
Very Fast Solution to the PnP Problem with Algebraic Outlier Rejection

Luis Ferraz1 Xavier Binefa1 Francesc Moreno-Noguer2
1Department of Information and Communication Technologies, UPF, Barcelona, Spain
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Abstract

We propose a real-time, robust to outliers and accurate
solution to the Perspective-n-Point (PnP) problem. The
main advantages of our solution are twofold: first, it in-
tegrates the outlier rejection within the pose estimation
pipeline with a negligible computational overhead; and sec-
ond, its scalability to arbitrarily large number of correspon-
dences. Given a set of 3D-to-2D matches, we formulate
pose estimation problem as a low-rank homogeneous sys-
tem where the solution lies on its 1D null space. Outlier
correspondences are those rows of the linear system which
perturb the null space and are progressively detected by
projecting them on an iteratively estimated solution of the
null space. Since our outlier removal process is based on
an algebraic criterion which does not require computing the
full-pose and reprojecting back all 3D points on the image
plane at each step, we achieve speed gains of more than
100× compared to RANSAC strategies. An extensive exper-
imental evaluation will show that our solution yields accu-
rate results in situations with up to 50% of outliers, and can
process more than 1000 correspondences in less than 5ms.

1. Introduction
The goal of the Perspective-n-Point (PnP) problem is to

estimate the position and orientation of a calibrated camera
from known 3D-to-2D point correspondences between a 3D
model and their image projections. The PnP is at the core
of many Computer Vision tasks with applications in other
areas such as Robotics, Photogrammetry or Augmented Re-
ality. Despite being a topic studied for more than a century
(the first solution dates back to 1841 [11]) the last decade
has witnessed a wide body of literature in which the pri-
mary goal has been to build efficient and accurate solutions
scalable to a large number of correspondences.
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Figure 1. Our approach to simultaneously estimate pose and
reject outliers. Top: Sample result, where green and black lines
indicate the inlier and outlier matches, respectively. The 3D model
is overlaid in blue in the input image, using the estimated pose.
The overall process (outlier rejection and pose estimation) is done
in less than 5 ms. Bottom-left: Our PnP solution iteratively com-
putes the null space of a linear system. Here we plot the matrix of
this system, where rows represent correspondences. The error per
match of the estimated null-space is plotted on the side of each ma-
trix, and is used to detect outliers (black rows). The convergence
of the null space is plotted at the bottom of each matrix, where
dotted lines depict the true null space. Bottom-right: The null
space gives an estimate of the 3D model in camera coordinates.
We finally compute the pose using rigid alignment.

Along these lines, the Efficient PnP (EPnP) [22] was the
first closed-form solution to the problem with O(n) com-
plexity and little loss of accuracy with respect to the most
accurate iterative methods [21]. The main contribution of
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this work was to introduce a fixed number of virtual con-
trol points to represent whatever number of 3D points. The
problem was then reduced to that of estimating the position
of the control points, which was efficiently done using lin-
earization techniques. Subsequent works dealing with an
arbitrary number of points, have improved the accuracy of
the EPnP specially for the minimal cases with n = {3, 4, 5}
correspondences. This has been essentially achieved by re-
placing the linearization approaches with more sophisticate
polynomial solvers [19] along with new reformulations of
the PnP as a least squares problem [13, 33, 32].

In any event, previous PnP solutions do not directly han-
dle the fundamental problem of outliers, and they assume
that all correspondences are at most corrupted by noise, but
not by mismatches. Outliers are typically rejected at a pre-
liminary stage using P3P algorithms [17] in combination
with RANSAC-based schemes [8, 12] . Then, PnP meth-
ods are applied with all the remaining inlier matches. This
initial rejection stage, though, significantly lessens the effi-
ciency properties of the whole pose estimation process, es-
pecially for large number of outliers.

