
Filter Forests for Learning Data-Dependent Convolutional Kernels

Sean Ryan Fanello1,2 Cem Keskin1 Pushmeet Kohli1 Shahram Izadi1

Jamie Shotton1 Antonio Criminisi1 Ugo Pattacini2 Tim Paek1

Microsoft Research1 iCub Facility - Istituto Italiano di Tecnologia2

Abstract

We propose ‘filter forests’ (FF), an efficient new discrimi-
native approach for predicting continuous variables given
a signal and its context. FF can be used for general signal
restoration tasks that can be tackled via convolutional filter-
ing, where it attempts to learn the optimal filtering kernels
to be applied to each data point. The model can learn both
the size of the kernel and its values, conditioned on the ob-
servation and its spatial or temporal context. We show that
FF compares favorably to both Markov random field based
and recently proposed regression forest based approaches
for labeling problems in terms of efficiency and accuracy.
In particular, we demonstrate how FF can be used to learn
optimal denoising filters for natural images as well as for
other tasks such as depth image refinement, and 1D signal
magnitude estimation. Numerous experiments and quanti-
tative comparisons show that FFs achieve accuracy at par
or superior to recent state of the art techniques, while being
several orders of magnitude faster.

1. Introduction

Probabilistic models such as pairwise Markov random
fields (MRF) and conditional random fields (CRFs) have
been used for solving many pixel-wise labeling problems
encountered in computer vision, including semantic seg-
mentation, optical flow, image denoising, and stereo [3, 17].
These models allow the relationships between interacting
variables (such as those corresponding to neighboring pixels)
to be modeled easily, and typically lead to results which are
smooth and respect edges in the image.

Despite impressive results, field-based models have two
drawbacks: estimating the structure and parameters of mod-
els is hard, and inference of the maximum a posteriori so-
lution under the model can be expensive. This has led re-
searchers to investigate faster forest-based alternatives.

Decision forests [1, 4, 8, 23] have been used for problems
such as body part classification [24] and organ detection [6].
While they enable efficient prediction, they also have a ma-
jor drawback. In general, forest-based models make predic-
tions under the assumption that output variables (such as

pixel labels) are independent, and thus fail to enforce spatial
smoothness. A recent exception is the work in [16] where
the authors investigate the use of an iterative, stacking tech-
nique for the prediction of categorical (discrete) labels while
respecting spatial context.

In this paper we propose filter forests (FF), a non-iterative
forest-based predictor for the estimation of continuous vari-
ables, which can incorporate a learned model of spatial or
temporal context. We apply FF here to the task of restoring
corrupted n-dimensional signals.

Our main contribution is in the use of a highly-efficient
multi-scale decision forest that is trained to discriminatively
predict which filter should be applied at any given set of
variables (e.g. pixels). FF has the following properties: (i)
the forest recursively partitions the input signal such that a
simple convolution kernel is appropriate at each leaf; (ii) we
train the forest to minimize a new, regularized least squared
error of the kernels at each leaf; (iii) we are able to achieve
state of the art accuracy at a speed that is orders of mag-
nitude faster than state of the art; and (iv) no field-based
post-processing is required.

We evaluate FFs on a number of tasks including natural
image denoising, depth image refinement, and 1D signal
magnitude estimation. Experiments on a popular denoising
image dataset show that our method achieves accuracy which
is at par or superior to state of the art, but four orders of
magnitude faster. Improved results are also demonstrated for
depth image refinement and 1D signal magnitude estimation,
hinting at the generality of our method. We believe FFs can
be extended to many other related tasks such as learned edge
detection, image sharpening, or even morphological filtering
and discrete classification tasks.

1.1. Related Work

Convolution in Image Processing. Bilateral [27] and
Wiener [30] are popular filters for noise removal in images.
The former replaces the intensity at a pixel i with a weighted
combination of nearby intensities, with weights depending
on both intensity difference and spatial distance from i. The
latter defines local filters conditioned on local variance es-
timates. Both filters try to preserve edges; but despite their
popularity they do not always yield good denoising results.

