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Abstract

Object detection performance, as measured on the
canonical PASCAL VOC dataset, has plateaued in the last
few years. The best-performing methods are complex en-
semble systems that typically combine multiple low-level
image features with high-level context. In this paper, we
propose a simple and scalable detection algorithm that im-
proves mean average precision (mAP) by more than 30%
relative to the previous best result on VOC 2012—achieving
a mAP of 53.3%. Our approach combines two key insights:
(1) one can apply high-capacity convolutional neural net-
works (CNNs) to bottom-up region proposals in order to
localize and segment objects and (2) when labeled training
data is scarce, supervised pre-training for an auxiliary task,
followed by domain-specific fine-tuning, yields a signifi-
cant performance boost. Since we combine region propos-
als with CNNs, we call our method R-CNN: Regions with
CNN features. We also present experiments that provide
insight into what the network learns, revealing a rich hier-
archy of image features. Source code for the complete sys-
tem is available at http://www.cs.berkeley.edu/
˜rbg/rcnn.

1. Introduction
Features matter. The last decade of progress on various

visual recognition tasks has been based considerably on the
use of SIFT [26] and HOG [7]. But if we look at perfor-
mance on the canonical visual recognition task, PASCAL
VOC object detection [12], it is generally acknowledged
that progress has been slow during 2010-2012, with small
gains obtained by building ensemble systems and employ-
ing minor variants of successful methods.

SIFT and HOG are blockwise orientation histograms,
a representation we could associate roughly with complex
cells in V1, the first cortical area in the primate visual path-
way. But we also know that recognition occurs several
stages downstream, which suggests that there might be hier-
archical, multi-stage processes for computing features that
are even more informative for visual recognition.

Fukushima’s “neocognitron” [16], a biologically-
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Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. R-CNN achieves a mean
average precision (mAP) of 53.7% on PASCAL VOC 2010. For
comparison, [32] reports 35.1% mAP using the same region pro-
posals, but with a spatial pyramid and bag-of-visual-words ap-
proach. The popular deformable part models perform at 33.4%.

inspired hierarchical and shift-invariant model for pattern
recognition, was an early attempt at just such a process.
The neocognitron, however, lacked a supervised training al-
gorithm. LeCun et al. [23] provided the missing algorithm
by showing that stochastic gradient descent, via backprop-
agation, can train convolutional neural networks (CNNs), a
class of models that extend the neocognitron.

CNNs saw heavy use in the 1990s (e.g., [24]), but then
fell out of fashion, particularly in computer vision, with the
rise of support vector machines. In 2012, Krizhevsky et al.
[22] rekindled interest in CNNs by showing substantially
higher image classification accuracy on the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [9, 10].
Their success resulted from training a large CNN on 1.2
million labeled images, together with a few twists on Le-
Cun’s CNN (e.g., max(x, 0) rectifying non-linearities and
“dropout” regularization).

The significance of the ImageNet result was vigorously
debated during the ILSVRC 2012 workshop. The central
issue can be distilled to the following: To what extent do
the CNN classification results on ImageNet generalize to
object detection results on the PASCAL VOC Challenge?

We answer this question decisively by bridging the
chasm between image classification and object detection.
This paper is the first to show that a CNN can lead to dra-
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matically higher object detection performance on PASCAL
VOC as compared to systems based on simpler HOG-like
features.1 Achieving this result required solving two prob-
lems: localizing objects with a deep network and training a
high-capacity model with only a small quantity of annotated
detection data.

Unlike image classification, detection requires localiz-
ing (likely many) objects within an image. One approach
frames localization as a regression problem. However, work
from Szegedy et al. [31], concurrent with our own, indi-
cates that this strategy may not fare well in practice (they
report a mAP of 30.5% on VOC 2007 compared to the
58.5% achieved by our method). An alternative is to build a
sliding-window detector. CNNs have been used in this way
for at least two decades, typically on constrained object cat-
egories, such as faces [28, 33] and pedestrians [29]. In order
to maintain high spatial resolution, these CNNs typically
only have two convolutional and pooling layers. We also
considered adopting a sliding-window approach. However,
units high up in our network, which has five convolutional
layers, have very large receptive fields (195 × 195 pixels)
and strides (32×32 pixels) in the input image, which makes
precise localization within the sliding-window paradigm an
open technical challenge.