In this paper we propose a novel solution to the PnP
problem that integrates an outlier-rejection mechanism and
does not need to resort to an independent and separate strat-
egy. Like in RANSAC, our approach also iterates to remove
outliers. However, instead of using a geometric criterion to
reject them, where at each step one needs to compute the
full pose and project back all points, we use much direct
criterion that results from exploring the algebraic error of a
linear system inherent of our PnP formulation (See Fig. 1).
In addition, this process typically converges in less than 5
iterations, even in situations where up to 50% of the corre-
spondences are outliers. As we will show in the experimen-
tal section, this results in speed-ups of up to 100× compared
to the standard P3P+RANSAC+PnP strategies, while yield-
ing similar or even better accuracies.

2. Related work
The PnP problem has been primarily addressed for a

fixed and small number of correspondences. Several closed-
form solutions have been proposed to solve the P3P [11,
6, 17, 9], the P4P [8], and the problem with n = {4, 5}
points [30]. Yet, while these minimal problems can be very
efficiently solved, they have the drawback of being very
sensitive to noise. This is attenuated by exploiting data re-
dundancy of larger point sets. The most straight-forward
algorithm for doing so, is the O(n) Direct Linear Transfor-
mation (DLT) [12]. However, DLT does not make use of the
fact that in the PnP problem the calibration parameters are
assumed to be known in advance, and generally gives poorer
results than ”specialized” PnP approaches. These, can be
roughly split into iterative and non-iterative techniques.

Iterative PnP approaches optimize an objective function

involving all correspondences. Standard objective functions
are based on geometric errors (e.g. 2D reprojection) [24].
This method, though, is computationally expensive as it
performs a demanding exploration of the solution space
to avoid local minima solutions. In the Procrustes PnP
(PPnP) [10], the error between the 3D points and their esti-
mated locations is iteratively minimized in a least squares
sense. Yet, since this approach is not combined with a
global search strategy, it is prone to fall into local minima.
An alternative to geometric errors, is to optimize algebraic
errors, which are faster to compute [2]. This is explored
in [21], that minimizes an algebraic error resulting from
deviations in the line of sight of the 3D-to-2D correspon-
dences. Again, this approach is sensitive to local minima.

Most of the limitations undergone by iterative methods
(i.e, local minima solutions and/or high computational cost)
may be overcome by non-iterative approaches. Paradoxi-
cally, early solutions were not computationally tractable, as
they considered all n points as unknowns of the problem.
Retrieving their locations, after imposing inter-point dis-
tances, lead to O(n5) [26] and O(n8) [1] solutions. More
recently, there have been several closed form and O(n) for-
mulations that can afford arbitrarily large point sets. The
first of these techniques was the EPnP [22, 18], that reduced
the PnP to retrieving the position of four control points
spanning any number n of 3D points. The inter-point dis-
tance constraints were only considered between these con-
trol points, and the resulting quadratic polynomials were
solved with simple linearization techniques.

Subsequent works have improved the accuracy of the
EPnP, still inO(n), by replacing the linearization with poly-
nomial solvers. For instance, the Robust PnP (RPnP) [19]
explicitly retrieves the roots of a seventh degree polynomial
that results from the least square minimization of multiple
P3P problems. The Direct-Least-Squares (DLS) [13] for-
mulates a nonlinear cost function, that produces a fourth
order polynomial system and is solved using the Macauley
matrix method. The main drawback in DLS is related with
the Cayley representation used for the rotations, which is
degenerate at 180 degrees. A new unpublished version of
the DLS that avoids this problem is provided in the author’s
webpage. Finally, [33, 32], propose two direct minimiza-
tion methods using a quaternion parameterization solved by
means of a Gröbner basis solver, resulting in the so-called
Accurate and Scalable PnP (ASPnP) [33] and the Optimal
PnP (OPnP) [32], two of the most competitive techniques
of the state-of-the-art.

Yet, as we have pointed out above, the essential problem
of dealing with outliers has not been directly handled by
previous PnP solutions. To the best of our knowledge this
task is set aside, as an independent preliminary step based
on RANSAC-like strategies [19, 33, 32], where a series of
P3P problems are solved and their solutions evaluated on all



points. When a large consensus is found it is finally eval-
uated on a PnP method. The main drawback of this two
stage strategy is that the efficiency of the PnP algorithm is
not fully exploited, as most of the time is spent in the mul-
tiple evaluations of the P3P.

