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Abstract

Accurate ground truth pose is essential to the training of
most existing head pose estimation algorithms. However, in
many cases, the “ground truth” pose is obtained in rather
subjective ways, such as asking the human subjects to stare
at different markers on the wall. In such case, it is better
to use soft labels rather than explicit hard labels. There-
fore, this paper proposes to associate a multivariate label
distribution (MLD) to each image. An MLD covers a neigh-
borhood around the original pose. Labeling the images with
MLD can not only alleviate the problem of inaccurate pose
labels, but also boost the training examples associated to
each pose without actually increasing the total amount of
training examples. Two algorithms are proposed to learn
from the MLD by minimizing the weighted Jeffrey’s diver-
gence between the predicted MLD and the ground truth
MLD. Experimental results show that the MLD-based meth-
ods perform significantly better than the compared state-of-
the-art head pose estimation algorithms.

1. Introduction

Head pose plays an important role in the interpersonal
communication. Static head pose might indicate a particular
direction, the attention of a person, the target of a conver-
sation, etc. The change of head pose as a gesture can also
convey rich information, such as agreement, dissent, under-
standing, confusion, surprise, etc. In addition, head pose
is a key information for many other applications, such as
face recognition, expression recognition, gaze estimation,
etc. As a result, head pose estimation has become an im-
portant application of computer vision and pattern recogni-
tion. Accordingly, a lot of head pose estimation methods
have been proposed in recent years, such as the nonlinear
regression methods [17, 8, 19, 9, 11], the subspace embed-
ding methods[18, 12, 4, 14], and the special-feature-based
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methods [10, 20, 2, 15].

In the context of computer vision, head pose estimation
usually means prediction of the head orientation with re-
spect to the image plane. It is a common practice to assume
the human head to be a rigid object so that there are three
degrees of freedom (DOF) in head pose, i.e., yaw, pitch and
roll [16]. For many existing data sets, only a finite num-
ber of discrete angles are considered, and only the yaw and
pitch angles are available [16]. Thus in this paper, we focus
on the problem of head pose estimation with finite discrete
yaw and pitch angles. Note that the methods proposed in
this paper can be easily extended to three DOF, or special-
ized to a single DOF.

In practice, the ground truth of head pose is difficult to
obtain. Usually, approximate approaches are used to ac-
quire coarse poses. For example, the widely used Point-
ing’04 head pose database [7] is collected by asking the hu-
man subjects sitting at the same position of the room to stare
successively at 93 markers attached to different positions of
the room. As pointed out in [16], only coarse pose can be
obtained in this way because of two reasons. First, the head
of the subject is not guaranteed to be at the exactly same lo-
cation in the 3D space. Second, people can not direct their
head toward a marker very accurately. As a result, even
when two face images are labeled with the same pose, they
might have quite different real poses. Moreover, for most
real applications, very accurate head pose, say, precise an-
gle to one degree, is not necessary. This motivates us to
regard both the “ground truth” pose and the predicted pose
as some kind of soft labels, rather than explicit hard labels.

Since the head orientation is intrinsically continuous, the
face images with close head orientations look quite similar,
and such similarity gradually fades away when the angle be-
tween the head orientations increases. This observation can
be utilized to design the soft label for head pose. While the
“ground truth” pose of a face image is considered to be the
most relevant label to the image, those poses close to the
“ground truth” pose can also be used to describe the image,
but with lower relevance. If a real number called descrip-
tion degree is used to indicate the relevance of a pose to a



face image, then in the two-dimensional pose space spanned
by the yaw and pitch angles, the description degrees of al-
l the poses constitute a data form similar to a multivariate
probability distribution. So, such soft label of head poses is
called multivariate label distribution (MLD).

The transformation from explicit hard labels to MLD
brings at least two advantages. First, the problem of in-
accurate “ground truth” poses is alleviated. So long as the
“ground truth” pose is roughly correct, i.e., not far away
from the real pose, the description degree of the real pose
is still high enough to convey positive label information.
Second, when learning the model for a particular pose, the
face images in the neighboring poses can also help since
their poses might also have non-zero description degrees.
This means that the training examples for each pose can be
boosted without actually expanding the total training set.

The rest of the paper is organized as follows. Section 2
gives the definition of MLD and introduces how to generate
an MLD for a given instance. Section 3 proposes two meth-
ods to learn from MLD. In Section 4, experimental results
are reported. Finally, conclusions are drawn in Section 5.

