
Covariance Trees for 2D and 3D Processing

Thierry Guillemot Andrés Almansa Tamy Boubekeur
Télécom ParisTech - CNRS – LTCI – Institut Mines Télécom - Paris, France

{guillemot,almansa,boubekeur}@telecom-paristech.fr

Abstract

Gaussian Mixture Models have become one of the major
tools in modern statistical image processing, and allowed
performance breakthroughs in patch-based image denois-
ing and restoration problems. Nevertheless, their adop-
tion level was kept relatively low because of the computa-
tional cost associated to learning such models on large im-
age databases. This work provides a flexible and generic
tool for dealing with such models without the computa-
tional penalty or parameter tuning difficulties associated
to a naı̈ve implementation of GMM-based image restora-
tion tasks. It does so by organising the data manifold in a
hirerachical multiscale structure (the Covariance Tree) that
can be queried at various scale levels around any point in
feature-space. We start by explaining how to construct a
Covariance Tree from a subset of the input data, how to
enrich its statistics from a larger set in a streaming process,
and how to query it efficiently, at any scale. We then demon-
strate its usefulness on several applications, including non-
local image filtering, data-driven denoising, reconstruction
from random samples and surface modeling from unorga-
nized 3D points sets.

1. Introduction
Statistical Priors for Image Restoration witnessed two

quantum leaps in the last decade: The first one, Non Lo-
cal Means (NLM) [5, 4, 13], allowed to go beyond local
regularization priors like TV, by observing that non-local
patch-based priors enable to much better capture the self-
similar structure of natural image textures. The second one,
including Non Local Bayes (NLB) [9], and Piecewise Lin-
ear Estimator (PLE) [18], perfected this idea by means of a
more detailed description of the manifold containing natu-
ral image patches, which turns out to be piecewise regular
and low-dimensional with respect to the high-dimensional
embedding patch-space.

Actual implementations of these ideas require algorith-
mic accelerations and model simplifications. Thus, in
NLB [9] the manifold is assumed to be locally linear, and

approximated by an anisotropic Gaussian model, based on
the kNNs in feature space. Ideally the manifold should be
estimated over the clean feature but in the absence of better
information, it is approximated iteratively from the noisy
features. This choice is potentially inaccurate and requires
a lot of computation since a local Gaussian Model has to be
learnt around each single point in the image.

Another approach has been made popular in image pro-
cessing by PLE [18] which is closely related to Structured
Sparsity as introduced in [12]. In this approach the problem
is simplified by modelling the patch manifold as a Gaus-
sian Mixture Model (GMM) that is fitted to the unknown
restored patches via their noisy measurements and an itera-
tive Expectation Maximisation (EM) algorithm. In this case
the number of Gaussians in the model is fixed in advance to
no more than two dozens, in order to keep computational
complexity under control, and to ensure that initialization
heuristics are sufficient to guide the EM procedure to a good
local minimum of the non-convex objective function.

The purpose of this work is to provide a generic data
structure which can be used to estimate the patch manifold
from a big database of clean patches. Our approach can be
seen as a hybrid between PLE and NLB, in the sense that
it is based on a GMM (like PLE) that is locally defined in
the feature space (like NLB). Contrarily to NLB there is no
need to re-learn the model around each patch. Hence the
number of gaussians is no longer limited to a few dozens
thanks to a hierachical data-structure that allows to : (a)
quickly insert a new patch to enrich the learnt model and (b)
quickly query the learnt model parameters that are pertinent
around a given patch.

Experimental evidence shows that our scheme closely
matches the restoration quality of top-notch state-of-the-art
image restoration methods like PLE or NLB. We demon-
strate that various 2D and 3D problems –usually formulated
in terms of Bayesian a posteriori expectation (EAP)– can be
reformulated as a posterior likelihood maximization (MAP)
which can be solved by our scheme. Then we provide a few
examples showing how our CovTree has an advantage when
applied to several problems such as image denoising, image
reconstruction, point set surfaces reconstruction.

