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Abstract

While most existing multilabel ranking methods assume
the availability of a single objective label ranking for each
instance in the training set, this paper deals with a more
common case where subjective inconsistent rankings from
multiple rankers are associated with each instance. The key
idea is to learn a latent preference distribution for each in-
stance. The proposed method mainly includes two steps.
The first step is to generate a common preference distribu-
tion that is most compatible to all the personal rankings.
The second step is to learn a mapping from the instances to
the preference distributions. The proposed preference dis-
tribution learning (PDL) method is applied to the problem
of multilabel ranking for natural scene images. Experimen-
tal results show that PDL can effectively incorporate the
information given by the inconsistent rankers, and perform
remarkably better than the compared state-of-the-art multi-
label ranking algorithms.

1. Introduction

As a particular scenario of preference learning [12], label
ranking [11, 7, 8, 9] has recently attracted much attention in
the machine learning and pattern recognition community.
The goal of label ranking is to learn a mapping from the
instances to the rankings over a finite set of labels. The in-
creasing interests in label ranking are due to not only many
potential applications in image labeling, object recognition,
natural language processing, text categorization, etc., but
also the fact that it subsumes a number of conventional ma-
chine learning paradigms, such as multiclass classification
and multilabel classification. Multilabel ranking1 is a com-
bination of multilabel classification and label ranking. Ac-
cordingly, there are two main tasks involved in this problem.

∗This research was supported by NSFC (61273300, 61232007) and the
Key Lab of Computer Network and Information Integration, MOE.

1Due to abuse of terminology, “multilabel ranking” in some literature
refers to label ranking or multilabel classification, which is out of the scope
of this paper.

First, for a given instance, decide a bipartition of the rele-
vant (positive) and irrelevant (negative) labels. Second, for
the relevant labels, predict a proper ranking over them.

Existing work on multilabel ranking [4, 5] usually as-
sumes the availability of a ground truth ranking of the rel-
evant labels for each instance in the training set. The rank-
ing reflects some kind of objective preference of the rele-
vant labels. However, in many real-world applications, the
preference is usually quite subjective, i.e., it might be d-
ifferent for different persons. Interpersonal inconsistency
in the bipartition of the relevant and irrelevant labels has
been observed in multilabel classification. The inconsisten-
cy becomes even more severe when the annotators are fur-
ther required to rank the relevant labels. For example, we
have collected the multilabel ranking data on a set of natu-
ral scene images from ten human rankers. For each image,
the rankers are asked to select from nine candidate labels
whatever they think are relevant to the image and rank them
according to their relevance. It turns out that the results
given by different rankers might be considerably different.
Fig. 1 gives one typical example in this data set. The rela-
tion yi � yj means that the ranker thinks that the label yi

is more relevant to the image than yj is. As can be seen, al-
though there is some common sense (e.g., all of the rankers
agree that “water” is a relevant label), obvious inconsisten-
cy exists among different rankers, either in the selection of
the relevant labels or in the order of the relevant labels.

One straightforward way to solve the inconsistency prob-
lem is to aggregate the rankings from different rankers in-
to one ranking by, say, the Borda count voting [16] or the
mean rank ordering [5], and then any multilabel ranking al-
gorithms can be applied to the aggregated rankings. This
approach might answer the question like “whether the la-
bel yi is preferable to the label yj?”, but cannot answer the
question like “how preferable is yi to yj?”. The latter ques-
tion becomes more important in case of multiple inconsis-
tent rankers. For example, 6 out of 10 rankers give y i � yj
to the instance x1, and 9 out of 10 rankers give y i � yj to
the instance x2. Through the Borda count voting, the same
aggregated result yi � yj can be derived for both x1 and



Ranker Relevant Label Ranking 
01 water cloud sky
02 cloud sky water building 
03 water cloud sky building 
04 water cloud sky
05 water sky cloud 
06 water cloud sky
07 water cloud sky
08 sky water 
09 water cloud 
10 water cloud sky

Figure 1. The relevant label ranking results for one image from ten
different human rankers.

x2. However, it is clear that yi is more preferable to yj for
x2 than for x1. Such information is crucial for a multilabel
ranking system to predict rankings that can satisfy as many
users as possible. Surprisingly, to the best of our knowl-
edge, this issue has barely been studied up to the present.

