, or scenes with
multiple objects of possibly different classes. One step in
this direction has been made already in this work by seg-
menting the ground apart. Also the semantic properties
could be investigated further, e.g. in the case of a recon-
structed car the assigned semantic class to the ground below
it is expected to be road.
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