1

2. Background
Notation used in the paper Let us consider a spatial
domain S ⊂ RdS and let {p1, . . . ,pN} be a point set
of N samples. To fix ideas let us consider a mapping
f : S → R associating each sample pi ∈ S to a value
fi of a range domain R ⊂ RdR 1. For example, this
representation includes RGB images associating to each
pixel pi = (xi, yi)

T a color value fi = (ri, gi, bi)
T , 3D

point sets defined by their spatial positions and normals
pi = fi = (xi, yi, zi, nxi, nyi, nzi)

T , a more complex rep-
resentation used to compute bilateral filters concatenating
spatial and range coordinates by pi = (xi, yi, ri, gi, bi)

T of
an image to a color value fi = (ri, gi, bi)

T or a non local
representation by replacing pi and fi by image patches.

High-Dimensional Filtering Linear filters such as the bi-
lateral filter [3, 15, 17] or the non-local means filter [5] can
be computed as a weighted average of values in the range
domainR, where the weights measure the dissimilarity be-
tween points in a spatial domain S, by means of e.g. a Gaus-
sian kernel φΣ with diagonal covariance matrix Σ. Thus, for
any q ∈ S the filtered signal f̂ is defined by:

f̂(q) =
∑
pi∈S

φΣ(pi − q)fi/
∑
pi∈S

φΣ(pi − q) (1)

For most applications, a naı̈ve implementation of Eq. 1
requieres a quadratic complexity and needs to be acceler-
ated. The main idea of most acceleration techniques is to
perform filtering by a linear interpolation of values com-
puted by downsampling S. For bilateral filtering, Paris and
Durand [14] introduce a tesselation of S into hypercubes
using a regular grid defined into the spatial 5d domain.
Nevertheless, such a grid defines a lot of unnecesserary
cells yielding the use of this approach difficult for higher-
dimensionnal applications.

Adams et al. [2] use a kd-tree dividing S into hyperrect-
angles depending on signal variations thus avoiding all the
empty cells defined by the regular grid. Then they [1] tes-
selate S using uniform simplicies. The filter’s response is
computed by performing multi-linear or barycentric inter-
polation. They consider that the signal is a linear manifold
and as the dimension dS of S increases, the number of nec-
essary cells to enclose the signal explodes.

Gastal and Oliveira [7] defines a correct downsampling
of S by using non-linear manifolds. They iteratively sepa-
rate samples from different populations into different clus-
ters using recursive low-pass filters to define adaptative

1 Remark : It helps to think of f as a function even though our structure
does not require the mapping f to be well and uniquely defined for any
p ∈ S nor does it require this mapping to be known explicitly. Rather
the association between p and f is learnt by the algorithm from the given
database of pairs (pi, fi).

manifolds. Thus, the computation is performed only where
needed and the filter response is computed in linear time.

Collaborative Filter When pi = fi is a set of patches
corrupted by a Gaussian noise of variance σ2

n, Eq 1 can be
reformulated – in the case of NLM – in terms of Bayesian
a posteriori expectation (EAP). Lebrun et al. [9] propose
the Non Local Bayes (NLB) filter by replacing the EAP by
a posterior likelihood maximization (MAP). Thus, in ad-
dition to a non-local mean µ, each patch is associated to
a covariance matrix describing the variability of the patch
group. For any noisy patch p̃, an optimum p̂ is computed
by :

p̂ = µp̃ + Σp̃[Σp̃ + σ2
nId]−1(p̃− µp̃) (2)

Ideally the covariance matrix Σp̃ corresponds to clean
patches variability but, in pratice, it is computed from a
noisy covariance Σ̃p̃ describing variability of noisy patches.
Such a filter is called “collaborative” because we process all
the patches group at the same time by the filtering operation
Σp̃ = Σ̃p̃ − σ2Id. Nevertheless, this approach requires a
lot of computation since a local Gaussian model has to be
learnt twice around each patch in the images to ensure the
correctness of Σp̃. In practice, the estimation step is ap-
proximated by a kNN search in the feature space.

Related to the work about Structure Sparsity [12], Yu et
al. [18] introduce the Piecewise Linear Estimator (PLE) that
defines a general framework for solving inverse problems
in imaging such as inpainting, zooming, or deblurring. The
manifold of patches is approximated by a Gaussian Mix-
ture Model (GMM) which is fitted to the unknown restored
patches via MAP using an iterative Expectation Maximisa-
tion (EM) algorithm. This approach can be seen as a faster
implementation of NLB which strongly discretizes the man-
ifold of patches. In this context finding a good initialization
and a correct number of classes for the GMM is a quite
tricky problem.