In order to explicitly quantize how preferable one label is
to another, this paper proposes to learn from the inconsistent
rankers a latent preference degree dy

x, which is a numerical
indicator of how preferable the label y is for the instance
x. Assume that dyx ∈ [0, 1] and

∑
y d

y
x = 1. Then, for a

particular instance, the latent preference degrees of all the
labels constitute a data form similar to probability distri-
bution. So, it is called preference distribution. Note that
it is impractical for the rankers to directly give their pref-
erence distributions toward an instance. Instead, this paper
proposes to generate a preference distribution from multiple
inconsistent rankings via an optimization process. Then, a
learning process is invoked to learn the mapping from the
instances to the preference distributions. In the test process,
given an instance, its preference distribution is first predict-
ed, and then the labels are ranked according to their latent
preference degrees.

The rest of the paper is organized as follows. Section 2
formulates the problems of label ranking and multilabel
ranking, and introduces several representative algorithms
for them. Section 3 proposes the method to learn from in-
consistent rankers based on latent preference distributions.
In Section 4, the proposed method is applied to the prob-
lem of multilabel ranking for natural scene images and com-
pared with several state-of-the-art multilabel ranking algo-
rithms. Finally, conclusions are drawn in Section 5.

2. Preliminaries

The problem of label ranking is to learn a mapping from
an instance space X = R

q to the rankings over a finite set
of labels Y = {y1, y2, · · · , yc}. The ranking is based on a
binary order relation �x, where the subscript x ∈ X indi-
cates that the order is determined by x. For any two labels
yi, yj ∈ Y , yi �x yj means that, for the instance x, yi is
preferable to yj , and thus yi is ranked higher than yj .

While there are many algorithms proposed for label
ranking, here we introduce two well-known ones. The first
is ranking by pairwise comparison (RPC) [11, 17], which
reduces the problem into a number of binary classifica-
tion problems. The basic idea of RPC is to learn a binary
classifier for each pair of labels (yi, yj) in Y , resulting in
c(c − 1)/2 models. Each model Mij decides for a given
instance x whether yi �x yj or yj �x yi. During the test
process, the test instance is submitted to all the c(c − 1)/2
models, and the final ranking is obtained through the Borda
count voting from the predictions of all the binary classi-
fiers. The second algorithm is label ranking tree (LRT) [7],
which is an extension of decision tree. The main modifi-
cation to conventional decision tree concerns the split cri-
terion at the inner nodes and the stopping criterion for the
partitioning. A split is determined by first fitting a Mallows
model [18] to each branch node, and then selecting the split
that can maximize a weighted average of the within-node
variances. A branch node stops growing if the examples in
it are completely pure (i.e., with the same ranking) or the
number of labels in the node becomes too small.

The basic assumption behind multilabel ranking is that
there might be multiple labels associated with one instance.
Thus, the problem of multilabel ranking involves two equal-
ly important targets. The first is a bipartition of Y into a
relevant (positive) label set Px and a irrelevant (negative)
label set Nx, where Px ∩Nx = ∅ and Px ∪Nx = Y . The
second is a ranking �x over Y . Specially, �x must satisfy
that for ∀yi ∈ Px and ∀yj ∈ Nx, there is yi �x yj .

Brinker et al. [4] proposed a method called calibrated
label ranking, which can unify the two tasks of multilabel
ranking into one framework. By introducing a virtual label
y0 as a split point between the relevant and irrelevant labels,
calibrated ranking transforms the multilabel ranking prob-
lem into a standard label ranking problem over the extended
label set Y ′ = Y ∪ {y0}. All the labels in Px are ranked
before y0, and all the labels in Nx are ranked after y0. In
this way, any algorithm for label ranking can be applied to
calibrated ranking as a multilabel ranking algorithm. For
example, the two algorithms RPC and LRT mentioned be-
fore can be extended to their calibrated versions, namely
CRPC and CLRT, respectively.