Instead, we solve the CNN localization problem by op-
erating within the “recognition using regions” paradigm, as
argued for by Gu et al. in [18]. At test-time, our method
generates around 2000 category-independent region pro-
posals for the input image, extracts a fixed-length feature
vector from each proposal using a CNN, and then classi-
fies each region with category-specific linear SVMs. We
use a simple technique (affine image warping) to compute
a fixed-size CNN input from each region proposal, regard-
less of the region’s shape. Figure 1 presents an overview of
our method and highlights some of our results. Since our
system combines region proposals with CNNs, we dub the
method R-CNN: Regions with CNN features.

A second challenge faced in detection is that labeled
data is scarce and the amount currently available is insuffi-
cient for training a large CNN. The conventional solution to
this problem is to use unsupervised pre-training, followed
by supervised fine-tuning (e.g., [29]). The second major
contribution of this paper is to show that supervised pre-
training on a large auxiliary dataset (ILSVRC), followed by
domain-specific fine-tuning on a small dataset (PASCAL),
is an effective paradigm for learning high-capacity CNNs
when data is scarce. In our experiments, fine-tuning for de-
tection improves mAP performance by 8 percentage points.
After fine-tuning, our system achieves a mAP of 54% on
VOC 2010 compared to 33% for the highly-tuned, HOG-
based deformable part model (DPM) [14, 17].

1A tech report describing R-CNN first appeared at http://arxiv.
org/abs/1311.2524v1 in Nov. 2013.

Our system is also quite efficient. The only class-specific
computations are a reasonably small matrix-vector product
and greedy non-maximum suppression. This computational
property follows from features that are shared across all cat-
egories and that are also two orders of magnitude lower-
dimensional than previously used region features (cf. [32]).

One advantage of HOG-like features is their simplic-
ity: it’s easier to understand the information they carry (al-
though [34] shows that our intuition can fail us). Can we
gain insight into the representation learned by the CNN?
Perhaps the densely connected layers, with more than 54
million parameters, are the key? They are not. We
“lobotomized” the CNN and found that a surprisingly large
proportion, 94%, of its parameters can be removed with
only a moderate drop in detection accuracy. Instead, by
probing units in the network we see that the convolutional
layers learn a diverse set of rich features (Figure 3).

Understanding the failure modes of our approach is also
critical for improving it, and so we report results from the
detection analysis tool of Hoiem et al. [20]. As an immedi-
ate consequence of this analysis, we demonstrate that a sim-
ple bounding box regression method significantly reduces
mislocalizations, which are the dominant error mode.

Before developing technical details, we note that be-
cause R-CNN operates on regions it is natural to extend it
to the task of semantic segmentation. With minor modifi-
cations, we also achieve state-of-the-art results on the PAS-
CAL VOC segmentation task, with an average segmentation
accuracy of 47.9% on the VOC 2011 test set.

2. Object detection with R-CNN
Our object detection system consists of three modules.

The first generates category-independent region proposals.
These proposals define the set of candidate detections avail-
able to our detector. The second module is a large convo-
lutional neural network that extracts a fixed-length feature
vector from each region. The third module is a set of class-
specific linear SVMs. In this section, we present our design
decisions for each module, describe their test-time usage,
detail how their parameters are learned, and show results on
PASCAL VOC 2010-12.

2.1. Module design

Region proposals. A variety of recent papers offer meth-
ods for generating category-independent region proposals.
Examples include: objectness [1], selective search [32],
category-independent object proposals [11], constrained
parametric min-cuts (CPMC) [5], multi-scale combinatorial
grouping [3], and Cireşan et al. [6], who detect mitotic cells
by applying a CNN to regularly-spaced square crops, which
are a special case of region proposals. While R-CNN is ag-
nostic to the particular region proposal method, we use se-
lective search to enable a controlled comparison with prior
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Figure 2: Warped training samples from VOC 2007 train.

detection work (e.g., [32, 35]).