There are related geometric problems proposing alter-
native outlier-rejection schemes that are intrinsically inte-
grated within the problem that is being solved. For instance,
to robustify PCA [5, 14] use influence functions and [3, 34]
use L1-norm. In [16, 15] the L1-norm is used within the
optimization scheme to handle certain amount of outliers in
matrix factorization and multiview geometry problems. An-
other way to handle the outlier rejection problem, is to focus
on maximizing the number of inliers that satisfy the model
that is being optimized. Dual problem [23] or the mini-
max formulations [31] are used for this purpose, although
they are limited to relatively a small number of outliers
(< 35%). Larger amounts have been recently handled us-
ing a truncated L2-norm [7]. However, since this approach
has a O(nd) complexity, where d is the dimensionality of
the model, it is constrained to problems with relative small
dimensionalities, like estimating planar motions or stereo
triangulations.

In this paper we draw inspiration in these outlier rejec-
tion schemes and integrate them within the linear formula-
tion of the PnP solution proposed by the EPnP algorithm.
The combination of both ingredients lets us to progressively
discard outliers with a simple step-like loss function and es-
timate the null space of the linear system in just a few itera-
tions, each executed in O(n) time.

3. Robustified EPnP
We next describe the main ingredients of our robust ver-

sion of the PnP problem. We first review and improve the
linear formulation of the problem that results from the EPnP
algorithm [22]. Then we show that based on this linear for-
mulation, we can easily formulate a robust outlier rejection
procedure based on the minimization of the algebraic error
of the linear system. Once an initial outlier-free solution is
obtained, the pose can be estimated in an straight-forward
manner applying our Procrustes-based alignment.

3.1. Revisiting the EPnP Linear Formulation

Let us assume we are given a set of 3D-to-2D correspon-
dences between n 3D reference points pwi = [xwi , y

w
i , z

w
i ]
>

expressed in a world coordinate system w and their 2D pro-
jections ui = [ui, vi]

>, for i = 1, . . . , n. Let A be the cam-
era internal calibration matrix, also assumed to be known in
advance. Given these assumptions, the goal of the PnP is to
estimate the rotation matrix R and translation vector t that
align the camera and world coordinate frames. As it is stan-
dard, this is addressed through the minimization of a cost
function based on the accumulated reprojection errors. For

each point i, we have the following perspective constraint:

di

[
ui
1

]
= A [R|t]

[
pwi
1

]
, (1)

where di is the depth of the point. Following [22], pwi can
be rewritten in terms of the barycentric coordinates of four
control points cwj , j = 1, . . . , 4, chosen so as to define an
orthonormal basis centered at the origin of the world co-
ordinate system. Every reference point, can therefore be
expressed as pwi =

∑4
j=1 αijc

w
j .

Note that the barycentric coordinates αij are indepen-
dent on the coordinate system, and specifically they remain
the same when writing the reference points in the camera
coordinate system c. That is, pci =

∑4
j=1 αijc

c
j .

If we replace the term Rpwi + t by pci , multiply both
sides of Eq. 1 by A−1 and substitute the last row of the
resulting equation into the first two rows, the perspective
projection constraint for one single correspondence can be
rewritten as the following linear system of two equations:[

1 0 −uci
0 1 −vci

]
Bix = 0 (2)

where [uci , v
c
i , 1]

> = A−1[ui, vi, 1]
> are the normalized 2D

coordinates, Bi is a sparse 3 × 12 matrix built from the
barycentric coordinates αij , and x = [cc1

>, . . . , cc4
>]> is

our unique unknown, a 12-dimensional vector made of the
control point coordinates in the camera reference system.
At this point we can exploit the particular sparsity pattern
of Bi to write the Eq. 2 as a Kronecker product:

[
αi1 αi2 αi3 αi4

]
⊗
[

1 0 −uci
0 1 −vci

]
x = 0 (3)

Finally, concatenating these equations for all n correspon-
dences can be expressed as a linear system Mx = 0 where
M is a 2n× 12 matrix.