Brinker and Hüllermeier [5] later proposed a case-based
multilabel ranking method as a special case of aggregat-
ing rankings. They consider each ranking as a bucket or-



der [10] (B1, · · · , Bi−1, {y0}, Bi+1, · · · , Bb), where each
bucket Bj contains the labels with tie ranks. The special
bucket containing the virtual label {y0} is used as a split
point between the relevant label set Px = B1 ∪ · · · ∪ Bi−1

and the irrelevant label set Nx = Bi+1 ∪ · · · ∪ Bb. A gen-
eralized rank σ(i) is defined for each label yi ∈ Bj as the
average overall position σ(i) =

∑
l<j |Bl| + 1

2 (|Bj | + 1).
Given a query instance x, its ranking is obtained by order-
ing the labels according to the mean generalized ranks of the
k nearest neighbors of x. It was proved in [5] that such ag-
gregation is optimal in sense of maximizing the sum of the
Spearman rank correlation coefficients between the rank-
ings of the k nearest neighbors and the aggregated ranking.
This kNN-based multilabel ranking method is denoted by
kNN-MLR.

3. Learning from Inconsistent Rankers

For each human ranker, it is reasonable to assume that
he/she makes decision according to a latent preference dis-
tribution with respect to the given instance, consciously or
unconsciously. In practice, it is quite common that for the
same instance, different rankers might have different pref-
erence distributions. Also, different rankers might prefer
different thresholds that distinguish the relevant labels from
the irrelevant labels. These differences cause the inconsis-
tency of the rankings given by different rankers for the same
instance, in not only the bipartition of the relevant and irrel-
evant labels, but also the rankings of the relevant labels.

Given an instance x, the goal of the proposed method is
to predict a label ranking for x that can satisfy the incon-
sistent rankers as much as possible. We solve the problem
via two steps. The first step is to generate a common prefer-
ence distribution for each instance, which is most compati-
ble with the personal preference distributions. The second
step is to learn a mapping from the instance space to the
preference distribution space. The following two sections
will introduce these two steps respectively.

3.1. Preference Distribution Transformation

For an instance x, suppose that the ranking σi results
from the i-th ranker’s personal preference distribution P i,
then, the common preference distribution P̂ for x that gen-
erates the common ranking σ̂ should be most compatible
with all Pi, i.e.,

P̂ = argmin
P

r∑
i=1

D(P, Pi), (1)

where D is a function measuring the distance between two
distributions. Pi should be constrained by the actual rank-
ing given by the i-th ranker, i.e., P j

i +ε ≤ P k
i if yk �x,i yj ,

where P j
i = d

yj

x,i is the preference degree of yj for the i-th
ranker, yk �x,i yj means that the i-th ranker prefers yk to

yj for x, ε is a predefined margin to avoid too close pref-
erence degrees. Specially, if the i-th ranker regards y j as
an irrelevant label, then P j

i = 0. In addition, there should
be constraints that ensure both P and Pi to be distribution-
s, i.e., P j ≥ 0, P j

i ≥ 0,
∑

j P
j = 1, and

∑
j P

j
i = 1,

j = 1, · · · , c, i = 1, · · · , r.
In order to divide the relevant and irrelevant labels, we

also insert a virtual label y0 between Px and Nx. One prob-
lem of this approach is that it penalizes misplaced labels in
the ranking equally for all the labels including y0. How-
ever, as the split point of relevant and irrelevant labels, y0

plays a more important role than other labels, and there-
fore misplacement of y0 should be penalized more. In [5],
this problem is solved by inserting a set of virtual labels
{y0,1, · · · , y0,v} instead of a single one. The virtual labels
compose a split bucket, and the size of the bucket v provides
a means to increase the penalty of misplacing the virtual la-
bels. Analogously, we also use a set of virtual labels, and
in the preference distribution, all the virtual labels have the
same preference degree, i.e., dy0,1

x = · · · = d
y0,v
x = P 0.

There are many measures for the distance/similarity be-
tween probability distributions [6], which can be used to
define D in Eq. (1), such as the distance measures of Eu-
clidean, Sørensen, Squared χ2, and Kullback-Leibler (K-
L), or the similarity measures of Intersection and Fidelity.
If the commonly used K-L divergence is adopted here, then
the problem can be formulated as the following nonlinear
programming process:

min

r∑
i=1

⎛
⎝ c∑

j=1

P j log
P j

P j
i

+ vP 0 log
P 0

P 0
i

⎞
⎠ (2)

w.r.t. P j , P j
i , i = 1, · · · , r, j = 0, · · · , c

s.t. P j ≥ 0, P j
i ≥ 0,

c∑
j=1

P j + vP 0 = 1,

c∑
j=1

P j
i + vP 0

i = 1,

P j
i + ε ≤ P k

i , if yk �x,i yj ,

P j
i = 0, if y0 �x,i yj ,

i = 1, · · · , r, j = 0, · · · , c
The above nonlinear programming problem can be effec-
tively solved by the log barrier interior-point method [ 21].
Such process is applied to each training instance x, result-
ing in a common preference distribution P (x) which incor-
porates all the rankings from the inconsistent rankers.