2. Multivariate Label Distribution

Suppose the description degree of a pose y (y is a two-
dimensional vector composed by the yaw and pitch angles)
to a face image x is represented by dy

x. If a coarse “ground
truth” pose ŷ is assigned to x, then, dŷx should be the high-
est among all possible poses. Due to the appearance simi-
larity of the neighboring poses, a pose ỹ close to ŷ should
also have a non-zero description degree d ỹ

x, which is lower
than dŷx. The description degree decreases with the increase
of the distance from ỹ to ŷ. Assume that dyx ∈ [0, 1] and∑

y dyx = 1. Then, for a particular face image, the descrip-
tion degrees of all possible poses constitute a multivariate
label distribution (MLD). Note that although MLD shares
the same properties with probability distribution, we stil-
l suggest to interpret them differently. This is because that
probability distribution implies that only one pose is correct
for a face image, while MLD allows using multiple poses
to describe a face image. The latter matches the fact better
that “pose” itself is not precisely defined.

In order to generate a reasonable MLD for a given face
image x, we assume that the MLD follows a discretized bi-
variate Gaussian distribution centered at the coarse “ground
truth” pose ŷ, i.e.,

dyx =
1

2π
√|Σ|Z exp

(
−1

2
(y − ŷ)TΣ−1(y − ŷ)

)
, (1)

where Σ is a 2× 2 covariance matrix, Z is a normalization
factor that makes sure

∑
y dyx = 1.

Fig. 1 shows some typical head poses from the Point-
ing’04 database [7] together with their MLDs generated by

Eq. (1). The “ground truth” pose is given under each face

image. The covariance matrix Σ is set to

[
τ2 0
0 τ2

]
, where

τ is the finest granularity of the pose angles. In Fig. 1, each
MLD is represented by a gray-scale image. Each pixel of
the image corresponds to one yaw angle at the horizontal
axis and one pitch angle at the vertical axis. For each pix-
el, higher intensity (lighter) means higher description de-
gree of the corresponding pose. Note that in the Pointing’04
database, when the pitch angle is −90◦ or 90◦, the yaw an-
gle is always 0◦ due to physical limitations of the human
head. Accordingly, in the rows corresponding to the −90 ◦

and 90◦ pitch angles, only the 0◦ yaw angle can have a non-
zero description degree. Also, the intensity is not directly
equal to the description degree. Instead, each image un-
dergos a contrast stretching process to increase the image
contrast for a better view.

3. Learning from MLD

After the MLD for each image is generated via the ap-
proach described in Section 2, the training set becomes
G = {(x1,P1), · · · , (xn,Pn)}, where Pi is the MLD of
xi. Suppose there are np different pitch angles and ny d-
ifferent yaw angles, the pose determined by the j-th pitch
angle and the k-th yaw angle is denoted by yjk . Then, Pi

can be represented by an np ×ny matrix with its element at
the j-th row and k-th column to be dyjk

xi , i.e., the description
degree of yjk to xi.

Suppose the instance space is X = R
q, the label space is

Y = {yjk; j = 1, . . . , np, k = 1, . . . , ny}. Then, the goal
is to learn a conditional mass function p(y|x; θ) from G,
where x ∈ X , y ∈ Y , and θ is the parameter vector. The
conditional mass function is determined by finding the θ
that can generate an MLD similar to Pi given the instance
xi. There are different criteria to measure the distance or
similarity between two distributions [1], e.g., the discrete
Jeffrey’s divergence between two distributions Qa and Qb

is defined by

DJ(Qa‖Qb) =
∑

i
(Qi

a −Qi
b) ln

Qi
a

Qi
b

, (2)

where Qi
a and Qi

b are the i-th element of Qa and Qb, re-
spectively. One possible problem of the definition in Eq. (2)
is that the relationship among different elements of the dis-
tribution is not considered. However, such relationship is
extremely important for MLD since it is generated based
on the correlation among the neighboring labels. Thus we
propose the weighted Jeffrey’s divergence defined by

DwJ(Qa‖Qb) =
∑

i,j
λij(Q

i
a −Qj

b) ln
Qi

a

Qj
b

, (3)

where the weight λij models the relationship between the
i-th element and the j-th element in the distribution.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Typical head poses from the Pointing’04 database together with their MLDs generated by Eq. (1).