It is worth to point that formulating the problem from uci
and vci coordinates and with the Kronecker product is not
used in the original EPnP, resulting in significant speed-
ups when building the correspondence matrix M.

3.2. Robust Null Space Estimation

As discussed in the original EPnP formulation [22] in the
noise-free case the rank of the null-space of M is one, but
due to noise this rank is assumed that can grow up to four.
EPnP then proceeds by separately solving each of the cases
and retaining the one that minimizes the reprojection error
of all points. However, as it will be shown in the results
section, this strategy is sensitive to the presence of outliers.

In this paper, instead, we assume the rank of the null-
space of M to be always one, and propose a strategy to
compute this null space while removing outliers and gross
error correspondences. Indeed, the noise and outliers force



Algorithm 1 Robust Null Space Estimation
Input: M: 2n×12 corresp. matrix; δmax: max. algebraic error
Output: W, x
Initialize: W = I2n, ξ = Inf

1: loop
2: [U,S,V]=svd(M>WM);

where V=[v1, . . . ,v12]; S=diag(s1, . . . , s12)
3: x← vk; where k : sk = min(s1, . . . , s12)
4: ε = Mx
5: εi = ‖[ε2i−1, ε2i]‖
6: εmax = Q25%(ε1, . . . , εn)
7: if εmax > ξ then
8: return W,x
9: else

10: ξ = εmax

11: end if
12: Update wi using Eq. 6
13: end loop

the numerical rank of the null-space of M to be zero, i.e,
M has no null singular values, although a few of them are
very close to zero. In order to remove outliers, and compute
a noise-free version of M, which we denote L, we pose the
following minimization

argmin
L,W

‖W(M− L)‖2 (4)

subject to rank(L) = rank(M)− 1

where W = diag(w1, w1, . . . , wn, wn) is a 2n× 2n diago-
nal matrix with binary entries indicating if each correspon-
dence is considered as inlier (wi = 1) or outlier (wi = 0).

Since we seek to estimate the null space of M, (i.e. the
vector x), we rewrite the problem by multiplying the pre-
vious minimization by x. Given that x and the rows in L
lie into complementary subspaces, Lx = 0, the constrained
minimization of Eq. 4 can be turned into a non-linear mini-
mization of an algebraic error with unknowns x and W,

argmin
x,W

‖WMx‖2 . (5)

To solve this optimization we sequentially estimate x
and W, as detailed in Algorithm 1. Initially, all correspon-
dences are assumed to be inliers, and thus W is initialized
to the identity matrix. We then compute the singular value
decomposition of M>WM, and take x to be the eigenvec-
tor associated to the smallest singular value . Let ε = Mx
be the residual vector, and εi = ‖[ε2i−1, ε2i]‖ the algebraic
error associated to the i-th correspondence. All of the en-
tries of the matrix W are updated according to a simple step
function:

wi =

{
1 if εi ≤ max(εmax, δmax)
0 otherwise (6)
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Figure 2. Example of outlier rejection with 100 inliers (shown on
the left-most part of the graphs) and 100 outliers. The blue line
represents the algebraic error of each correspondence, and the hor-
izontal black line is the threshold max(εmax, δmax) used in Eq. 6 to
classify each match as inlier or outlier. δmax is the only threshold
we need to provide, and we set it to 0.017, which approximately
represents an image noise of τ = 10 pixels for a focal length
f = 800.

where εmax = Q25%(ε1, . . . , εn) returns the algebraic error
of the correspondence that is at the boundary of the lowest
25% quartile. This function is used as a robust estimator to
reject those correspondences with largest algebraic errors.
For this purpose, we also evaluated using the median opera-
tor. Yet, the median has a breakdown point (maximum num-
ber of supported outliers) of 50%, while, as we will show in
the results section, the breakdown point of the Q25% reaches
the 60%.