3.2. Preference Distribution Learning

After the inconsistent rankings for each training instance
have been transformed into a single preference distribu-
tion, the next step is to learn a preference distribution
model. Formally speaking, the training set now becomes



G = {(x1, P (x1)), · · · , (xn, P (xn))}, where P (xi) =
{dy0,1

xi , · · · , dy0,v
xi , dy1

xi
, · · · , dyc

xi
} is the preference distribu-

tion (including the virtual labels) associated with the train-
ing instancexi. The goal of preference distribution learning
is to learn a conditional probability mass function p(y|x)
from G, where x ∈ X and y ∈ Y ′. Suppose p(y|x) is a
parametric model p(y|x; θ), where θ is the parameter vec-
tor. Then, p(y|x; θ) is determined by finding the θ that can
generate a distribution similar to P (xi) given the instance
xi. As mentioned in Section 3.1, there are different crite-
ria that can be used to measure the distance or similarity
between two distributions. Again, if the K-L divergence is
used as the distance measure, then the best parameter vector
θ∗ is determined by

θ∗ = argmin
θ

∑
i

∑
j

(
d
yj
xi ln

d
yj
xi

p(yj|xi; θ)

)

= argmax
θ

∑
i

∑
j

d
yj
xi ln p(yj|xi; θ). (3)

As to the form of p(y|x; θ), similar to the work of Geng
et al. [13, 14], we assume it to be the maximum entropy
model [2], i.e.,

p(y|x; θ) = 1

Z
exp

(∑
k

θy,kx
k

)
, (4)

where Z =
∑

y exp
(∑

k θy,kx
k
)

is the normalization fac-
tor, θy,k is an element in θ, and xk is the k-th feature of x.
Substituting Eq. (4) into Eq. (3) yields the target function

T (θ) =
∑
i,j

d
yj
xi

∑
k

θyj ,kx
k
i (5)

−
∑
i

ln
∑
j

exp

(∑
k

θyj,kx
k
i

)
.

Note that in each preference distribution, the preference de-
grees of the virtual labels should be exactly same. Suppose
d
y0,1
xi = d

y0,2
xi = · · · = d

y0,v
xi = P 0(xi), and the parameters

corresponding to the virtual labels are θ0,k, then Eq. (5) can
be rewritten as

T (θ) =
n∑

i=1

⎛
⎝ c∑

j=1

d
yj
xi

q∑
k=1

θyj ,kx
k
i + vP 0(xi)

q∑
k=1

θ0,kx
k
i

⎞
⎠

−
n∑

i=1

ln

⎛
⎝ c∑

j=1

exp

(
q∑

k=1

θyj ,kx
k
i

)
+ v exp

(
q∑

k=1

θ0,kx
k
i

)⎞
⎠ .

(6)

The minimization of T ′(θ) = −T (θ) can be effectively
solved by the quasi-Newton method BFGS [19]. The basic
idea of BFGS is to avoid explicit calculation of the inverse

Hessian matrix in the Newton method by approximating
it with an iteratively updated matrix. The computation of
BFGS is mainly related to the first-order gradient of T ′(θ),
which can be obtained by

∂T ′(θ)
∂θyj ,k

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

v exp

(
q∑

k=1

θ0,kx
k
i

)
xk

i

c∑
j=1

exp

(
q∑

k=1

θyj,kx
k
i

)
+v exp

(
q∑

k=1

θ0,kxk
i

)

−v
n∑

i=1

P 0(xi)x
k
i , if j = 0;

n∑
i=1

exp

(
q∑

k=1

θyj,kx
k
i

)
xk

i

c∑
j=1

exp

(
q∑

k=1

θyj,kx
k
i

)
+v exp

(
q∑

k=1

θ0,kxk
i

)

−
n∑

i=1

d
yj
xix

k
i , if j 
= 0.