Feature extraction. We extract a 4096-dimensional fea-
ture vector from each region proposal using the Caffe [21]
implementation of the CNN described by Krizhevsky et
al. [22]. Features are computed by forward propagating a
mean-subtracted 227 × 227 RGB image through five con-
volutional layers and two fully connected layers. We refer
readers to [21, 22] for more network architecture details.

In order to compute features for a region proposal, we
must first convert the image data in that region into a form
that is compatible with the CNN (its architecture requires
inputs of a fixed 227 × 227 pixel size). Of the many possi-
ble transformations of our arbitrary-shaped regions, we opt
for the simplest. Regardless of the size or aspect ratio of the
candidate region, we warp all pixels in a tight bounding box
around it to the required size. Prior to warping, we dilate the
tight bounding box so that at the warped size there are ex-
actly p pixels of warped image context around the original
box (we use p = 16). Figure 2 shows a random sampling of
warped training regions. The supplementary material dis-
cusses alternatives to warping.

2.2. Test-time detection

At test time, we run selective search on the test image
to extract around 2000 region proposals (we use selective
search’s “fast mode” in all experiments). We warp each
proposal and forward propagate it through the CNN in or-
der to read off features from the desired layer. Then, for
each class, we score each extracted feature vector using the
SVM trained for that class. Given all scored regions in an
image, we apply a greedy non-maximum suppression (for
each class independently) that rejects a region if it has an
intersection-over-union (IoU) overlap with a higher scoring
selected region larger than a learned threshold.

Run-time analysis. Two properties make detection effi-
cient. First, all CNN parameters are shared across all cate-
gories. Second, the feature vectors computed by the CNN
are low-dimensional when compared to other common ap-
proaches, such as spatial pyramids with bag-of-visual-word
encodings. The features used in the UVA detection system
[32], for example, are two orders of magnitude larger than
ours (360k vs. 4k-dimensional).

The result of such sharing is that the time spent com-
puting region proposals and features (13s/image on a GPU
or 53s/image on a CPU) is amortized over all classes. The

only class-specific computations are dot products between
features and SVM weights and non-maximum suppression.
In practice, all dot products for an image are batched into
a single matrix-matrix product. The feature matrix is typi-
cally 2000×4096 and the SVM weight matrix is 4096×N ,
where N is the number of classes.

This analysis shows that R-CNN can scale to thousands
of object classes without resorting to approximate tech-
niques, such as hashing. Even if there were 100k classes,
the resulting matrix multiplication takes only 10 seconds on
a modern multi-core CPU. This efficiency is not merely the
result of using region proposals and shared features. The
UVA system, due to its high-dimensional features, would
be two orders of magnitude slower while requiring 134GB
of memory just to store 100k linear predictors, compared to
just 1.5GB for our lower-dimensional features.

It is also interesting to contrast R-CNN with the recent
work from Dean et al. on scalable detection using DPMs
and hashing [8]. They report a mAP of around 16% on VOC
2007 at a run-time of 5 minutes per image when introducing
10k distractor classes. With our approach, 10k detectors can
run in about a minute on a CPU, and because no approxi-
mations are made mAP would remain at 59% (Section 3.2).

2.3. Training

Supervised pre-training. We discriminatively pre-trained
the CNN on a large auxiliary dataset (ILSVRC 2012) with
image-level annotations (i.e., no bounding box labels). Pre-
training was performed using the open source Caffe CNN
library [21]. In brief, our CNN nearly matches the perfor-
mance of Krizhevsky et al. [22], obtaining a top-1 error rate
2.2 percentage points higher on the ILSVRC 2012 valida-
tion set. This discrepancy is due to simplifications in the
training process.

Domain-specific fine-tuning. To adapt our CNN to the
new task (detection) and the new domain (warped VOC
windows), we continue stochastic gradient descent (SGD)
training of the CNN parameters using only warped re-
gion proposals from VOC. Aside from replacing the CNN’s
ImageNet-specific 1000-way classification layer with a ran-
domly initialized 21-way classification layer (for the 20
VOC classes plus background), the CNN architecture is un-
changed. We treat all region proposals with≥ 0.5 IoU over-
lap with a ground-truth box as positives for that box’s class
and the rest as negatives. We start SGD at a learning rate
of 0.001 (1/10th of the initial pre-training rate), which al-
lows fine-tuning to make progress while not clobbering the
initialization. In each SGD iteration, we uniformly sample
32 positive windows (over all classes) and 96 background
windows to construct a mini-batch of size 128. We bias
the sampling towards positive windows because they are ex-
tremely rare compared to background.