1

Figure 1. Filter forests for learned, spatially-varying filtering. Filter forests learn an optimal convolution kernel as a function of the local
image appearance. (left) Input noisy image, with superimposed select locations. (middle) Learned convolution filters for corresponding
locations (color-coded). (right) Denoised image. In textureless regions (red square) the filter forest learns to use large, isotropic smoothing
filters. Instead, at object boundaries (orange or green squares) the forest learns to use directional, edge-preserving filters.

Further adaptive techniques include non-local means [5],
K-SVD [11], LSSC [18] and CSR [10]. One of the most
accurate methods, BM3D [9], uses local similarity of noisy
patches to obtain a single prediction.
Filtering for Encouraging Spatial Coherence. A number
of papers have considered the use of filtering for pixel la-
beling tasks. Convolving a unary likelihood with a filter
can be used for inferring solutions to problems such as opti-
mal flow, stereo and figure-ground segmentation [7, 20, 26].
Kontschieder et al. [16] integrated these ideas in a sequential
classification approach where filtered outputs from one layer
of predictors was given as input to the next layer of predic-
tors. These methods are efficient, but their modeling power
is limited by the fact that only a single fixed form of filter
function is used. In contrast, our method uses a tree to select
the filter to be applied from a potentially unboundedly large
dictionary. Our method can be seen as a generalization of
the convolution model, where the kernel is no longer fixed
for the entire image, but varies spatially (or temporally),
conditioned on the local appearance of the input signal.
Decision Trees for Structured-Output Prediction. The
use of decision trees in combination with random fields
for the purposes of image denoising has been investigated
in [14, 19]. There, Nowozin et al. have shown how arbi-
trary, data-dependent pairwise potentials in CRF models can
be encoded using a decision tree, and learned efficiently.
Decision trees have also been used for reducing the compu-
tational complexity of inference methods. Shapovalov et al.
[22] recently showed how the inference machines framework
proposed in [21] can be used in conjunction with decision
forests to efficiently assign class labels to 3D points. Our
work differs from these methods in that it does not require
explicit inference, it is non-iterative and involves a simple
(yet spatially-varying) convolution operation.

2. Method

Many problems in image processing and computer vision
can be formulated as a regression problem where we want to

learn a mapping fw : X → Y from the space X of inputs to
the space Y of outputs that is parameterized by some param-
eters w. Learning these predictors is generally formulated
using the principle of empirical risk minimization:

w? = argmin
w

∑
i∈T

L(yGT
i , fw(xi)) (1)

where T is the training data composed of pairs of input
and expected (ground truth) output pairs (xi, yGT

i), and the
function L computes the loss of predicting fw(xi) when the
true solution is yGT

i .
As an example, consider signal processing tasks that re-

quire recovering the original signal y, or some of its features
(like edges), from possibly noisy observations x. The type
of the noise can be additive, such that x = y + ε, or multi-
plicative, Poisson, etc. Convolution of x with a kernel w is
considered to be an efficient method to obtain an approxima-
tion to the original signal y. If we assume that the form of
the prediction function fw(xi) is a convolution and the loss
is the absolute value, then we can find the optimal kernel as:

w? = argmin
w

∑
i∈T
‖yGT
i − x>i w‖2 (2)

where i is a data point index, and xi is the k dimensional
context of data point i. However, application of a fixed kernel
homogeneously to the entire signal rarely gives satisfactory
results, because signal and noise characteristics may vary
throughout the signal. Our aim is to train a model that
efficiently matches a data point and its context xi with the
optimal kernel w learned from a training set.

We propose solving this problem with random forests that
store optimal filters w at the leaves and learn to efficiently
assign these to the input xi. Notably, these filters can be
local, specific and simple, yet the forest can still handle
complicated types of noise (like a piecewise linear function
converging to a continuous function). For instance, FF can
handle multiplicative noise by approximating its response
with additive noise at each leaf. Therefore, we choose to
store linear filters that are learned by assuming additive noise,
for which there is an effective closed form solution via least
squares optimization [12]:

w? = argmin
w

‖y − Xw‖2 , (3)

where y ∈ RN is the vector of the N ground truth (noise
free) values, and X ∈ RN×k is the matrix of N observations
where each row is an x>i .