Furthermore, note that if we solely used this criterion,
in an outlier-free case we would be unnecessarily rejecting
inlier correspondences. In order to avoid this situation and
achieve faster convergence rates we introduce an algebraic
error threshold δmax that needs to be reached in order to
consider a specific correspondence as outlier, similar to the
maximum reprojection error τ used in standard RANSAC
to classify matches as outliers. We observed that the al-
gebraic error grows with τ and it lessens when increasing
the camera focal length f . We modeled this observation
by δmax = kτ/f (where both τ and f are expressed in pix-
els) and established k = 1.4 from a large number of syn-
thetic experiments without outliers, in which we computed
the maximum algebraic error for different amounts of noise
and different focal lengths.

This process is repeated until the convergence of the
null-space x which usually happens in less than 5 iterations.
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(a) Non-planar case (b) Planar case
Figure 3. Synthetic experiments, varying the number of correspondences (first row) and the amount of Gaussian noise (second row).

Fig. 2 shows an example of the execution of our algorithm
with 50% of outliers, which converged after 4 iterations.

3.3. Estimating Scale and Absolute Pose

So far we have estimated a solution x of the system
Mx = 0 up to scale, i.e, any scaled version γx would also
be a solution of that linear system. In addition, x is an es-
timation of the position of the control points ccj in camera
referencial, but our ultimate goal is to estimate the R and t
that yield to absolute camera pose in the world coordinate
system. This is linearly calculated using the generalization
of the Orthogonal Procrustes problem [28], which solves, in
closed-form, the following minimization problem:

argmin
γ,R,t

4∑
j=1

‖Rcwj + t− γccj‖2 (7)

subject to R>R = I3

Additionally, and in a similar manner as [18] extends the
original EPnP with a final Gauss-Newton optimization, we
also propose an iterative refinement of x. For this purpose
we consider the estimation of the control points positions
from Eq. 7, ĉcj = Rcwj + t, and build an estimation of the
null-space vector x̂ = [(ĉc1)

>, . . . , (ĉc4)
>]>. This vector is

then projected on an extended null space of M, with four
components, and recompute x as:

x← Nβ : argmin
β
‖Nβ − x̂‖2 (8)

where N is a 12× 4 matrix representing the 4 eigenvectors
in the assumed null space of M and β is a 4-dimensional

vector of weights. This minimization is solved in closed
form, and yields updated values x. These new estimates are
in turn fed again to Eq. 7 to recompute γ, R and t until the
convergence of both equations.

Since this optimization is computed just over the four
control points, its computational overhead is negligible.

3.4. The Planar Case

Just as with the EPnP [22], the planar case requires a
slight modification of the method. Since in this case only
three control points are necessary to span the reference
points onto the plane, the dimensionality of our vector of
unknowns x drops to 9, and M becomes a 2n × 9 matrix
of correspondences. Besides these changes the rest of the
algorithm remains completely unchanged.

4. Experimental results

We compare the accuracy and scalability of our method,
with and without the outlier rejection mechanism, against
state-of-the-art on synthetic and real data. Our method is
implemented in MATLAB and the source code will be made
publicly available in the authors webpage.

4.1. Synthetic experiments

We assume a virtual calibrated camera with image size
of 640 × 480 pixels, focal length of 800 and principal
point in the image center. We randomly generated 3D-to-
2D correspondences, where 3D reference points were dis-
tributed into the x, y, z interval [−2, 2]× [−2, 2]× [4, 8].



10100 300 500 700 900 11001300150017001900

5
10

100

1.000

6000

Number of Points

Ru
nn

ing
 T

im
e (

ms
)

 

 

0 5 10 15 20 25 30 35 40 45 50 55 60 65

5

10

100

1.000
1500

% of outliers

Ru
nn

ing
 T

im
e (

ms
)

 

 

RNSC P3P
RNSC RP4P RPnP
RNSC P3P OPnP
RNSC P3P ASPnP
REPPnP

Figure 4. Running time. Varying the number of outlier-free corre-
spondences (left) and varying the % of outliers (right). In the left,
the color codes and line styles are the same as those used in Fig 3.