(7)
After the preference distribution model p(y|x; θ) has

been learned, given a test instance x ′, its preference dis-
tribution is predicted as p(y|x′; θ). The labels with a pref-
erence degree higher than that of the virtual labels are re-
garded as the relevant labels, and the rest are regarded as
the irrelevant labels. Finally, the relevant labels are ranked
in descending order of their preference degrees.

3.3. Evaluation Measures

As mentioned before, multilabel ranking involves two
tasks. The first is the bipartition between relevant and ir-
relevant labels, and the second is the ranking of the rele-
vant labels. Accordingly, a multilabel ranking algorithm
should be evaluated by two sets of measures correspond-
ing to the two tasks, respectively. The former task can be
evaluated by those commonly used measures for multilabel
classification [20], such as hamming loss, one-error, cov-
erage, ranking loss and average precision. The latter task
can be evaluated by those used to measure the similarity be-
tween rankings with ties (because the irrelevant labels are
regarded as tied) [1], such as Kendall’s tau-b coefficien-
t, Kendall’s tau-c coefficient, Spearman’s rho coefficient,
Gamma correlation coefficient and Symmetrically Adjusted
Gamma (SAG)2. For each measure, the predicted ranking is
compared to the rankings from all the rankers and the av-
erage value is calculated as the evaluation result. Note that
the virtual labels are removed before evaluation.

4. Experiments

4.1. Methodology

The data set used in the experiments includes 2, 000 nat-
ural scene images [22]. There are nine possible labels asso-
ciated with these images, i.e., plant, sky, cloud, snow, build-

2Due to page limit, the formulae of both the classification and ranking
measures are not listed here, but can be found in the references therein.



Table 1. Comparison Results (mean±std (t-test)) of the Four Algorithms on Ten Evaluation Measures
Measure PDL CRPC CLRT kNN-MLR

R
an

ki
ng

Kendall’s Tau-b ↑ 0.3869±0.0105 0.3414±0.0117 (1) 0.3120±0.0109 (1) 0.3686±0.0079 (1)
Kendall’s Tau-c ↑ 0.3405±0.0091 0.3003±0.0104 (1) 0.2750±0.0095 (1) 0.3243±0.0074 (1)
Spearman’s Rho ↑ 0.5660±0.0097 0.5257±0.0090 (1) 0.5025±0.0141 (1) 0.5501±0.0074 (1)
Gamma ↑ 0.6241±0.0215 0.5533±0.0228 (1) 0.5002±0.0212 (1) 0.5977±0.0137 (1)
SAG ↑ 0.2534±0.0073 0.2227±0.0088 (1) 0.2057±0.0068 (1) 0.2404±0.0077 (1)

C
la

ss
ifi

ca
tio

n Hamming loss ↓ 0.2090±0.0106 0.2282±0.0100 (1) 0.2336±0.0147 (1) 0.2204±0.0107 (1)
One-error ↓ 0.3382±0.0262 0.3922±0.0248 (1) 0.4375±0.0335 (1) 0.3700±0.0252 (1)
Coverage ↓ 2.9227±0.1573 3.2790±0.1475 (1) 3.3713±0.1615 (1) 3.0663±0.1113 (1)
Ranking loss ↓ 0.1688±0.0110 0.2086±0.0110 (1) 0.2327±0.0107 (1) 0.1837±0.0069 (1)
Average precision ↑ 0.7426±0.0162 0.6974±0.0142 (1) 0.6714±0.0145 (1) 0.7215±0.0151 (1)

ing, desert, mountain, water and sun. Ten human rankers
are requested to label the images. For each image, they
first select from the nine candidate labels what they think
are relevant to the image, and then rank the relevant la-
bels in descending order of relevance to the image. Each
human ranker makes his/her decisions independently, i.e.,
each ranker can not see the results from other rankers. As
expected, the rankings given by different rankers are highly
inconsistent, in both the selection of relevant labels and the
order of the relevant labels. The average number of relevant
labels selected for each image is 2.22. There are only 20.8%
images where the ten rankers all agree on the same relevant
label set, and 20.6% images where the ten rankers rank the
relevant labels in the same order. One typical example in
this data set has already been shown in Fig. 1.