Note that the linear filtering Xw could be replaced with a
non-linear function fw(X) suitable for other types of prob-
lems. Examples include a median filter for different type
of noise, or a sigmoid function that could cast a discrete
labeling problem into a continuous one, so that it can be
solved via regression.

We will now describe this model in more detail. From
this point on we will focus on a specific application, namely
image denoising, to make the explanations more intuitive.

2.1. Filter Forests

We use regression forests to learn a partitioning of the
space of image patches x such that within each partition
a simple linear convolution produces (measurably) good
results. We will show: i) how to train a FF to minimize
a well-defined denoising loss from labeled training data,
ii) how our regularizer encourages edge-preserving filters,
and iii) how to learn an appropriate scale for each kernel.
Our experiments in Sec. 3 show that at test time the FF can
produce accurate denoising at a very high speed. Below,
we give a brief review of standard decision forests, before
presenting details on FFs.

2.1.1 Conventional decision forests

A forest is an ensemble of T decision trees [1, 4, 8]. Each
tree consists of non-terminal (split) and terminal (leaf) nodes.
At test time a pixel i is passed into the root node. At each
split node j, a split function f(i;θj) is evaluated. This
computes a binary decision based on some function of the
image that surrounds the pixel i, based on learned parameters
θj .1 Depending on this binary decision, the pixel passes
either to the left or right child. When a leaf is reached, a
stored histogram over class labels (for classification) or a
density over continuous variables (for regression) is output.

Each tree in the forest is trained independently. A set of
example pixel indices i and their corresponding ground truth
labels are provided. Starting at the root, a set of candidate
binary split function parameters θ are proposed at random,
and for each candidate, the set of training pixels is parti-
tioned into left and right child sets. An objective function
(typically information gain for classification problems) is
evaluated given each of these candidate partitions, and the
best θ is chosen. Training then continues greedily down
the tree, recursively partitioning the original set into succes-
sively smaller subsets. Training stops when a node reaches a
maximum depth D or contains too few examples.

1Function f can be any arbitrary function of the image region surround-
ing pixel i and is not limited to using just the patch xi.

Figure 2. PCA-based image features. The first 10 principal com-
ponents (shown in false color), computed from noisy training
patches at scales 11x11, 7x7, and 3x3. They represent smooth
regions, edges, corners as well as more complex patterns. Note that
these PCA components are only used to compute the features used
by the decision forest to partition the appearance space; the final
filtered output image is computed directly from the noisy input.

2.1.2 Details on filter forests

Training data. For FFs, we use pairs of noisy image patches
xi and their corresponding noise-free ground truth values yi
(for the central pixel only).2 As is standard with denoising
techniques, for our experiments we generate training data
by adding synthetic noise of particular characteristics (e.g.
Gaussian with σ = 20 grey levels) to the noise-free ground
truth images.
Features types. We employ two types of image features in
FFs. The notation θ is used to encapsulate which type of
feature is used, the parameters of that feature, and a threshold
applied to a scalar value that results in the required binary
decision. All aspects of θ are learned at each split node
through randomized optimization [8].

The first type of feature is a multi-scale filter bank (as
illustrated in Fig. 2). At each of the resolutions 3x3, 5x5,
7x7, 9x9, and 11x11, a PCA is performed on all the noisy
training patches. For both training and testing, the filter
bank is applied at each resolution as a convolution across
the image. We allow two sub-types of this feature: unary
and pairwise. The unary feature simply takes the response at
pixel i of one of the top 10 PCA components in one of the
resolutions, whereas the pairwise feature takes the difference
of responses (both at pixel i) between two different PCA
components in one of the resolutions. The split function f
then simply applies the learned threshold to the resulting
scalar value. The choice of unary/pairwise, the PCA compo-
nents, the resolutions, and the best threshold are all learned
through randomized node optimization. We use PCA eigen-
vectors instead of predefined filter banks [14] because of
PCA’s generality across different types of signal. Moreover,
PCA ensures that the principal directions represent suitable
features for axis-aligned splits at internal nodes.