The aim of our work is to use the latest progress con-
cerning high dimensional filtering to generalize ideas intro-
duced by collaborative filtering. We propose the Covari-
ance Tree, a data structure able to learn points distributions
from data and to provide, for any query location and scale,
an anisotropic Gaussian corresponding to the local learned
distribution. In particular, the Covariance Tree provides
several key benefits such as:

1. on-the-fly learning which allows, given an initial struc-
ture, to progressively refine the precision of the learned
model by streaming additional data points, for a con-
stant memory budget, accounting for a potentially high
amount of data points while controlling the size of the
tree. This is a a key aspect of our work to recover
texture details;

2

Figure 1. Pipeline: To fix ideas, we illustrate the different steps of our algorithm when the two sets {pi} = {fi} Our CovTree is based
on tree main steps : (a) from a sampled data set, we build a binary tree structure from a space partionning of S based on {pi} up to a cell
size σb, (b) each node learns the local statistical distribution modeled by an anisotropic kernel by streaming data points through the tree
by considering the pi and summing a weighted contribution of fi to all traversed’ nodes kernel, (c) for any query point q ∈ S and scale
σq ∈ R, our CovTree models the local distribution of learned data at q at the scale σq by providing a multivariate Gaussian distribution
defined from a mean µ̂ and a covariance matrix Σ̂.

2. fast local distribution estimate, at different scales,
without recomputing the data structure;

3. genericity, allowing to solve a number of 2D and 3D
processing problems by instantiating our structure with
specific spatial and range domains, which includes
Non-Local Bayes filtering, data-driven image denois-
ing, image holes completion and 3D Non-Local Point
Set Surface reconstruction.

3. The Covariance Tree

Assume that we want to restore a data point f ∈ R that
is either noisy or incomplete in some way. We also have
access to q ∈ S which is related to f in the following man-
ner: the prior distribution of f given q can be modelled as a
multivariate Gaussian N(µq,Σq) with parameters varying
smoothly as a function of q. 2

If we know the mapping q 7→ (µq,Σq), and the degra-
dation model (given as the conditional probability of the
degraded or incomplete f̃ given the clean f) then we can
use standard Bayesian techniques (such as MAP or EAP) to
estimate f from the degraded pair (q, f̃). In general such
a mapping is unknown, but we can estimate it from a large
database of examples (pi, fi) ∈ R̂ × Ŝ ⊂ R × S , by aver-

2 Note that if this assumption holds, then the data fi will be more
compactly represented by multivariate Gaussians than by simpler isotropic
ones (see Figure 2). Indeed, by using isotropic Gaussian we consider that
f is propagating the same way in every direction of the space defining
smaller and more numerous cells and decreasing the quality of the learn-
ing.

aging a sufficiently large number of neighbours :

µq,σq =
∑
pi∈R̂

φσq(‖pi − q‖)fi

Σq,σq =
∑
pi∈R̂

φσq(‖pi − q‖)f̄if̄i
T

(3)

where f̄i = (fi − µq,σq). A small scale parameter σq pro-
vides a better localized prior, but larger values are often re-
quired to provide a statistically significant estimation of the
local Gaussian distribution from the given examples, espe-
cially when the dimensions dS and dR are large, as is the
case in non-local patch-based filtering or restoration for in-
stance.

Unfortunately, high-dimensional restoration problems
require large example databases and a brute-force approach
to the computation of Eq. (3) at each query point q is un-
tractable. We tackle this problem by introducing an hier-
archical data structure which summarizes and indexes the
database at multiple scales, with a limited amount of mem-
ory. This structure is equipped with a fast query mecanism
providing an approximation to (3), for any query point q
and for a large range of scales σq. Our basic idea is to model
the database as an hierarchical set of anisotropic multivari-
ate Gaussians approximating smoothly and progressively
the distribution of {fi} in the database. At each level of the
structure, the kernels are formed by the mean and the co-
variance of the local distribution. Consequently, we name
our structure Covariance Tree (or cov-tree).

More precisely, a cov-tree is a Binary Space Partition
Tree [6] (bsp-tree) carrying anisotropic Gaussians learned
from data on its nodes. It defines a rotation-invariant tes-
sellation of S into space cells, as well as an hierarchical

3

(a) Large cells (b) Small cells

Figure 2. Distribution models: Local isotropic Gaussians are too
poor a model for manifolds. At a given scale, the balls are too
coarse to describe local variations (a). The only solution is to re-
fine the partition (b) increasing the number of representative cells.

partition allowing to approximate the database at different
scales.