We also added Gaussian noise to the 2D image coordi-
nates and different percentages of outliers, produced by
randomizing the 2D position of the projections. Finally,
we chose the ground-truth translation ttrue as the centroid
of the 3D reference points and we randomly generated a
ground truth rotation matrix Rtrue. As a metric errors we
used the same as in [19, 32]. The absolute error is mea-
sured in degrees between the Rtrue and the estimated R as
erot(deg) = max3k=1{acos(r>k,true ·rk)×180/π}where rk,true
and rk are the k-th column of Rtrue and R. The translation
error is computed as etrans(%) = ‖ttrue − t‖/‖t‖ × 100.

All the plots discussed in this section were created by
running 500 independent MATLAB simulations and report
the average and median rotation and translation errors.

4.1.1 Number of Correspondences and Noise

In these experiments we compared the accuracy and running
time of our method assuming there are no outlier correspon-
dences. Therefore, our method could be applied without the
outlier rejection process. However, since we want to show
that this process does not affect the final results, we consider
two versions of our method referred to as Robust Efficient
Procrustes PnP (REPPnP) for the outlier rejection case, and
Efficient Procrustes PnP (EPPnP) for the one without the
outlier-rejection scheme.

We have compared our formulations against the most
recent PnP approaches: the robust version of DLS [13],
ASPnP [33], OPnP [32], RPnP [19], PPnP [10], EPnP +
GN [18], SDP [29], and the LHM [21].

The first row of Fig. 3 plots the accuracy for increas-
ing number of correspondences, from n = 10 to 200, with
constant Gaussian noise of σ = 2 pixels. The second row
depicts the errors for increasing amounts of noise, from
σ = 0 to 20, and a constant number of correspondences
n = 30. Both experiments for planar and non-planar config-
urations, show that the proposed approach yields accurate
solutions, comparable to the best state-of-the-art solutions.
Just to give significance of the difference between the errors
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Figure 5. Synthetic experiments for different levels of outliers.
Top: Relative error of the null-space of Mx = 0 computed
without removing outliers (left); and algebraic error for the in-
lier and outliers correspondences projected onto this null space
(right). The deviation levels of the initially estimated null space
let to clearly identify inliers and outliers, based on their algebraic
error. Bottom: Inlier geometric reprojection errors in pixels (left),
and mean translation error (right) for the pose estimated with state-
of-the-art PnP solutions when outlier correspondences are not re-
moved. Rotation error has similar levels of inaccuracy. Note that
even for small percentage of outliers the obtained solutions are
completely wrong.

in our method and the most accurate approach (OPnP), in
the worst case it is equivalent to a mean deviation of about
0.5 mm in estimating the position of points randomly dis-
tributed within a cube of 40 cm side located at a 60 cm of
the camera. For the planar case, it is interesting to note how
our approach significantly improves the performance of the
EPnP, mostly due to the use of the Procrustes refinement
stage.

In addition, as we have discussed before, we want to
make clear that our approach is not intended to work in min-
imal cases. In fact, similar to EPnP, the performance of our
approach drops for n ≤ 6. Instead, we seek to exploit the
consistency of large number of correspondences. This is in-
deed a realistic situation, as current keypoint detectors are
able to extract hundreds of reliable feature points in stan-
dard images. And what is most important, we can process
all this amount of points very efficiently, and as we will
show below, even under the presence of outliers.

Fig. 4(left) shows the computation time of all methods in
the outlier free case, for an increasing number of correspon-
dences, from n = 10 to 2000, and with a fixed σ = 2. This
experiment was done on an Intel Core i7 CPU to 2.7Ghz
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Figure 6. Synthetic experiments, varying the % of outlier corre-
spondences. The real inliers are fixed to 100 with σ = 5. The
symbol ∗ represents the last value before the breakdown point.

and all methods are implemented in MATLAB. Note that
our EPPnP method is the fastest one with almost constant
computational cost fixed to≈ 3 ms whatever number of cor-
respondences. Closely followed by ASPnP and our robust
implementation REPPnP, which despite being computed in
a situation without outliers, it executes several iterations.