The second type of feature is based on a local estimate
of uniformity at each pixel. At each scale of 3x3, 5x5, 7x7,
9x9, and 11x11, we compute the variance of each image

2While we use xi to conveniently denote a particular patch of the noisy
image, for neighboring pixels these patches will share values, and the
individual xis need not be explicitly computed.

patch. We only employ a unary variant of this type of feature.
The function f applies the learned threshold to the variance
response at pixel i at one of the scales.
Training objective. One of the main contributions of our
work is the form of the training objective. Let Sj denote the
subset of training data that arrives at any node j of the tree.
The split function at node j is parameterized with parameters
θ and splits Sj into the left and right children subsets SLj (θ)
and SRj (θ) respectively. The training algorithm selects the
parameters of the split function by minimizing the energy
E(θ,Sj) as

θj = argmin
θ

E(θ,Sj) , (4)

with E is defined as the weighted sum of energies of the two
child nodes

E(θ,Sj) =
∑

c∈{L,R}

|Scj (θ)|Ec(Scj (θ)) . (5)

The energy of each child node is computed as

Ec(Scj) = ‖ycj − Xcjw
?‖2 , (6)

where

w? = argmin
w

(
‖ycj − Xcjw‖2 + ‖Γ(Xcj ,ycj)w‖2

)
, (7)

Here, Xcj and ycj are computed from SLj and SRj , and repre-
sent the set of noisy training data patches and the set of noise-
free ground truth values that have reached the left (c = L) or
right (c = R) child respectively of node j. Further, Γ(X,y)
represents a data-dependent regularization weighting matrix.

Data-dependent regularized training. The above men-
tioned optimization task would be a standard regularized
least squares problem if not for the use of Γ(X,y). As will
become clearer later, Γ encourages edge-preserving regu-
larization. The closed form solution of the minimization
problem (7) can be computed as

w? = (XTX+ ΓTΓ)−1XTy . (8)

If Γ were set to identity, then the regularization term in
(7) would encourage kernels to have smaller norms. In this
work, we instead investigate the use of a data-dependent
regularization, where smaller entries in w are encouraged
only when they differ from the pixel i at the center of the
patch.

To achieve this, we use a diagonal Γ matrix of size p2×p2
computed as a function of the data matrix X and ground truth
values as follows:

γd(X,y) =
1

N

N∑
i=1

(xi,d − yi)2 , (9)

where d ∈ {1, . . . , p2} indexes pixels within the patch, N is
the total number of samples (i.e. the number of rows) in X,

Figure 3. The importance of the Γ weighting matrix. Column 1:
different subsets of image patches that comprise X. Column 2: the
resulting Γ(X,y) weighting matrices. Column 3: the learned filters
w?. Rows 1 and 2 use the Γ computed in (9), while row 3 uses
Γ = I. Row 1 uses a randomly chosen set of patches, while rows
2 and 3 use the same set of patches with a vertical edge just to the
right of the central pixel. Our weighted regularization encourages
edge-aware filters. See text for more details.

and xi,d and yi are entries in X and y respectively. Intuitively,
the Γ matrix indicates which regions of the noisy image patch
are most likely to describe the ground-truth value yi at the
center of the patch. A pixel d with a larger value of γd will
discourage the filter w from using pixel d, while smaller
values of γd will encourage the use of pixel d.

To illustrate the importance of this regularization term,
we consider two sets of patches that are shown in Figure 3:
randomly generated (first row) and with vertical edges (sec-
ond and third rows). From these sets we compute Γ (second
column) and hence using (8) the filter w (third column). Us-
ing random patches we obtain a filter that is, as we might
expect, somewhat isotropic. In the second row we select
patches containing vertical edges where the central pixel is
to the left of the edge. As expected, the regularizer encour-
ages the filter to consider only the pixels to the left of the
edge that are likely to be good predictors of the central pixel.
This is an example of how the regularization encourages
edge-preserving filters.