Our approach (as summarized in Figure 1) is essentially
based on three operators:

building we perform a top-down hierarchical space par-
titioning of S based on {pi} up to a cell size σb, resulting in
a binary tree structure for which each node will later carry
an anisotropic kernel modeling the local statistical distribu-
tion of {fi} in its related space cell (Sec. 3.1);

learning we learn this distribution by streaming (train-
ing) data points through the tree, classifying them using pi
and summing a weighted contribution of fi to all traversed
nodes’ kernels (Sec. 3.2);

querying for any query point q ∈ S and scale σq ∈ R,
our cov-tree provides a multivariate Gaussian distribution,
in the form a mean µ̂ and a covariance matrix Σ̂ interpo-
lated at q and modelling the distribution of learned data at
scale σq (Sec. 3.3).

The two parameters σb and σq (that determine the local-
ity of learning resp. query) are set to ensure a reasonable ap-
proximation of equation (3). Usually, σb is defined smaller
than the noise level σn of the training data and σq ' σn.
Indeed, given the noise in the data, values σq finer than the
noise σn provide too poor statistical estimate of (µ̂, Σ̂) .
The result of the successive steps of building, learning and
querying approximates the estimation of covariance matri-
ces with a Gaussian kernel of size

√
2σq.

3.1. Building the tree

Instead of using a kd-tree [2], which fails at capturing
anisotropy accurately (see Fig. 3(a)), we give to our cov-
tree a bsp structure based on the direction of maximum
variation of the input points. Let us consider a tree node
η and its associated set of points pj . We compute and
store in η a splitting plane {ηd,ηc}, with its normal ηd de-
fined as the normalized eigenvector associated to the largest
eigenvalue of the covariance of {pj} and its center ηc de-
fined as the average of the pj . The cell radius is given

(a) Kd-tree (b) Bsp-tree

Figure 3. Tree structure. A Kd-tree (a) defines partitions of S
independantly of the anisotropy of the data. A bsp-tree (b) allows
to be rotation-invariant and better model distributions, diminishing
the error of the estimated multivariate Gaussian.

by ηr = max
pj

‖pj − ηc‖. We then subdivide {pj} into

two distinct sets based on their signed distance to the plane
(pj − ηc)tηd. Finally, we construct the two children of η
based on these two sets. Starting from the root and the entire
input {pi}, we perform this recursive construction while
ηr > σb. Consequently, our approach is output-sensitive
and well adapted to large data sets, the memory footprint of
the cov-tree depending only on the desired precision σb.

3.2. Learning local distributions

Once the tree structure is initialized, we can compute
the statistics of its cells by streaming pairs of training data
point {pi, fi} through it. Starting from the root node, a pair
is classified top-down using pi and enriches each traversed
node η by summing fi to its local distribution using a weight
wi defined from a Gaussian φηr centered at ηc :

µη := µη + wifi

Ση := Ση + wif
t
i fi

(4)

Each point we stream during the learning step increases
the precision of our cov-tree without adding additional
nodes (i.e., constant memory cost). For a large database,
the tree nodes’kernels are typically learned over the full data
while the tree’s structure is built from a subset only. Inter-
estingly enough, the dataset used for the building step can
be different from the learning one.

3.3. Querying local distributions

Once fully built, the tree can be queried using any q ∈ S,
providing an anisotropic Gaussian describing the distribu-
tion of the learned values around q at scale σq. To do so, we
first collect a set of tree nodes in the vicinity of q, at differ-
ent scales, by traversing the tree top-down, gathering every
node η intersecting the [q, σq] ball and being either a leaf or
verifying ηr > σq. Traversing the tree to a finer precision
level ηr << σq would increases the precision, but increases
significantly the computational cost (see Fig 4). Second,

4

Figure 4. Our fast query limits the number of cov-tree nodes
gathered (in green) to reconstruct a local anisotropic distribution.
(a) When the requested scale σq is large, only the top nodes are
retained. (b) As σq gets smaller, the gathering shaft gets thinner,
collecting deeper nodes mostly.

we estimate the distribution at q as a weighted combina-
tion of the gathered nodes’ distributions, using weights wi
defined from a Gaussian φσq centered on q :

µ̂ =
1

ŵ

∑
i

wiµηi

Σ̂ =
1

ŵ2

∑
i

wiΣηi − ŵµ̂
tµ̂

(5)

Where ŵ and ŵ2 are two normalization values.