VOC 2010 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
DPM v5 [17]† 49.2 53.8 13.1 15.3 35.5 53.4 49.7 27.0 17.2 28.8 14.7 17.8 46.4 51.2 47.7 10.8 34.2 20.7 43.8 38.3 33.4
UVA [32] 56.2 42.4 15.3 12.6 21.8 49.3 36.8 46.1 12.9 32.1 30.0 36.5 43.5 52.9 32.9 15.3 41.1 31.8 47.0 44.8 35.1
Regionlets [35] 65.0 48.9 25.9 24.6 24.5 56.1 54.5 51.2 17.0 28.9 30.2 35.8 40.2 55.7 43.5 14.3 43.9 32.6 54.0 45.9 39.7
SegDPM [15]† 61.4 53.4 25.6 25.2 35.5 51.7 50.6 50.8 19.3 33.8 26.8 40.4 48.3 54.4 47.1 14.8 38.7 35.0 52.8 43.1 40.4
R-CNN 67.1 64.1 46.7 32.0 30.5 56.4 57.2 65.9 27.0 47.3 40.9 66.6 57.8 65.9 53.6 26.7 56.5 38.1 52.8 50.2 50.2
R-CNN BB 71.8 65.8 53.0 36.8 35.9 59.7 60.0 69.9 27.9 50.6 41.4 70.0 62.0 69.0 58.1 29.5 59.4 39.3 61.2 52.4 53.7

Table 1: Detection average precision (%) on VOC 2010 test. R-CNN is most directly comparable to UVA and Regionlets since all
methods use selective search region proposals. Bounding box regression (BB) is described in Section 3.4. At publication time, SegDPM
was the top-performer on the PASCAL VOC leaderboard. †DPM and SegDPM use context rescoring not used by the other methods.

Object category classifiers. Consider training a binary
classifier to detect cars. It’s clear that an image region
tightly enclosing a car should be a positive example. Simi-
larly, it’s clear that a background region, which has nothing
to do with cars, should be a negative example. Less clear
is how to label a region that partially overlaps a car. We re-
solve this issue with an IoU overlap threshold, below which
regions are defined as negatives. The overlap threshold, 0.3,
was selected by a grid search over {0, 0.1, . . . , 0.5} on a
validation set. We found that selecting this threshold care-
fully is important. Setting it to 0.5, as in [32], decreased
mAP by 5 points. Similarly, setting it to 0 decreased mAP
by 4 points. Positive examples are defined simply to be the
ground-truth bounding boxes for each class.

Once features are extracted and training labels are ap-
plied, we optimize one linear SVM per class. Since the
training data is too large to fit in memory, we adopt the
standard hard negative mining method [14, 30]. Hard neg-
ative mining converges quickly and in practice mAP stops
increasing after only a single pass over all images.

In supplementary material we discuss why the positive
and negative examples are defined differently in fine-tuning
versus SVM training. We also discuss why it’s necessary
to train detection classifiers rather than simply use outputs
from the final layer (fc8) of the fine-tuned CNN.

2.4. Results on PASCAL VOC 2010-12

Following the PASCAL VOC best practices [12], we
validated all design decisions and hyperparameters on the
VOC 2007 dataset (Section 3.2). For final results on the
VOC 2010-12 datasets, we fine-tuned the CNN on VOC
2012 train and optimized our detection SVMs on VOC 2012
trainval. We submitted test results to the evaluation server
only once for each of the two major algorithm variants (with
and without bounding box regression).