The third row in Figure 3 shows the solution obtained for
patches containing vertical edges by setting Γ = I. In this
final case all dimensions d of the filter are equally regularized
(no data dependence), and the result is a poor filter that is
unlikely to generalize well.

Multi-scale filter learning. The optimization of (7) is
obtained by testing different filter sizes, from 3×3 to 11×11,
and selecting the one corresponding to the lowest error. This
simple scheme allows us to compute the appropriate kernel
size for each leaf, depending on the surrounding context
of the pixel. Example of such data-dependent kernels are
shown in Figure 1. Smooth areas are likely to be restored
by large kernels (in red), whereas fine details are recovered
using smaller and/or directional filters (orange).

The training phase ends when the tree reaches a certain
depth or the number of examples is too small. Each leaf
stores a different filter kernel w?

j , learned using the regu-
larized least squares error minimization computed over the
subset of labeled training examples that reached leaf j (8).

Test time signal filtering. At test time, for each tree, the
test pixel i is sent into the root node. Then each split node
sends it to one of its child nodes until it reaches a leaf j(i).
Thanks to the nodes hierarchical structure, such descent is
very efficient. The kernel wj(i) stored at leaf j(i) is looked
up, and applied as a dot product to the noisy image patch
at i, to produce the denoised output ŷi = x>i wj(i). Thus, a
different kernel is applied to each input patch, conditioned
on the patch appearance. In a forest, each tree is applied in
turn and the results averaged. Different trees can be handled
independently and in parallel for further efficiency.

Algorithm Complexity. The runtime complexity of the
algorithm depends linearly on the size of the signal, i.e.
O(|X|). In particular, for image denoising, the number of
operation per pixel is:

10O(p2) + T (O(p2) + O(d)) (10)

where p2 is the biggest patch size (in our case 11× 11). The
first term 10O(p2) is due to the PCA projector computations,
TO(p2) is the dot product between the predicted filters W
and the patch. Finally TO(d) is the cost for descending the
forest, with T trees of depth d. This cost being negligible, we
can approximate the whole running time to∼ (T+10)O(p2)
per pixel. These operations can be parallelized since the final
result does not depend on the results of the other image pixels.
This further decreases the overall running cost. Notably, the
cost per pixel is much lower than one of the fastest state of
the art methods [9] (see time comparisons in Table 1).
Implementation details. During training, for each tree
node, we use reservoir sampling [28] to select a subset of
example pixels i. This speeds up the training process while
ensuring a certain degree of randomness. Only the variance
feature at multiple scale is allowed to be selected in the very
first levels of the tree. This helps separate smooth regions
from textured ones early on.

3. Results and Comparisons
This section presents results for FFs applied to each of

the following tasks: (i) image denoising, (ii) depth image
refinement, and (iii) 1D dynamical system filtering. For the
first problem, we performed exhaustive evaluations using the
popular BSDS500 benchmark [2], comparing our method
with current state of the art algorithms. The depth denoising
task has been evaluated using the 7 Scenes dataset from [25].
For the third experiment we designed a real, noisy dynamical
system, and compared the predictions of filter forests with
those from the standard Kalman and Least Mean Squares
(LMS) filters. These experiments demonstrate the flexibility
and effectiveness of the proposed framework in different
application domains.