3.4. Complexity Analysis

We recall that S is the dS -dimensional spatial do-
main and R is the dR-dimensional range domain. Each
of the Nb points used during the building step appears
only once in the Kb cov-tree clusters, resulting in a
building cost of O(dSNblog(Kb)). Using Nl points to
learn the nodes’statistics, classifying them has a cost of
O(NldS log(Kb)) and learning variations in all nodes has
a cost of O(Nllog(Kb)d

2
R), resulting in a learning cost

of O(Nllog(Kb)(dS + d2
R)). When querying Nq points,

gathering the lists of Kq contributing nodes has a cost
of O(NqdSKq); the additional anisotropic Gaussian es-
timation (O(NqKqd

2
R)) leads to a total querying cost of

O(NqKq(dS + d2
R)). Last, the memory cost of our cov-

tree is O(NbKbd
2
R) and remains constant during the online

steps (learning and querying), allowing to re-learn and/or
reuse numerous times a cov-tree precomputed once.

4. Applications
We provide a few example applications of our cov-tree

to solve inverse problems in 2D imaging and 3D rendering.
Whenever possible the results are compared with state of
the art techniques for the same problems.

The performance numbers reported in this paper were
measured on a 2.4 GHz Intel Xeon processor with 12 GB
of memory and 8 cores, but running a non-optimized C++

Algorithm 1 Cov-tree main functions
function BUILD(Ck, σb)

Allocate new node η
ηc ← means of points in Ck
ηd ← largest eigenvector of cov(Ck)
ηr ←maxpi∈Ck

||pi − ηc||2
if ηr ≥ σb then

Mark η as leaf node
else

Cl ← {pi ∈ Ck, (pi − ηc)tηd ≤ 0}
ηleft ← BUILD(Cl)
Cr ← {pi ∈ Ck, (pi − ηc)tηd ≥ 0}
ηright ← BUILD(Cr)

end if
return η

end function

function LEARN(p, f , η)
// Compute weight by using the node radius
wi ← φηr (p− ηc)
Update node statistics using Eq.(4)
if η is not a leaf node then

if (p− ηc)tηd ≤ 0 then
LEARN(p, f , ηleft)

else
LEARN(p, f , ηright)

end if
end if

end function

function COMPUTE STAT(q, σq, η)
if ηr < σq or η is not a leaf node then

// Compute weight by using σq
wi ← φσq(q− ηc)
µ := µ + wiµη
Σ := Σ + wiΣη

else
if (q− ηc)tηd ≤ σq then
{µ,Σ} ← COMPUTE STAT(q, σq, ηleft)

end if
if (q− ηc)tηd ≥ −σq then
{µ,Σ} ← COMPUTE STAT(q, σq, ηright)

end if
end if
return {µ,Σ}

end function

function QUERY(q, σq)
{µ,Σ} ← COMPUTE STAT(q, σq, ηroot)
Compute µ̂ and Σ̂ from {µ,Σ} using Eq.(5)
return {µ̂, Σ̂}

end function

5

1

5.5

10

128 256 512 1024

T
im

e
(s

)

Figure 5. Computation time (in seconds) of 5 · 105 queries (ex-
cluding the building step which is run only once) of our cov-tree at
different scales σq. Time is measured by specifically constraining
the use of a single core.

code3 which most often takes advantage of only one core.

4.1. Non Local Bayes Filtering

Non-local Bayes denoising [9]4 is a bayesian MAP esti-
mation from noisy image patches p̃. 5 The prior multivari-
ate Gaussian model for the clean patch is estimated from
a neighborhood Np̃ of noisy patches, so the estimated co-
variance matrix Σp̃ is also corrupted by noise. When we
combine the denoising of this covariance matrix with the
MAP estimation in equation (2), we obtain the estimated
(denoised) patch as

p̂ = µp̃ + [Σp̃ − σ2
nId]Σ−1

p̃ (p̃− µp̃) (6)

The neighborhood Np̃ is not only restricted to patches p̃i
that are close to p̃ in the feature space (R = R3n2

for
n× n patches of color images), but also to those associated
to nearby pixels (xi, yi). This restriction makes the search
for similar patches tractable in very large images, since the
search region does not grow with image size. Using the
cov-tree, however, we can afford such large search regions
without any significant performance penalty.