If the weighted Jeffrey’s divergence defined in Eq. (3) is
used to measure the distance between two bivariate MLDs,
then the best parameter vector θ∗ is determined by

θ∗ = argmin
θ

∑
i

DwJ(Pi‖p(y|xi; θ))

= argmin
θ

∑
i,j,k,
l,m

λjklm(d
yjk
xi − p(ylm|xi; θ))

(ln d
yjk
xi − ln p(ylm|xi; θ))

= argmin
θ

∑
i,j,k,
l,m

λjklm(p(ylm|xi; θ) ln p(ylm|xi; θ)−

d
yjk
xi ln p(ylm|xi; θ)− p(ylm|xi; θ) lnd

yjk
xi ), (4)

where yjk ∈ Y is a pose in the ground truth MLD Pi,
ylm ∈ Y is a pose in the MLD predicted by p(y|xi; θ),
and λjklm is the weight between yjk and ylm. Exploring
all possible combinations over the indices j, k, l and m is
both computationally inefficient and unnecessary. It is rea-
sonable to assume that only the neighboring poses are cor-
related. Accordingly, only the weights for the neighboring
poses are non-zero. The value of λjklm relies on the defi-
nition of “neighborhood” among the poses. For instance, if
λjklm is defined as

λjklm =

{
1, if j = l ∧ k = m;

0, otherwise,
(5)

i.e., the neighborhood of a pose yjk only includes itself,
then the weighted Jeffrey’s divergence degenerates to the
standard Jeffrey’s divergence defined by Eq. (2).

More elaborately, λjklm can be defined as

λjklm =

⎧⎪⎪⎨
⎪⎪⎩

1
Λjk

exp
(‖yjk−ylm‖2

−δ

)
, if |j − l| ≤ 1∧

|k −m| ≤ 1;

0, otherwise,

(6)

where Λjk =
∑

|j−l|≤1
|k−m|≤1

exp
( ‖yjk−ylm‖2

−δ

)
is a normaliza-

tion factor that makes sure
∑

l,m λjklm = 1, and δ is a pa-
rameter that controls the influence of the distance between
yjk and ylm to λjklm. This means that the original Jef-
frey’s divergence is locally smoothed within the nine-point
neighborhood. The contribution of each point (l,m) in the
neighborhood to the divergence is determined by the dis-
tance from yjk to ylm.

As to the form of p(y|x; θ), similar to the work of Geng
et al. [5, 6], we assume it to be a maximum entropy model,
i.e.,

p(ylm|xi; θ) =
1

Γi
exp

(∑
r

θlmrx
r
i

)
, (7)

where Γi =
∑

l,m exp (
∑

r θlmrx
r
i ) is the normalization

factor, xr
i is the r-th feature of xi, and θlmr is an element

in θ corresponding to the pose ylm and the r-th feature.
Substituting Eq. (7) into Eq. (4) yields the target function

T (θ) =
∑
i

ln Γi +
∑
i,j,k,
l,m

λjklm [
1

Γi
exp(

∑
r

θlmrx
r
i )

(
∑
r

θlmrx
r
i − ln Γi − ln d

yjk
xi )−

d
yjk
xi

∑
r

θlmrx
r
i ]. (8)

The minimization of the target function T (θ) can be effec-
tively solved by the limited-memory quasi-Newton method



L-BFGS [13]. The basic idea of L-BFGS is to avoid ex-
plicit calculation of the inverse Hessian matrix used in the
Newton method. Instead, L-BFGS approximates the inverse
Hessian matrix by an iteratively updated matrix without ac-
tually storing the full matrix. The computation of L-BFGS
is mainly related to the first-order gradient of the target
function, which can be obtained through

∂T (θ)

∂θlmr
=

∑
i,j,k,
l,m

λjklm[pilmxr
i (1− pilm)

(
∑
r

θlmrx
r
i − ln Γi − ln d

yjk
xi + 1)]

−
∑
i

xr
i (1− pilm), (9)

where pilm = 1
Γi

exp

(∑
r
θlmrx

r
i

)
.

After the optimal parameter vector θ∗ is finally learned,
given a test image x′, its MLD is first predicted by
p(y|x′; θ∗),y ∈ Y . Then, the pose corresponding to the
maximum description degree in the MLD is output as the
predicted pose for x′.

4. Experiments

4.1. Methodology

The data set used in the experiments is the Pointing’04
database [7]. The head poses in this database are discretized
into 13 yaw angles {−90◦, −75◦, −60◦, −45◦, −30◦,
−15◦, 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦} and 9 pitch an-
gles {−90◦, −60◦, −30◦, −15◦, 0◦, 15◦, 30◦, 60◦, 90◦}.
A pose is represented by the combination of a yaw angle
and a pitch angle. Specially, when the pitch angle is −90◦

or 90◦, the yaw angle is always 0◦. Thus, there are in total
13× 7+ 2 = 93 poses involved in the data set. The images
are taken from 15 different human subjects in two different
times, resulting in 93 × 15 × 2 = 2790 face images. For
each image, the bounding box of the face region is provided
in the database. The face images are normalized to the same
size of 32× 32 pixels, and the features are extracted by the
Histogram of Oriented Gradients (HOG) [3] with the 3× 3
pixel cells.