The image features are extracted by the method used in
[3]. In detail, each color image is first converted into the
CIELUV space. Then, the image is divided into 49 blocks
via a 7 × 7 grid. In each block, the mean and variance of
each band are computed. Finally, the image is represented
by a feature vector of 49× 3× 2 = 294 dimensions.

The preference distribution learning method (denoted by
PDL) proposed in this paper is compared with the three
multilabel ranking algorithms described in Section 2, i.e.,
CRPC, CLRT and kNN-MLR. Note that none of the three
baseline methods can directly deal with inconsistent rank-
ings. So, for each training image, the mean rank ordering
process [5] is first run to integrate the rankings from the ten
rankers into one, and then CRPC, CLRT and kNN-MLR
can be applied to the aggregated ranking. We also tried oth-
er ranking aggregation methods, such as the Borda count
voting [16], but the mean rank ordering turns out to work
better with the baseline methods. For each compared meth-
ods, several parameter configurations are tested and the best
performance is reported. For all the methods, the number of
virtual labels v is set to 5. The margin ε in PDL is set to
0.05. CRPC uses logistic regression as its base classifier,
and reaches the final ranking via soft voting on the base
classifiers’ results. The decision tree in CLRT is learned by
the J48 implementation (with its default setting) of WEKA
[15]. The number of neighbors k in kNN-MLR is set to 30.

The methods are compared via ten-fold cross-validation.

On the test set, the predicted rankings are compared with
the actual rankings given by the ten rankers and the average
result is recorded. As described in Section 3.3, the evalu-
ation measures include five ranking similarities (Kendall’s
tau-b, Kendall’s tau-c, Spearman’s rho, Gamma and SAG)
and five multilabel classification measures (hamming loss,
one-error, coverage, ranking loss and average precision).

4.2. Results

The comparison results of the four algorithms on the ten
evaluation measures are tabulated in Table 1. After the
name of each measure, “↓” indicates “the smaller the bet-
ter”, and “↑” indicates “the larger the better”. Each result
is represented by the mean value and standard deviation of
the ten-fold cross-validation. The best mean performance
on each measure is highlighted by boldface. Also, the two-
tailed t-tests at the 5% significance level are performed to
see whether the differences between the results of PDL and
other algorithms are statistically significant. The results of
the t-tests are given in the brackets right after the perfor-
mances of the baseline methods. The number “1” indicates
significant difference, “0” indicates otherwise. As can be
seen from Table 1, PDL perform significantly better than
all the baseline methods on all evaluation measures. This
reveals that, by effectively incorporating the rankings from
different rankers, PDL can better accomplish the two tasks
of multilabel ranking, i.e., the bipartition of the relevant and
irrelevant labels, and the ranking of the relevant labels.

In order to show the influence of the inconsistency a-
mong the rankers, the algorithms are also tested while the
number of rankers is gradually increased. The results on K-
endall’s tau-b (the results on other measures are similar and
are not shown here due to page limit) are shown in Fig. 2.
As can be seen that the ranking prediction accuracy of PDL
gradually increases with the increase of rankers, while that
of the baseline methods does not always get better. The per-
formance of kNN-MLR does not change much, and that of
CRPC and CLRT exhibits random variations. Each of the
three baseline methods shows performance deterioration at
certain points. CLRT performs even worse with ten rankers
than with just one. The superiority of PDL over the base-
line methods becomes more and more significant while the
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Figure 2. The variation of Kendall’s tau-b with gradually increas-
ing rankers.

number of rankers increases. This reveals that PDL can
effectively utilize the additional information given by the
additional rankers, while the inconsistency among different
rankers may cause serious trouble to the baseline methods.

5. Conclusion

This paper proposes to learn a latent preference distribu-
tion from multiple inconsistent rankers. The proposed pref-
erence distribution learning (PDL) method mainly includes
two steps. The first step is to generate a common preference
distribution for each instance, which is most compatible to
the personal rankings from all rankers. The second step
is to learn a mapping from the instances to the preference
distributions. PDL is applied to the problem of multilabel
ranking for natural scene images and performs remarkably
better than the compared well-known multilabel ranking al-
gorithms.
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