3.1. Image Denoising

For image denoising experiments, we use the same pro-
tocol as in [14]; images are re-scaled by a factor of 0.5, the
validation set is used for parameter tuning, and the final
model is evaluated on the test set. To form training im-
ages, Gaussian noise with zero mean and standard deviation
σ ∈ {20, 30, 40, 50} is added to every pixel in the images
independently. We trained our method on 300 images from
training and validation set, and the test set is composed of
200 images. The results are shown in Table 1. The proposed
FF-based method gets competitive PSNR scores with an av-
erage running cost of 0.025 seconds per image. To improve
the accuracy further, we apply the collaborative Wiener fil-
ter as proposed in [9] in a post-processing step (FFWiener in
the table). This drastically enhances the accuracy of the
method for a small cost in speed, making it better than all the
other methods except for RTFALL[14], which uses denoised
images computed with four state-of-the-art methods as its
input. For input noise σ = 20 we match the accuracy of this
algorithm, with a running time of 0.125 seconds compared
to 1275 seconds required by RTFALL. Hence, we conclude
that, for more realistic levels of noise, FF performs as well as
the state-of-the-art, while being 4 orders of magnitude faster.
Applying the same post-processing step to other methods did
not yield significant increases in accuracy in our experiments.
Qualitative comparisons are given in Fig. 4.

3.2. Depth Image Refinement

We conduct experiments on the first sequence of each
scene in the 7 Scenes Dataset [25], which has a total of 6500
frames. Synthetic ‘ground truth’ depth was computed using
a KinectFusion [13] reconstruction of the scene. Training
images are generated by adding depth-dependent Poisson
noise to each pixel. We train an FF (four trees of depth 12
with multi-scale patches) on 1000 frames selected from the
Chess scene, and test the model on the other scenes. The
quantitative results are reported in Table 2, showing that the
proposed approach outperforms the compared methods. This

Figure 4. Qualitative results of natural image denoising. From left to right: noisy input, ground truth, FF output, BM3D first phase, FF
with Wiener filtering, BM3D with Wiener filtering. Best viewed digitally at high zoom.

Method σ = 20 σ = 30 σ = 40 σ = 50 sec.
Wiener 25.73 24.79 23.95 23.19 0.001
FF 28.75 26.55 25.32 24.51 0.025
FFWiener 29.65 27.48 26.15 25.25 0.125
RTFPLAIN [14] 28.95 26.97 25.71 24.76 0.7
BM3D [9] 29.25 27.32 25.98 25.09 0.9
EPLL [31] 29.38 27.44 26.17 25.22 38
CSR [10] 29.17 27.24 25.91 24.99 124
LSSC [18] 29.40 27.39 26.08 25.09 172
RTFALL [14] 29.67 27.72 26.43 25.51 1275

Table 1. Denoising results (PSNR) and comparisons on the
BSDS500 benchmark. Comparison of FF with state-of-the-art
denoising algorithms. The last column reports average running
times (in seconds) for a single image (241× 161). All experiments
run on a 4-core Intel Xeon machine (2.4GHz).

also demonstrates that FFs can handle noise types other than
additive noise. In this particular application, collaborative
Wiener filtering (FFW) did not significantly improve the
accuracy. Qualitative examples are shown in Fig. 5.

FF FFW Wiener Bilateral LMS BM3D [9]
35.61 35.63 32.29 30.95 24.37 35.46

Table 2. Test set PSNR (db) for the depth refinement experi-
ment. We compare our method with other popular filters: Wiener,
Bilateral, LMS, and BM3D [9]

3.3. 1D Dynamical Signal Filtering

Here, we demonstrate the application of FFs to a non-
image modality. Consider a discrete dynamical system of
the form:

xk = Akxk−1 + Bkuk + ωk−1
zk = Ckxk + νk

(11)

where: xk ∈ Rn is the internal state at time k evolving
from its previous state at time k − 1; Ak ∈ Rn×n is the

transition matrix; Bk ∈ Rn×n is the input matrix accounting
for the contribution of the control vector uk; zk ∈ Rm is
an observation of the current (noisy) state xk; Ck ∈ Rm×n
is a transformation matrix that maps the state into the ob-
servations; and ωk−1 ∈ Rn and νk ∈ Rm are the zero
mean process noise with covariance matrices Qk ∈ Rn×n
and Rk ∈ Rm×m respectively. In this setting we consider
a time series of t observations zk = zk−t, . . . , zk with the
aim of learning a filter w such that xk = z>k w. The model
used for image denoising can thus be applied to this scenario
without any modification.