Two versions of the MLD methods are tested in the ex-
periments. The first is denoted by MLD-J, which uses the
inter-pose weights defined by Eq. (5), i.e., using the stan-
dard Jeffrey’s divergence in the target function. The second
is denoted by MLD-wJ, which uses the inter-pose weight-
s defined by Eq. (6), i.e., using the weighted Jeffrey’s di-
vergence in the target function. The comparison between
MLD-J and MLD-wJ may reveal the effects of utilizing the
correlation among the neighboring poses. The MLD of each
training image is generated by Eq. (1), and if not explicitly

stated, Σ =

[
τ2 0
0 τ2

]
, where τ is the finest granularity of

the pose angles (in the Pointing’04 case, τ = 15).
The MLD methods are compared via five-fold cross-

validation with several state-of-the-art head pose estima-
tion methods including linear/kernel PLS [11], linear/kernel
SVM and linear/kernel SVR [9]. For each compared
method, several parameter configurations are tested and the
best performance is reported. For MLD-wJ, the δ in Eq. (6)
is set to 0.4τ2. The number of factors is set to 40 for kernel
PLS and 25 for linear PLS. Kernel PLS uses the RBF ker-
nel with the width 0.05. Both kernel SVM and kernel SVR
uses the RBF kernel with the width 0.01. Moreover, some
previously reported head pose estimation results [16, 4] on
the Pointing’04 database are also provided as references.

The algorithms are compared by two groups of evalu-
ation measures. One group are the regression measures,
i.e., the mean absolute error (MAE) between the predicted
pose and the “ground truth” pose. The other group are the
classification measures, i.e., the accuracy of the predicted
pose with respect to the “ground truth” pose. Each group
includes three measures, one for the yaw angle, one for
the pitch angle, and the last for both of them (denoted by
“yaw+pitch”). The MAE of yaw+pitch is calculated by the
Euclidean distance between the predicted (yaw, pitch) pair
and the “ground truth” (yaw, pitch) pair. For the classifica-
tion measures, the regression methods (linear PLS, kernel
PLS, linear SVR, and kernel SVR) predict the class closest
to their output pose. The accuracy of yaw+pitch is calculat-
ed by regarding each (yaw, pitch) pair as a class.

4.2. Results

The head pose estimation results on the Pointing’04
database are compared in Table 1. Each result is represent-
ed by the mean value ± standard deviation of the five-fold
cross-validation. The best mean performance on each mea-
sure is highlighted by boldface. In addition to the eight
methods compared in the exactly same experimental set-
tings, some previously reported head pose estimation re-
sults [16, 4] on the Pointing’04 database are also provid-
ed in the lower part of Table 1 as references. Note that
some of the previous results might be obtained with dif-
ferent experimental settings, such as differences in feature
extractor, validation protocol and embedding dimensionali-
ty, which are detailed in the footnotes of the table. As can
be seen from Table 1, both MLD-wJ and MLD-J perform
significantly better than all other compared methods on all
evaluation measures. Moreover, by more effectively utiliz-
ing the relationship among the neighboring poses, MLD-wJ
performs significantly better than MLD-J on all evaluation
measures.

In greater detail, the confusion matrices (in %) of MLD-
wJ on the yaw and pitch angles are shown in Fig. 2. As can



Table 1. Head Pose Estimation Results on the Pointing’04 Database.

MAE Accuracy
Method

Yaw Pitch Yaw+Pitch Yaw Pitch Yaw+Pitch

MLD-wJ 4.24◦ ± 0.17◦ 2.69◦ ± 0.15◦ 6.45◦ ± 0.29◦ 73.30%± 1.36% 86.24%± 0.97% 64.27%± 1.82%
MLD-J 5.02◦ ± 0.31◦ 3.54◦ ± 0.30◦ 7.94◦ ± 0.53◦ 67.96% ± 2.21% 81.51% ± 1.67% 55.66% ± 3.28%
Kernel PLS 5.79◦ ± 0.32◦ 4.83◦ ± 0.29◦ 9.66◦ ± 0.33◦ 64.48% ± 1.79% 78.35% ± 1.11% 51.47% ± 1.64%
Linear PLS 9.28◦ ± 0.48◦ 8.92◦ ± 0.56◦ 15.88◦ ± 0.79◦ 46.49% ± 2.80% 60.54% ± 2.52% 28.10% ± 3.28%
Kernel SVM 6.83◦ ± 0.36◦ 5.91◦ ± 0.31◦ 11.87◦ ± 0.39◦ 57.17% ± 2.12% 68.24% ± 1.71% 34.23% ± 2.05%
Linear SVM 8.30◦ ± 0.57◦ 8.16◦ ± 0.48◦ 14.91◦ ± 0.54◦ 50.54% ± 2.81% 57.67% ± 2.23% 23.80% ± 1.75%
Kernel SVR 6.89◦ ± 0.47◦ 6.59◦ ± 0.62◦ 11.99◦ ± 0.76◦ 60.22% ± 3.11% 71.72% ± 2.22% 44.73% ± 3.46%
Linear SVR 8.33◦ ± 0.55◦ 8.27◦ ± 0.35◦ 14.50◦ ± 0.68◦ 52.08% ± 3.16% 64.70% ± 1.38% 35.16% ± 3.08%