Table 1 shows complete results on VOC 2010. We com-
pare our method against four strong baselines, including
SegDPM [15], which combines DPM detectors with the
output of a semantic segmentation system [4] and uses ad-
ditional inter-detector context and image-classifier rescor-
ing. The most germane comparison is to the UVA system
from Uijlings et al. [32], since our systems use the same re-

gion proposal algorithm. To classify regions, their method
builds a four-level spatial pyramid and populates it with
densely sampled SIFT, Extended OpponentSIFT, and RGB-
SIFT descriptors, each vector quantized with 4000-word
codebooks. Classification is performed with a histogram
intersection kernel SVM. Compared to their multi-feature,
non-linear kernel SVM approach, we achieve a large im-
provement in mAP, from 35.1% to 53.7% mAP, while also
being much faster (Section 2.2). Our method achieves sim-
ilar performance (53.3% mAP) on VOC 2011/12 test.

3. Visualization, ablation, and modes of error

3.1. Visualizing learned features

First-layer filters can be visualized directly and are easy
to understand [22]. They capture oriented edges and oppo-
nent colors. Understanding the subsequent layers is more
challenging. Zeiler and Fergus present a visually attrac-
tive deconvolutional approach in [36]. We propose a simple
(and complementary) non-parametric method that directly
shows what the network learned.

The idea is to single out a particular unit (feature) in the
network and use it as if it were an object detector in its own
right. That is, we compute the unit’s activations on a large
set of held-out region proposals (about 10 million), sort the
proposals from highest to lowest activation, perform non-
maximum suppression, and then display the top-scoring re-
gions. Our method lets the selected unit “speak for itself”
by showing exactly which inputs it fires on. We avoid aver-
aging in order to see different visual modes and gain insight
into the invariances computed by the unit.

We visualize units from layer pool5, which is the max-
pooled output of the network’s fifth and final convolutional
layer. The pool5 feature map is 6 × 6 × 256 = 9216-
dimensional. Ignoring boundary effects, each pool5 unit has
a receptive field of 195×195 pixels in the original 227×227
pixel input. A central pool5 unit has a nearly global view,
while one near the edge has a smaller, clipped support.

Each row in Figure 3 displays the top 16 activations for
a pool5 unit from a CNN that we fine-tuned on VOC 2007
trainval. Six of the 256 functionally unique units are visu-
alized (the supplementary material includes more). These
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Figure 3: Top regions for six pool5 units. Receptive fields and activation values are drawn in white. Some units are aligned to concepts,
such as people (row 1) or text (4). Other units capture texture and material properties, such as dot arrays (2) and specular reflections (6).

VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
R-CNN pool5 51.8 60.2 36.4 27.8 23.2 52.8 60.6 49.2 18.3 47.8 44.3 40.8 56.6 58.7 42.4 23.4 46.1 36.7 51.3 55.7 44.2
R-CNN fc6 59.3 61.8 43.1 34.0 25.1 53.1 60.6 52.8 21.7 47.8 42.7 47.8 52.5 58.5 44.6 25.6 48.3 34.0 53.1 58.0 46.2
R-CNN fc7 57.6 57.9 38.5 31.8 23.7 51.2 58.9 51.4 20.0 50.5 40.9 46.0 51.6 55.9 43.3 23.3 48.1 35.3 51.0 57.4 44.7
R-CNN FT pool5 58.2 63.3 37.9 27.6 26.1 54.1 66.9 51.4 26.7 55.5 43.4 43.1 57.7 59.0 45.8 28.1 50.8 40.6 53.1 56.4 47.3
R-CNN FT fc6 63.5 66.0 47.9 37.7 29.9 62.5 70.2 60.2 32.0 57.9 47.0 53.5 60.1 64.2 52.2 31.3 55.0 50.0 57.7 63.0 53.1
R-CNN FT fc7 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2
R-CNN FT fc7 BB 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5

DPM v5 [17] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7
DPM ST [25] 23.8 58.2 10.5 8.5 27.1 50.4 52.0 7.3 19.2 22.8 18.1 8.0 55.9 44.8 32.4 13.3 15.9 22.8 46.2 44.9 29.1
DPM HSC [27] 32.2 58.3 11.5 16.3 30.6 49.9 54.8 23.5 21.5 27.7 34.0 13.7 58.1 51.6 39.9 12.4 23.5 34.4 47.4 45.2 34.3