We propose three variants of NLB denoising which only
differ in the choice of the neighborhood N(p̃):

Global Search. The spatial domain S = R = R3n2

is
the same as the feature space, so the neighborhood Np̃

only depends on p̃.

Local Search. In order to reproduce the neighborhood
of the original NLB we augment the spatial domain
with the pixel coordinates (xi, yi), so S = RdS , dS =
3n2 + 2.

Compressed Local Search. As an adaptation of [16] to
NLB, we can reduce the spatial domain S to the first

3 The querying process can be parallelized by using one thread for
each query. A similar solution can be used for the learning process but care
must be taken to avoid concurrent writing to the same cell. Parallelizing
the building step is more involved but has less impact since this is the least
time-consuming part of the pipeline.

4for simplicity we only consider NLB’s first stage here
5where noise is zero-mean Gaussian with variance σ2

30.7

31

31.3

1 2 4 8 16 32 64

P
S

N
R

(d
B

)

Space dimensionality ()

Figure 6. PSNR (with respect to ground-truth) of NLB denois-
ing using our cov-tree with PCA dimensionality reduction in the
spatial domain. We measured the PSNRi(dS) on 20 test images i
for different values of the spatial dimension dS . The mean curve
PSNR(dS) is represented in red and in gray the standard devia-
tions of the centered curves PSNRi(dS)−PSNRi. Although the
absolute levels of PSNR present a large variation (between 29 and
34 dB) among all images, the shape of the PSNRi(dS) curve as a
function of dS is the same for all images and shows a peak around
dS = 4 in agreement with the findings of [16] for NLM.

6 principal components in a global PCA analysis of all
noisy patches in the image.

Figure 7 presents the denoising results of the original
NLB compared to our local variant based on the cov-tree.
Our local approach (e) produces better results than the orig-
inal NLB (d). We can explain it by our use of the approxi-
mate Gaussian kernel φ as a weighting function. In the orig-
inal NLB, means and covariance matrices are estimated by
averaging the k nearest neighbors with a constant weight.
Consequently, covariance matrices can be more strongly af-
fected by outliers.

As shown in Figure 6, PCA dimensionality reduction
over the S domain not only accelerates the search (as ex-
pected), but also produces better performances. The latter
can be attributed to the denoising effect of dimensionality
reduction, which improves the relevance of the computed
neighborhoods N(p̃).

Figure 5 shows that the time required to solve a query
in the cov-tree is only mildly affected by the neighborhood
size σq of the query. Indeed, as shown in Figure 4, coarse-
sized queries explore a lot of nodes in breadth but stop the
search at the top of the tree while a fine-sized query explores
fewer nodes in breadth but explores the tree in depth. Con-
sequently, the number of nodes (and hence the computa-
tional complexity) for each radius size is equivalent, except
for medium sized queries which involve the largest number
of nodes.

4.2. Data Driven Image Denoising

In [11] the use of huge image databases is advocated as
a way to learn the prior underlying natural image patches.
Their procedure (called shotgun NLM in [10]) was shown
to serve as a way to estimate the fundamental limits of non-
local image denoising methods, but no attempt was done to
make the computation time actually tractable for real appli-

6

PSNR 14.7 dB
(a) Original (b) Noise std. dev. 0.2

PSNR 28.3 dB
(c) Accelerated NLM (6+2-D)

PSNR 28.9 dB
(d) NLB original (147+2-D)

PSNR 29.2 dB
(e) Our filter (6+2-D)

Figure 7. Non-local filtering: We use our CovTree to learn 7 × 7 RGB patches extracted from the noisy image (b). The original patch
dimensionality (147-D) is reduced to 6-D using PCA as suggested for NLM by [16]. When compared to an accelerated implementation of
NLM [7] (c) or the original NLB (d), our filter (e) better recovers features thanks to the use of an approximate Gaussian kernel φ.