Stiefelhagen [17]1 9.5◦ 9.7◦ — 52.0% 66.3% —
Human Performance [8]2 11.8◦ 9.4◦ — 40.7% 59.0% —
Gourier (Associative

Memories) [8]3 10.1◦ 15.9◦ — 50.0% 43.9% —

Tu (High-order
SVD) [18]4 12.9◦ 17.97◦ — 49.25% 54.84% —

Tu (PCA) [18]4 14.11◦ 14.98◦ — 55.20% 57.99% —
Tu (LEA) [18]4 15.88◦ 17.44◦ — 45.16% 50.61% —
Voit [19] 12.3◦ 12.77◦ — — — —
Li (PCA) [12]5 26.9◦ 35.1◦ — — — —
Li (LDA) [12]5 25.8◦ 26.9◦ — — — —
Li (LPP) [12]5 24.7◦ 22.6◦ — — — —
Li (Local-PCA) [12]5 24.5◦ 37.6◦ — — — —
Li (Local-LDA) [12]5 19.1◦ 30.7◦ — — — —
Li (Local-LPP) [12]5 29.2◦ 40.2◦ — — — —
Foytik (Two-layer
Phase Cong.) [4]6 13.0◦ — — — — —

1 Used 80% of Pointing’04 images for training and 10% for evaluation;
2 Human performance with training;
3 Best results over different reported methods;
4 Better results have been obtained with manual localization;
5 Results for 32-dim embedding;
6 Trained on the FacePix(30) database and tested with Pointing’04 yaw angles.

be seen, for both yaw and pitch, MLD-wJ tends to produce
more incorrect estimations at larger angles, e.g., ±90◦. The
reason might be that the human subjects often pose differ-
ently at those extreme yaw or pitch angles. One additional
reason for the relatively poor performance at the −90 ◦ pitch
angle is that there are much fewer training examples for the
±90◦ pitch angles than for other angles. Fortunately, for
both yaw and pitch, most incorrect predictions are adjacent
to the ground truth angles.

When generating the MLDs for the training images by
Eq. (1), the covariance matrix Σ determines how the neigh-
boring poses are related to the ground truth pose. Suppose

Σ =

[
σ2 0
0 σ2

]
, then the standard deviation σ becomes an

indicator of the relationship between the neighboring poses
and the ground truth pose. The larger σ is, the more neigh-
boring poses are related to the ground truth pose. In order to
discover the usefulness of the neighboring poses, MLD-wJ
is tested on the MLDs generated with different values of σ
changing from 0 to 4τ with 0.5τ as the interval. Note that
σ = 0 corresponds to the special case where the descrip-
tion degree of the ground truth pose is 1 while the descrip-
tion degrees of all other poses are 0. The result is shown in
Fig. 3. As can be seen, too small or too large σ may both
lead to performance deterioration. Thus, a proper choice of
σ is important for good performance of the MLD methods.

Roughly speaking, 1.0τ ≤ σ ≤ 1.5τ is a good choice.

5. Conclusion

This paper is motivated by the inaccurate pose labels in
the training set for head pose estimation algorithms. In or-
der to solve this problem, we propose to associate a soft
pose label called multivariate label distribution (MLD) to
each image. The MLD covers a neighborhood centered at
the original (perhaps inaccurate) pose label. Using MLD
instead of the explicit hard pose label can not only allevi-
ate the negative influence of inaccurate pose labels, but also
boost the training examples for each pose without actually
increasing the total amount of training examples. Learn-
ing from MLD is implemented by minimizing the weight-
ed Jeffrey’s divergence between the predicted MLD and the
ground truth MLD. The proposed MLD-based methods are
compared with several state-of-the-art head pose estimation
algorithms on the Pointing’04 database and achieve signifi-
cantly better results.
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