4.1.2 Robustness to Outliers

The main contribution of our approach is to embed the out-
lier rejection scheme within the pose estimation pipeline.
The success of our approach holds in part on the fact that
the null-space xini computed initially (i.e., the solution of
Mx = 0 before removing any outlier) “only” deteriorates
linearly with the presence of outliers. We show this in
Fig. 5(top-left) where we plot ‖xtrue−xini‖/‖xini‖×100 for
increasing amounts of outliers. Note that the difference be-
tween the true and the initially estimated null spaces is kept
within reasonable bounds for large percentages of outliers.
This lets us to easily detect the outlier correspondences, as
they generally have larger algebraic errors than inlier corre-
spondences when projected onto this initial null space. We
show this in Fig. 5(top-right), where we plot the algebraic
error Mxini.

This robustness to the presence of outliers, contrasts with
the sensitivity undergone by the geometric error. If we use
the same experimental setup, and compute the 2D reprojec-
tion using the state-of-the-art PnP methods described above,
we see that the obtained solutions are so corrupted that in-
liers and outliers cannot be distinguished from geometric

Figure 7. Real image examples. Top: Inlier and outlier correspon-
dences found by our method between a model (left) and a test im-
age (rigth). Bottom: Examples of fitting using our method.(Green
and black dots represent the inliers and outliers respectively)

error alone (see Fig. 5(bottom-left)). Obviously this results
in total failures of these methods, if outliers are not initially
removed (Fig.. 5(bottom-right)).

In Fig. 6 we therefore compare the performance of
our robust approach, and other PnP methods when used
in a RANSAC strategy, concretely [12], with the fol-
lowing combinations of minimal and general approaches:
(RANSAC+P3P [17]); (RANSAC + RP4P + RPnP [19]);
(RANSAC + P3P [17] + ASPnP [33]); and (RANSAC +
P3P [17] + OPnP [32]). Note that for percentages of out-
liers below 45% our approach yields slightly better results
than other approches, we suspect it comes from the fact of
using a different criterion to choose the inliers correspon-
dences (Eq. 6). As mentioned above, the breakdown point
of our approach is between 50% and 60% of outliers, sit-
uation which a RANSAC based strategy can still handle.
However as seen in Fig. 4(right) this is at the expense of a
significant increase in the computation time, which is more
than 100x larger than the time required by our approach1.

Finally, we would like to comment that we are aware that
exist more efficient versions of RANSAC [27]. For instance
PROSAC [4] exploits priors on the confidence of the detec-
tor . Note, however, that we could also incorporate this kind
of knowledge in our approach, e.g. by weighting each corre-
spondence based on its confidence. However, for the clarity
of the paper we did not further explore these situations.

4.2. Real images

We also tested our approach in real image sequences
corrupted by large amounts of outliers. Feature points
and initial correspondences are obtained using SIFT [20],
which yields around 200− 400 correspondences per image.
Fig. 7(top) shows one sample input image and its set of 248

1The stopping criterion for the RANSAC is based on the number of
iterations that guarantee, with a probability 0.99 that at least one minimal
solution is outlier free (See. [12], page 119).



correspondences, from which 96 are outliers. Our REPPnP
can detect these outliers and compute the pose in less than
4ms, 25× faster than any other RANSAC-based method.
The results of other detections are plotted on the bottom of
Fig. 7. Note that an additional benefit of our approach, is
that the outlier removal process is completely transparent to
the user, simplifying thus its practical utilization.

5. Conclusions
We have proposed a very fast and accurate solution to

the PnP problem which is inherently robust and does not
require RANSAC-based preprocessing steps for outlier re-
moval. The outlier rejection scheme is integrated within
the pose estimation pipeline with a negligible overhead, re-
sulting in an approach completely scalable and with almost
constant computational cost for an arbitrary large number of
correspondences. As a future work we plan to integrate ad-
ditional priors (e.g. detector confidence levels) and explore
the use of kernel functions to weight the correspondences,
to expand our approach to larger percentage of outliers and
even faster speeds. Following [25] we also plan to extend
this approach to non-calibrated cameras.
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