(b) Noise (a) Original (d) Our NLB
(147+2-D)

(e) Data-driven
NLB (147-D)

(c) NLB original
(147+2-D)

PSNR 30.2 dB PSNR 31.1 dBPSNR 30.0 dBPSNR 22.4 dB

Figure 8. Data driven image denoising: We use our CovTree to
learn from about 108 clean 7 × 7 RGB patches extracted from
an image database (first line) to denoise an image corrupted by
a noise of standard deviation of 0.1 (b) by exploiting the prior
underlying natural images. Compared to the original image (a),
our data driven filter (e) better preserves features than using the
original NLB filter (c) or our single-image CovTree-NLB filter (d).

cations. A similar idea was proposed in [19] for a PLE-like
algorithm with 200 Gaussians, thus requiring many days to
learn the prior on a largedatabase. In this section we ap-
ply the same idea to implement a ”shotgun NLB” denois-
ing algorithm, but using the cov-tree to make both learning
and restoration computationally tractable with large learn-
ing databases.

Indeed, we propose to use an external noiseless image
database instead of noisy patches to denoise a noisy im-
age. This idea has two main benefits: we can increase the
number of learned patches (without a significant penalty
in computation time or memory use) and data is not de-
graded by noise, thus increasing the precision of the esti-
mated anisotropic Gaussian.

In practice, we build the tree at a scale σb = σn by con-
sidering the colored noised patches (without the pixel coor-
dinate) to fix the hierarchy of spatial domain cells. Then,
we learn the corresponding range-domain Gaussian mod-

els from the database of noiseless colored patches. Finally,
the covariance matrix Σp̃ and the mean vector µp̃ are es-
timated from a noisy patch p̃ with σq = σn. In contrast
to the previous section, the estimated anisotropic gaussians
N (µp̃,Σp̃) are noiseless, consequently, we applied equa-
tion (2) directly, without need for denoising the covariance
matrix.

Figure 8 shows our result of denoising an image of
a façade using a database of noiseless images of similar
façades in the same city (but not the same façade). As
expected, the database-driven denoising performs better.
More extensive experimentation is needed to check if this
reconstruction is actually close to the fundamental limits
announced in [11] .

Our database contains about 108 patches and the learning
phase takes about 5 hours and 8GB of RAM to hold the
data-structure. This is several orders of magnitude faster
than the times reported in [11, 19], while our database is
also larger. Reconstruction takes about 5 minutes.

4.3. Reconstruction from random samples

One of the most visually striking applications of
Bayesian MAP estimation with a Gaussian mixture prior
model for image patches, is the reconstruction of an image,
from a small random subset of its pixels (20% in our case),
as showcased in [18] among others. Let’s consider a patch
q sampled by a known random sampling operator q̃ = Sq.
As before, we consider that image patches are locally mod-
eled as an anisotropic Gaussian distribution, with mean µq̃

and covariance Σq̃ estimated from the local dictionary. We
assume that q̂0 is an initial estimate of the complete patch
(obtained by a cubic interpolation over the Delaunay tri-
angulation). This patch serves as a query to extract a local
statistical prior for q from the cov-tree. Then by Bayesian

7

(a) Original (c) Cubic (d) Our result(b) Masked

Figure 9. Data driven reconstruction from sparse samples: We
obtain from an original image (a) a masked image by extracting
randomly 20% of the original pixels (b). By learning about 108

patches with our CovTree, we reconstruct an image (d) by apply-
ing Eq. (7) with a coarse-to-fine query scales, and starting from a
cubic interpolation (c).

MAP estimation, we write the recovered patch q̂i as :

q̂i+1 = (Σq̂i
SHS +

σ2
i

2
Id)−1(Σq̂i

SH q̃ +
σ2
i

2
µq̂i

) (7)

Combining all reconstructed patches by aggregation, we ob-
tain a first reconstruction I1 from the interpolated image I0.
The patches q̂i in this first reconstruction (i = 1) can in
turn be used as an initialisation/query to obtain more accu-
rate prior and reconstruction q̂i+1. We iterate the process
with until q̂i equals q̂i+1 by using a coarse-to-fine query
scale σi = αiσ0 where α ∈ [0, 1] is a scale factor. Figure 9
presents the result of our approach over an image were only
20% random samples were retained. In our experiments
α = 0.8 and σ0 = 0.65

5. Conclusion and perspectives
We proposed a novel data structure and associated algo-

rithms that allow to deal with a continuous family of local
multivariate Gaussian models: both efficient learning over
a large database and fast queriyng are supported. The ex-
tracted model varies continuously over a range domain R
when the query point varies over a (possibly different) spa-
tial domain S, and different scale levels can be specified by
the query resulting in various degrees of spatial locality of
the extracted statistical model.