Table 2: Detection average precision (%) on VOC 2007 test. Rows 1-3 show R-CNN performance without fine-tuning. Rows 4-6 show
results for the CNN pre-trained on ILSVRC 2012 and then fine-tuned (FT) on VOC 2007 trainval. Row 7 includes a simple bounding box
regression (BB) stage that reduces localization errors (Section 3.4). Rows 8-10 present DPM methods as a strong baseline. The first uses
only HOG, while the next two use different feature learning approaches to augment or replace HOG.

units were selected to show a representative sample of what
the network learns. In the second row, we see a unit that
fires on dog faces and dot arrays. The unit corresponding to
the third row is a red blob detector. There are also detectors
for human faces and more abstract patterns such as text and
triangular structures with windows. The network appears
to learn a representation that combines a small number of
class-tuned features together with a distributed representa-
tion of shape, texture, color, and material properties. The
subsequent fully connected layer fc6 has the ability to model
a large set of compositions of these rich features.

3.2. Ablation studies

Performance layer-by-layer, without fine-tuning. To un-
derstand which layers are critical for detection performance,
we analyzed results on the VOC 2007 dataset for each of the
CNN’s last three layers. Layer pool5 was briefly described
in Section 3.1. The final two layers are summarized below.

Layer fc6 is fully connected to pool5. To compute fea-

tures, it multiplies a 4096×9216 weight matrix by the pool5
feature map (reshaped as a 9216-dimensional vector) and
then adds a vector of biases. This intermediate vector is
component-wise half-wave rectified (x← max(0, x)).

Layer fc7 is the final layer of the network. It is imple-
mented by multiplying the features computed by fc6 by a
4096 × 4096 weight matrix, and similarly adding a vector
of biases and applying half-wave rectification.

We start by looking at results from the CNN without
fine-tuning on PASCAL, i.e. all CNN parameters were pre-
trained on ILSVRC 2012 only. Analyzing performance
layer-by-layer (Table 2 rows 1-3) reveals that features from
fc7 generalize worse than features from fc6. This means
that 29%, or about 16.8 million, of the CNN’s parameters
can be removed without degrading mAP. More surprising is
that removing both fc7 and fc6 produces quite good results
even though pool5 features are computed using only 6% of
the CNN’s parameters. Much of the CNN’s representational
power comes from its convolutional layers, rather than from



the much larger densely connected layers. This finding sug-
gests potential utility in computing a dense feature map, in
the sense of HOG, of an arbitrary-sized image by using only
the convolutional layers of the CNN. This representation
would enable experimentation with sliding-window detec-
tors, including DPM, on top of pool5 features.

Performance layer-by-layer, with fine-tuning. We now
look at results from our CNN after having fine-tuned its pa-
rameters on VOC 2007 trainval. The improvement is strik-
ing (Table 2 rows 4-6): fine-tuning increases mAP by 8.0
percentage points to 54.2%. The boost from fine-tuning is
much larger for fc6 and fc7 than for pool5, which suggests
that the pool5 features learned from ImageNet are general
and that most of the improvement is gained from learning
domain-specific non-linear classifiers on top of them.

Comparison to recent feature learning methods. Rela-
tively few feature learning methods have been tried on PAS-
CAL VOC detection. We look at two recent approaches that
build on deformable part models. For reference, we also in-
clude results for the standard HOG-based DPM [17].

The first DPM feature learning method, DPM ST [25],
augments HOG features with histograms of “sketch token”
probabilities. Intuitively, a sketch token is a tight distri-
bution of contours passing through the center of an image
patch. Sketch token probabilities are computed at each pixel
by a random forest that was trained to classify 35×35 pixel
patches into one of 150 sketch tokens or background.

The second method, DPM HSC [27], replaces HOG with
histograms of sparse codes (HSC). To compute an HSC,
sparse code activations are solved for at each pixel using
a learned dictionary of 100 7 × 7 pixel (grayscale) atoms.
The resulting activations are rectified in three ways (full and
both half-waves), spatially pooled, unit `2 normalized, and
then power transformed (x← sign(x)|x|α).