As a practical example of Eq. 11, we refer to the model of
an electrical DC motor, which is described by the following
state-space representation(

x1
x2

)
k

=

(
0 1
0 −a

)(
x1
x2

)
k−1

+

(
0
b

)
Vk +wk−1

zk =
(
1 0

)(x1
x2

)
k

+ νk (12)

where the parameters a = 1
τ and b = K

τ are known from
the motor’s datasheet (see [15] for details). Here x1 and x2
are the position [rad] and the velocity [rad/s] of the motor
respectively, Vk is the motor armor voltage [Volt]. Given a
series of noisy observations z1, . . . , zk from the load encoder,
we want to predict the current state of the system xk that is
the denoised position of the motor encoder [rad]. For the first
experiment, the signal is corrupted with a Gaussian noise
(zero mean, variance σ = 0.01), and the proposed model is
compared with a Kalman filter. In this setting, the Kalman
filter is the optimal estimator if the noise is white and the
covariances of the noise are known [29] (i.e. it minimizes

Figure 5. Qualitative results of depth refinement. From left to right: noisy input, BM3D, Wiener filter, bilateral filter, LMS filter, FF. FF
produces visually better results.

Figure 6. Dynamical system filtering in presence of structured
noise. We show error as the noise level σ is varied. FFs systemati-
cally outperform LMS and the Kalman filter.

the mean square error of the estimated output).
We generate 100 sequences of 2000 samples for the train-

ing phase, and test on 100 new noisy sequences. For a noisy
signal with 0.0097 rad MSE, the Kalman filter achieves an
error of 0.0018 rad, and FFs manage to converge to the opti-
mal filter with 0.00184 rad of error, without any assumption
on the system or noise model. In Fig. 7, left plot, we show
a denoised sequence. Notably, a least mean square filter w
achieves an error of 0.0033 rad.

In a second experiment, we generate input depen-
dent noise of the form wk = νxk, where ν is a
random variable with zero mean and variances σ ∈
{0.01, 0.02, 0.05, 0.1, 0.2} . When the noise is structured,

the Kalman filter is not guaranteed to be optimal. Here, FFs
systematically outperform the Kalman and the LMS filters at
every noise level. Quantitative results are reported in Fig. 6,
and qualititative results in Fig. 7 (right).

4. Conclusion

We have proposed FF as an efficient, novel discriminative
approach for signal filtering and restoration. FFs are a non-
linear, data-adaptive extension of convolution-based filtering,
but can be further extended to other filter types or non-linear
functions. A new data-driven, regularized training objective
allows us to adapt decision forests to the task of regressing
continuous variables, while exploiting their spatio-temporal
context.

Numerous experiments and quantitative comparisons
show that FFs achieve accuracy, which is at par or better
than recent state of the art algorithms; and orders of magni-
tude faster. We believe FFs can readily be extended to other
applications such as edge detection, sharpening, inpainting,
superresolution and many more.

References
[1] Y. Amit and D. Geman. Shape quantization and recognition

with randomized trees. Neural Computation, 9(7), 1997. 1, 3
[2] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour

detection and hierarchical image segmentation. IEEE Trans.
PAMI, 2011. 5

[3] A. Blake, P. Kohli, and C. Rother. Markov Random Fields for
Vision and Image Processing. The MIT Press, 2011. 1

Figure 7. Dynamical system filtering example. Kalman filter (black line) and an FF(cyan line) are used to estimate the encoder position of
a DC electrical motor (green line) from noisy observations (red line). Left: white Gaussian noise is added. In this setting the Kalman filter
represents the optimal estimator, and FF learns a very close approximation. Right: input dependent multiplicative noise is generated. In this
scenario our more flexible approach outperforms the Kalman filter.