The relevance of such a data structure is motivated by
image restoration problems via Bayesian MAP with local
Gaussian priors on the image patches. Such models became
incresingly sucessful in image processing during the last 5
years, because they are very close to an accurate statistical
model of natural images. However, progress in this area has
been slow because we lack the required tools for efficiently
handling the massive amounts of data that need to be fed to
learn these models in order to approach optimal results. The
cov-tree is an attempt to fill this gap.

Given the genericity of the cov-tree, its applicability
reaches potentially far beyond image restoration. In the
supplementary material we include an application that im-
proves an NLM-like algorithm for denoising and interpola-
tion of 3D point clouds [8]. In this case a data structure is
definitely required to index and query a set of patches even
for point cloud of 106 points. The reason is that common ac-
celeration and search techniques that are used by non-local
methods in 2D image processing do not apply to irregular
3D point sets over a surface that has no implicit parameter-
ization.

Acklowedgements This work has been partially funded by the
EC under contracts FP7-287723 REVERIE, FP7-323567 HAR-
VEST4D, by the French government under ANR iSpace&Time,
FUI CEDCA and CNES R&T 128435 projects.

References
[1] A. Adams, J. Baek, and M. A. Davis. Fast high-dimensional

filtering using the permutohedral lattice. In CGF, volume 29,
pages 753–762, 2010.

[2] A. Adams, N. Gelfand, J. Dolson, and M. Levoy. Gaussian
kd-trees for fast high-dimensional filtering. TOG, 28(3):21,
2009.

[3] V. Aurich and J. Weule. Non-linear gaussian filters perform-
ing edge preserving diffusion. In Mustererkennung 1995,
pages 538–545. 1995.

[4] S. Awate and R. Whitaker. Higher-order image statistics for
unsupervised, information-theoretic, adaptive, image filter-
ing. In CVPR, volume 2, pages 44–51, 2005.

[5] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm
for image denoising. In CVPR, volume 2, pages 60–65, 2005.

[6] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible sur-
face generation by a priori tree structures. In SIGGRAPH,
volume 14, pages 124–133, 1980.

[7] E. S. Gastal and M. M. Oliveira. Adaptive manifolds for
real-time high-dimensional filtering. TOG, 31(4):33, 2012.

[8] T. Guillemot, A. Almansa, and T. Boubekeur. Non local
point set surfaces. In 3DIMPVT, pages 324–331, 2012.

[9] M. Lebrun, A. Buades, and J.-M. Morel. Implementation of
the ”Non-Local Bayes” Image Denoising Algorithm. IPOL,
2013:1–42, 2013.

[10] M. Lebrun, M. Colom, A. Buades, and J. Morel. Secrets of
image denoising cuisine. Acta Numerica, 21:475–576, 2012.

[11] A. Levin and B. Nadler. Natural image denoising: Optimal-
ity and inherent bounds. In CVPR, pages 2833–2840, 2011.

[12] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman.
Non-local sparse models for image restoration. In ICCV,
pages 2272–2279, 2009.

[13] G. Motta, E. Ordentlich, I. Ramirez, G. Seroussi, and M. J.
Weinberger. The dude framework for continuous tone image
denoising. In ICIP, volume 3, pages III–345, 2005.

[14] S. Paris and F. Durand. A fast approximation of the bilateral
filter using a signal processing approach. IJCV, 81(1):24–52,
2009.

[15] S. M. Smith and J. M. Brady. Susan—a new approach to low
level image processing. IJCV, 23(1):45–78, 1997.

[16] T. Tasdizen. Principal components for non-local means im-
age denoising. In ICIP, pages 1728–1731, 2008.

[17] C. Tomasi and R. Manduchi. Bilateral filtering for gray and
color images. In ICCV, pages 839–846, 1998.

[18] G. Yu, G. Sapiro, and S. Mallat. Solving inverse prob-
lems with piecewise linear estimators: from gaussian mix-
ture models to structured sparsity. TIP, 21(5):2481–2499,
2012.

[19] D. Zoran and Y. Weiss. From learning models of natural
image patches to whole image restoration. In ICCV, pages
479–486, 2011.

8