All R-CNN variants strongly outperform the three DPM
baselines (Table 2 rows 8-10), including the two that use
feature learning. Compared to the latest version of DPM,
which uses only HOG features, our mAP is more than 20
percentage points higher: 54.2% vs. 33.7%—a 61% rela-
tive improvement. The combination of HOG and sketch to-
kens yields 2.5 mAP points over HOG alone, while HSC
improves over HOG by 4 mAP points (when compared
internally to their private DPM baselines—both use non-
public implementations of DPM that underperform the open
source version [17]). These methods achieve mAPs of
29.1% and 34.3%, respectively.

3.3. Detection error analysis

We applied the excellent detection analysis tool from
Hoiem et al. [20] in order to reveal our method’s error
modes, understand how fine-tuning changes them, and to

see how our error types compare with DPM. A full sum-
mary of the analysis tool is beyond the scope of this pa-
per and we encourage readers to consult [20] to understand
some finer details (such as “normalized AP”). Since the
analysis is best absorbed in the context of the associated
plots, we present the discussion within the captions of Fig-
ure 4 and Figure 5.
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Figure 4: Distribution of top-ranked false positive (FP) types.
Each plot shows the evolving distribution of FP types as more FPs
are considered in order of decreasing score. Each FP is catego-
rized into 1 of 4 types: Loc—poor localization (a detection with
an IoU overlap with the correct class between 0.1 and 0.5, or a du-
plicate); Sim—confusion with a similar category; Oth—confusion
with a dissimilar object category; BG—a FP that fired on back-
ground. Compared with DPM (see [20]), significantly more of
our errors result from poor localization, rather than confusion with
background or other object classes, indicating that the CNN fea-
tures are much more discriminative than HOG. Loose localiza-
tion likely results from our use of bottom-up region proposals and
the positional invariance learned from pre-training the CNN for
whole-image classification. Column three shows how our simple
bounding box regression method fixes many localization errors.

3.4. Bounding box regression

Based on the error analysis, we implemented a simple
method to reduce localization errors. Inspired by the bound-
ing box regression employed in DPM [14], we train a linear
regression model to predict a new detection window given
the pool5 features for a selective search region proposal.
Full details are given in the supplementary material. Re-
sults in Table 1, Table 2, and Figure 4 show that this simple
approach fixes a large number of mislocalized detections,
boosting mAP by 3 to 4 points.

4. Semantic segmentation

Region classification is a standard technique for seman-
tic segmentation, allowing us to easily apply R-CNN to the
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DPM voc−release5: sensitivity and impact

Figure 5: Sensitivity to object characteristics. Each plot shows the mean (over classes) normalized AP (see [20]) for the highest and
lowest performing subsets within six different object characteristics (occlusion, truncation, bounding box area, aspect ratio, viewpoint, part
visibility). We show plots for our method (R-CNN) with and without fine-tuning (FT) and bounding box regression (BB) as well as for
DPM voc-release5. Overall, fine-tuning does not reduce sensitivity (the difference between max and min), but does substantially improve
both the highest and lowest performing subsets for nearly all characteristics. This indicates that fine-tuning does more than simply improve
the lowest performing subsets for aspect ratio and bounding box area, as one might conjecture based on how we warp network inputs.
Instead, fine-tuning improves robustness for all characteristics including occlusion, truncation, viewpoint, and part visibility.

PASCAL VOC segmentation challenge. To facilitate a di-
rect comparison with the current leading semantic segmen-
tation system (called O2P for “second-order pooling”) [4],
we work within their open source framework. O2P uses
CPMC to generate 150 region proposals per image and then
predicts the quality of each region, for each class, using
support vector regression (SVR). The high performance of
their approach is due to the quality of the CPMC regions
and the powerful second-order pooling of multiple feature
types (enriched variants of SIFT and LBP). We also note
that Farabet et al. [13] recently demonstrated good results
on several dense scene labeling datasets (not including PAS-
CAL) using a CNN as a multi-scale per-pixel classifier.

We follow [2, 4] and extend the PASCAL segmentation
training set to include the extra annotations made available
by Hariharan et al. [19]. Design decisions and hyperparam-
eters were cross-validated on the VOC 2011 validation set.
Final test results were evaluated only once.