[4] L. Breiman. Random forests. Machine Learning, 45(1), 2001.
1, 3

[5] A. Buades, B. Coll, and J. M. Morel. A non-local algorithm
for image denoising. In Proc. CVPR, 2005. 2

[6] A. Criminisi, D. Robertson, E. Konukoglu, J. Shotton,
S. Pathak, S. White, and K. Siddiqui. Regression forests
for efficient anatomy detection and localization in computed
tomography scans. Medical image analysis, 2013. 1

[7] A. Criminisi, T. Sharp, C. Rother, and P. Perez. Geodesic
image and video editing. Proc. ACM SIGGRAPH, 2011. 2

[8] A. Criminisi and J. Shotton. Decision Forests for Computer
Vision and Medical Image Analysis. Springer, 2013. 1, 3

[9] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Im-
age denoising by sparse 3-d transform-domain collaborative
filtering. IEEE Trans. Image Processing, 2007. 2, 5, 6

[10] W. Dong, X. Li, L. Zhang, and G. Shi. Sparsity-based image
denoising vis dictionary learning and structural clustering. In
Proc. CVPR, 2011. 2, 6

[11] M. Elad and M. Aharon. Image denoising via sparse and
redundant representations over learned dictionaries. IEEE
Trans. Image Processing, 2006. 2

[12] S. Haykin and B. Widrow. Least-Mean-Square Adaptive
Filters. Wiley, 2003. 2

[13] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,
P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and
A. Fitzgibbon. KinectFusion: Real-time 3D reconstruction
and interaction using a moving depth camera. In ACM UIST,
2011. 5

[14] J. Jancsary, S. Nowozin, and C. Rother. Loss-specific training
of non-parametric image restoration models: a new state of
the art. In Proc. ECCV, 2012. 2, 3, 5, 6

[15] T. Kara and I. Eker. Nonlinear modeling and identification
of a {DC} motor for bidirectional operation with real time
experiments. Energy Conversion and Management, 2004. 6

[16] P. Kontschieder, P. Kohli, J. Shotton, and A. Criminisi. GeoF:
Geodesic forests for learning coupled predictors. In Proc.
CVPR, 2013. 1, 2

[17] J. Lafferty, A. McCallum, and F. Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and labeling
sequence data. In Proc.ICML, 2001. 1

[18] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman.
Non-local sparse models for image restoration. In Proc. ICCV,
2009. 2, 6

[19] S. Nowozin, C. Rother, S. Bagon, T. Sharp, B. Yao, and
P. Kohli. Decision tree fields. In ICCV, pages 1668–1675,
2011. 2

[20] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz.
Fast cost-volume filtering for visual correspondence and be-
yond. In CVPR, pages 3017–3024, 2011. 2

[21] S. Ross, D. Munoz, M. Hebert, and J. A. Bagnell. Learning
message-passing inference machines for structured prediction.
In CVPR, pages 2737–2744, 2011. 2

[22] R. Shapovalov, D. Vetrov, and P. Kohli. Spatial inference
machines. In CVPR, pages 2985–2992, 2013. 2

[23] T. Sharp. Implementing decision trees and forests on a GPU.
In Proc. ECCV. Springer, 2008. 1

[24] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook,
M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman,
and A. Blake. Efficient human pose estimation from single
depth images. IEEE Trans. PAMI, 2013. 1

[25] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and
A. Fitzgibbon. Scene coordinate regression forests for camera
relocalization in rgb-d images. In Proc. CVPR, 2013. 5

[26] M. W. Tao, J. Bai, P. Kohli, and S. Paris. Simpleflow: A non-
iterative, sublinear optical flow algorithm. Comput. Graph.
Forum, 31(2):345–353, 2012. 2

[27] C. Tomasi. Bilateral filtering for gray and color images. In
Proc. ICCV, 1998. 1

[28] J. Vitter. Random sampling with a reservoir. ACM Trans.
Math. Softw., 1985. 5

[29] G. Welch and G. Bishop. An introduction to the kalman filter.
Technical report, University of North Carolina at Chapel Hill,
1995. 6

[30] N. Wiener. Extrapolation, Interpolation, and Smoothing of
Stationary Time Series. The MIT Press, 1964. 1

[31] D. Zoran and Y. Weiss. From learning models of natural
image patches to whole image restoration. In Proc. ICCV,
2011. 6