CNN features for segmentation. We evaluate three strate-
gies for computing features on CPMC regions, all of which
begin by warping the rectangular window around the re-
gion to 227 × 227. The first strategy (full) ignores the re-
gion’s shape and computes CNN features directly on the
warped window, exactly as we did for detection. However,
these features ignore the non-rectangular shape of the re-
gion. Two regions might have very similar bounding boxes
while having very little overlap. Therefore, the second strat-
egy (fg) computes CNN features only on a region’s fore-
ground mask. We replace the background with the mean
input so that background regions are zero after mean sub-
traction. The third strategy (full+fg) simply concatenates
the full and fg features; our experiments validate their com-
plementarity.

Results on VOC 2011. Table 3 shows a summary of our
results on the VOC 2011 validation set compared with O2P.
(See supplementary material for complete per-category re-
sults.) Within each feature computation strategy, layer fc6

full R-CNN fg R-CNN full+fg R-CNN
O2P [4] fc6 fc7 fc6 fc7 fc6 fc7

46.4 43.0 42.5 43.7 42.1 47.9 45.8

Table 3: Segmentation mean accuracy (%) on VOC 2011 vali-
dation. Column 1 presents O2P; 2-7 use our CNN pre-trained on
ILSVRC 2012.

always outperforms fc7 and the following discussion refers
to the fc6 features. The fg strategy slightly outperforms full,
indicating that the masked region shape provides a stronger
signal, matching our intuition. However, full+fg achieves
an average accuracy of 47.9%, our best result by a mar-
gin of 4.2% (also modestly outperforming O2P), indicating
that the context provided by the full features is highly infor-
mative even given the fg features. Notably, training the 20
SVRs on our full+fg features takes an hour on a single core,
compared to 10+ hours for training on O2P features.

In Table 4 we present results on the VOC 2011 test
set, comparing our best-performing method, fc6 (full+fg),
against two strong baselines. Our method achieves the high-
est segmentation accuracy for 11 out of 21 categories, and
the highest overall segmentation accuracy of 47.9%, aver-
aged across categories (but likely ties with the O2P result
under any reasonable margin of error). Still better perfor-
mance could likely be achieved by fine-tuning.

5. Conclusion
In recent years, object detection performance had stag-

nated. The best performing systems were complex en-
sembles combining multiple low-level image features with
high-level context from object detectors and scene classi-
fiers. This paper presents a simple and scalable object de-
tection algorithm that gives a 30% relative improvement
over the best previous results on PASCAL VOC 2012.

We achieved this performance through two insights. The
first is to apply high-capacity convolutional neural net-
works to bottom-up region proposals in order to localize
and segment objects. The second is a paradigm for train-



VOC 2011 test bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
R&P [2] 83.4 46.8 18.9 36.6 31.2 42.7 57.3 47.4 44.1 8.1 39.4 36.1 36.3 49.5 48.3 50.7 26.3 47.2 22.1 42.0 43.2 40.8
O2P [4] 85.4 69.7 22.3 45.2 44.4 46.9 66.7 57.8 56.2 13.5 46.1 32.3 41.2 59.1 55.3 51.0 36.2 50.4 27.8 46.9 44.6 47.6
ours (full+fg R-CNN fc6) 84.2 66.9 23.7 58.3 37.4 55.4 73.3 58.7 56.5 9.7 45.5 29.5 49.3 40.1 57.8 53.9 33.8 60.7 22.7 47.1 41.3 47.9

Table 4: Segmentation accuracy (%) on VOC 2011 test. We compare against two strong baselines: the “Regions and Parts” (R&P)
method of [2] and the second-order pooling (O2P) method of [4]. Without any fine-tuning, our CNN achieves top segmentation perfor-
mance, outperforming R&P and roughly matching O2P.

ing large CNNs when labeled training data is scarce. We
show that it is highly effective to pre-train the network—
with supervision—for a auxiliary task with abundant data
(image classification) and then to fine-tune the network for
the target task where data is scarce (detection). We conjec-
ture that the “supervised pre-training/domain-specific fine-
tuning” paradigm will be highly effective for a variety of
data-scarce vision problems.

We conclude by noting that it is significant that we
achieved these results by using a combination of classi-
cal tools from computer vision and deep learning (bottom-
up region proposals and convolutional neural networks).
Rather than opposing lines of scientific inquiry, the two are
natural and inevitable partners.
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